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ABSTRACT

We present a solver for three-dimensional compressible mul-
ticomponent flow based on the compressible Euler equations.
The solver is based on a finite volume scheme for structured
grids and advances the solution using an explicit Runge-
Kutta time stepper. The numerical scheme requires the
computation of the flux divergence based on an approximate
Riemann problem. The computation of the divergence quan-
tity is the most expensive task in the algorithm. Our im-
plementation takes advantage of the compute capabilities of
heterogeneous CPU/GPU architectures. The computational
problem is organized in subdomains small enough to be
placed into the GPU memory. The compute intensive stencil
scheme is offloaded to the GPU accelerator while advancing
the solution in time on the CPU. Our method to implement
the stencil scheme on the GPU is not limited to applica-
tions in fluid dynamics. The performance of our solver was
assessed on Piz Daint, a XC30 supercomputer at CSCS. The
GPU code is memory-bound and achieves a per-node perfor-
mance of 462 Gflop/s, outperforming by 3.2x the multicore-
based Gordon Bell winning CUBISM-MPCF solver [16] for the
offloaded computation on the same platform. The focus of
this work is on the per-node performance of the heteroge-
neous solver. In addition, we examine the performance of
the solver across 4096 compute nodes. We present simula-
tions for the shock-induced collapse of an aligned row of air
bubbles submerged in water using 4 billion cells. Results
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show a final pressure amplification that is 100X stronger
than the strength of the initial shock.
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1. INTRODUCTION

Cavitation collapse of air bubbles submerged in water in-
duce pressure amplifications two orders of magnitude larger
than the initial pressure configuration. The impact of the
emitted shock waves on nearby surfaces causes material ero-
sion that is detrimental to the life time of ship propellers or
injection engines [17]. Medical applications such as shock
wave lithotripsy harness the destructive power of cavitation
to remove kidney stones [10].

We present a heterogeneous compressible multicomponent
flow solver to study the shock-induced collapse of air bubbles
submerged in liquid water. The compressible Euler equa-
tions are discretized on a structured grid using a finite vol-
ume scheme. The solution is advanced in time with an ex-
plicit low-storage Runge-Kutta method. Our solver exploits
the compute power of GPUs for problems that are too large
to fit into the GPU memory. We decompose the per-node
workload into smaller work units, thus offloading the com-
pute intensive part to the GPU by cycling through the data
stored on the host processor. Textures are used to further
exploit the spatial and temporal locality of the considered
numerical schemes, alongside minimizing the L1D cache pol-
lution by explicit use of two-dimensional thread blocks. The



Fluid  p[kg/m®] c[m/s] vy pc[Pa]
Air 1.204 343 1.40 0
Water 1000 1450 612 3.43 x 10°

Table 1: Density p, speed of sound c, specific heat
and correction pressure p. of air, helium and water
at normal temperature and pressure [3].

resulting performance of the solver shows a 3.2x improve-
ment over the multicore-based CUBISM-MPCF solver [16] for
the offloaded computation on Piz Daint.

Previous work in the field of stencil computations on GPUs
can be found in [12]. Recent work in the context of com-
pressible single-phase flow is presented in [4]. The imple-
mentations in these works focus on GPU shared memory.
Reference [9] and [11] present an approach which considers
texture memory within the same context. A recent GPU
accelerated solver for the two-phase incompressible Navier-
Stokes equations is found in [21]. To the best of our knowl-
edge, recent work in the context of GPU accelerated solvers
for compressible multicomponent flow is not available.

The paper is structured as follows: The model equations
and their discretization are introduced in Section 2. Sec-
tion 3 describes our heterogeneous solver implementation
using the CUDA/C++ languages. In Section 4 we present
a performance analysis of our heterogeneous solver on Piz
Daint. Simulation results for a shock-induced collapse of an
array of 10 bubbles are discussed in Section 5. Finally, we
summarize our findings in Section 6 and provide a perspec-
tive on our work for the next generation of GPUs.

2. EQUATIONS AND DISCRETIZATION

The equations for the flow model are given by the three-
dimensional (3D) compressible Euler equations coupled with
two transport equations to accommodate a multicomponent
composition. The evolution of density, momenta and total
energy of the fluid mixture is described by the conservation
laws

dp

e + V- (pu) =0, (1a)
9 (apt") +V - (puu’ + pI) =0, (1b)
O (B +plw) =0, (10)

The closure of the system is provided by the stiffened equa-
tion of state
1

Fp—l—H:E—Epu-u, (2)
where I' = 1/(y — 1) and II = yp./(y — 1). The ratio of
specific heats v and the correction pressures p. are empirical
parameter used to describe each fluid phase. Values used
for this work are specified in Table 1. The evolution of the
two additional parameter in (2) is coupled to the governing
system (1) by the transport equation
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ot
where ¢ = {I', IT}. The multicomponent system is described
by the variables U = (p, pu, E,T',II) according to equa-
tions (1), (2) and (3). The governing system (1) and (3)

+u-Vé =0, (3)

is written in quasi-conservative form. We rewrite it in flux-
divergence form as

ou  oF  0G 8H:R (4)
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where R = (0,0,0,0,0,¢V-u) is a source term and F', G, H
are flux functions
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We are interested in weak solutions of system (4). To
maintain the correct physical behavior in discontinuous flow
regions, a stable approximation is obtained by using a shock-
capturing scheme. The discretization is based on a semi-
discrete approach for structured 3D grids. For the present
work, we use a uniform grid with a total of N cells. The
finite-volume method is used for discretizing the governing
system (4). Approximation of the spatial terms reduces the
system to a time continuous system of ordinary differential
equations

= L(V(1), ()

where the vector V() € R is a representation of the cell
averaged variables U for the complete computational do-
main. Finally, we integrate (5) using an explicit third-order
low-storage Runge-Kutta scheme [20].

The numerical operator £(-): RY — RY returns the right-
hand side (RHS) of Equation (5). It provides an approxima-
tion to the convective terms in (4) and is computationally
the most intensive part when integrating (5). Furthermore,
three evaluations are required for every timestep due to the
three stages of the numerical integrator. Given the uniform
mesh, we apply a dimensional splitting and write

L=L"+LY+ L7 (6)

for the individual contributions in x, y and z direction. The
contribution of L% for cell i, j, k reads

x 1 3 U3
Lk = “n (f¢+1/2,j,k - fi71/2,j,k) , (7

where h is the uniform grid spacing and F7, ; /2 is an approx-
imation to the intercell flux F at cell face location i + 1/2
for the time interval [t,, tn41). The discrete time is given by
tn = Zn At,, with variable timestep At,,. Subscripts j, k are
omitted for simplicity. The remaining contributions of the
dimensional splitting are defined analogously to (7). Note
that the flux approximations depend on the cell averages
V(tn).

The numerical flux is determined by solving an approxi-
mate Riemann problem at each of the cell interfaces. For
the present work, we use the Harten, Lax, van Leer contact
scheme (HLLC) introduced by Toro [18] due to its superior
resolution of interfaces, which is essential in multicompo-
nent flows. Hence, the numerical flux at cell face i +1/2 is



Feature Nominal Value

Chip GK110
Primary Clock 732 MHz
Number of SP Cores 2688
Number of DP Cores 896

Peak SP Performance 3.94 Tflop/s

Peak DP Performance 1.31 Tflop/s

Memory Clock 2.6 GHz

GDDR5 Memory 6 GB

Memory Bandwidth 250 GB/s

PCle Bus Gen2.0 x16
Table 2: Hardware specification for the Nvidia
K20X GPU.

computed by

" 1+ sgn(s* R

Fit1y2 = %(F(UL) +s (U —Uw)) ®)
8
1-— * "
+ 128 () 4 5 U - Un)),
where

-1 ifx<0
s~ =min(sz,0), st = max(0, sg),sgn(z) = ifx=0
1 ifz>0.

Wavespeed estimates sy, and sgr, for the slowest and fastest
moving waves, respectively, are obtained from Einfeldt [5].
The wavespeed estimate for the contact wave is computed
by following Batten [1],

. _ prUr(SrR —ur) — prur(sL —ur) +prL — pr ©)

S
pr(SrR —ur) — pL(sL —ur)

The initial states for the Riemann problem Uy for k =
{L, R} are obtained by a fifth-order weighted essentially
non-oscillatory (WENO) reconstruction [7]. Approximation
of the intermediate states U}, for k = {L, R} are computed
according to Toro [18]. Finally, ¢V - u in the vector R of
Equation (4) is computed such that the velocity w is consis-
tent with s* at interfaces with strong pressure variations [8].
To prevent pressure oscillations at material interfaces, the
WENO reconstruction is performed using primitive variables
W = (p,u,p, T, 1) [8].

3. SOFTWARE DESIGN

In this section we describe the design and implementation
of our solver on a heterogeneous CPU/GPU architecture.
We begin with an overview of the steps required to advance
the solution in time and continue with a detailed descrip-
tion of the implemented GPU kernels. Our target GPU is
the Nvidia K20X, available on the Piz Daint XC30 super-
computer. Table 2 shows the main hardware features for
this GPU. Our code is written using the C+4 and CUDA
C/C++ languages.

3.1 Algorithm

The vector V is stored in a Structure of Array (SoA) for-
mat in host memory and is organized into K partitions that
fit into the GPU memory. The data partition is virtual and
does not modify the location of data in memory. Figure 1 il-
lustrates the partition on V' € ]RN, where N = Ny X Ny X N,
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Figure 1: Partition of the computational domain
into small enough segments for the GPU memory.

is the total number of cells. The number of cells for segment
kis N = Nz x Ny X N, with N, =3, N, . We perform
the partition along i, which is the slowest moving index. Al-
gorithm 1 illustrates the main steps required to process one
stage of the explicit Runge-Kutta time stepping. The nota-
tion V* is used to denote the data in V' that corresponds
to segment k. For each of the flow variables, communication
with the GPU is organized into a pair of pinned memory
buffers, each of size Ni. The first buffer is used for GPU
input, whereas the second buffer is used to receive GPU out-
put. The left part of Figure 2 illustrates two buffer pairs that
are utilized on the CPU. Similarly, a pair of global memory
buffers is employed on the GPU. The first buffer is used for
input and output (I/O) with the CPU. The second buffer is
a CUDA array used for read-only kernel input by binding
to texture references. We use texture memory to take full
advantage of spatial and temporal locality. The right part
of Figure 2 illustrates two buffer pairs utilized on the GPU,
where we denote the I/O buffer by A and the CUDA array
by B.

Algorithm 1 Processing of a Runge-Kutta Stage
k<1
Copy V* into input buffer of pair (k mod 2)
Enqueue GPU tasks on CUDA stream (k mod 2)
while k < K do
if £ > 1 then
Synchronize with CUDA stream (k — 1 mod 2)
Update V¥1!
end if
E—k+1
10: Copy V¥ into input buffer of pair (k mod 2)
11: Enqueue GPU tasks on CUDA stream (k mod 2)
12: end while
13: Synchronize with CUDA stream (k mod 2)
14: Update V*

The processing of the segments in Algorithm 1 is imple-
mented by cycling through the two buffer pairs to allow for
simultaneous processing of two segments. The arrows indi-
cated in Figure 2 illustrate the cycle. The algorithm starts
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Figure 2: Illustration of the set of buffer pairs used on the CPU and GPU.

Kernel Registers per thread Occupancy
Convert 24 100 %
WENOS5 (is, iy) 29 100 %
WENO5 (i) 32 100 %
HLLC (iz) 32 100 %
HLLC (iy, i-) 56 56 %
Transpose (i) 64 50 %

Table 3: GPU register usage per thread and occu-
pancy for thread blocks with 4 warps.

by copying the data for the first segment into the pinned
input of a buffer pair identified by a modulo operation. The
tasks to be executed on this segment are enqueued on a
CUDA stream in a next step. The following tasks are en-
queued in order:

1. Asynchronous host to device copy (H2D)

2. Launch compute kernels to evaluate the right-hand
side £ on segment k

3. Asynchronous device to host copy (D2H)

Successive segments are processed in a loop similar to the
first segment. The loop body performs the Runge-Kutta
update on the previous segment and initializes the next seg-
ment by increasing the counter k. The data V* for the
next segment is then copied into the pinned input of the
buffer pair identified by (k mod 2). To ensure completion of
the asynchronous device to host (D2H) copy operation, the
CPU must synchronize with the CUDA stream identified by
(k — 1 mod 2), before performing the Runge-Kutta update
on data V*~!. Finally, the update for the last segment K
must be performed after termination of the loop.

The host to device (H2D) operation asynchronously copies
the data from the pinned input buffer on the CPU to the
global I/O buffer A on the GPU, see Figure 2. Results
computed on the GPU are written into the global 1/O buffer
A. After completion of the compute kernels, the data is
asynchronously copied back (D2H) into the pinned output
buffer on the CPU. The two copy engines on the K20X GPU
allow for further overlap of the H2D and D2H operations.

Additional memory is required for the communication of
ghost cells due to the stencil of the WENO reconstruction.
Ghost cells are obtained on the CPU by either evaluating

a boundary condition or communicating with neighboring
nodes through the message passing interface library (MPI).
The H2D operation includes transfer of ghost cells, which
are copied into global memory.

Algorithm 1 is executed three times to perform one timestep.
The timestep size At,, is determined based on the CFL con-
dition and data V prior to the execution of Algorithm 1. We
compute the timestep size on the CPU to avoid additional
pressure on the PCle bus.

3.2 GPU Kernels

This section describes the implementation of the GPU ker-
nels required to evaluate the right-hand side operator £ on
a segment k. The approximate Riemann problem discussed
in Section 2 is solved by the steps shown in Algorithm 2.
The first step is a conversion of the flow quantities from

Algorithm 2 Evaluation of £

: Convert data in A to primitive variables W (in-place)

: Copy data in A into CUDA 3D array B

: Bind B to global texture reference

: for all j € {z,y, 2} do
WENO reconstruction from data B in direction j
HLLC flux divergence in direction j

end for

variables U to primitive variables W. This step is required
as discussed in Section 2. The conversion kernel operates
on each data point independently and writes the converted
value back to the same memory location. In the second
step, the CUDA API reorders the data based on a space fill-
ing curve (SFC) and stores the result in a 3D CUDA array.
The remaining steps are the approximation of the Riemann
problem on cell interfaces and the computation of the flux
divergence in all spatial directions.

A single kernel implementation of Algorithm 2 would lead
to an excessive register pressure, in turn resulting in poor
occupancy levels and a frequent register spilling. Based on
a roofline analysis, a 2x improvement could be estimated
for a series of lightweight kernel invocations instead of one
single kernel invocation.! Our implementation achieves a
1.7x improvement compared to a single kernel. For these
reasons, we organize Algorithm 2 into a set of lightweight
kernels that are executed in sequence. The first kernel per-

! Assuming compulsory cache misses only.
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Figure 3: Kernel grid and thread block layout for
the reconstruction and HLLC flux computation in
z direction. Stencil data for boundary blocks is ob-
tained from global memory (right half of stencil in
the negative i, space, blue cells) as well as texture
memory (left half of the stencil in the positive i,
space, green cells).

forms the conversion to primitive variables. A second tem-
plated kernel is used for the reconstruction in each of the
three spatial directions. A fused kernel is used for both the
computation of the HLLC flux and the divergence in y and
z directions, respectively. Combining the two steps avoids
additional memory accesses but is more expensive in terms
of register usage compared to the WENO reconstruction.
Table 3 shows the number of registers per thread for each of
the lightweight kernels. The computation of the flux diver-
gence in x direction must be split in two kernel calls, where
the second kernel involves a data transposition to ensure
coalesced memory accesses as discussed below.

WENO Reconstruction

The fifth-order WENO reconstruction is based on a 6-point
stencil, which requires ghost cells at subdomain boundaries.
We employ two-dimensional (2D) CUDA thread blocks of
4 warps that map onto cell faces normal to the direction
of reconstruction. We implement the 3D stencil scheme by
using a three-pass approach, where the 2D thread blocks are
aligned in normal direction for each pass. Figure 3 shows
the thread block alignment for the x direction. The stencil
input data is obtained from texture memory. The choice of
2D thread blocks explicitly enforces temporal locality which
allows to harness the data cache efficiently. In contrast,
the work of Micikevicius [12] employs a single-pass strategy,
where shared memory is used to minimize read redundancy
and 2D thread blocks are aligned static along the z direction.

Thread blocks at subdomain boundaries require data from
two different memory locations. The left part of the stencil
fetches data from the textures. The data for the right part
of the stencil is obtained from a global memory buffer. Fig-
ure 3 illustrates this special case. The choice of 2D thread

blocks additionally avoids warp divergence due to irregular-
ities at domain boundaries. Thread blocks entirely inside
the domain get all of the data from texture memory, which
is the case for the majority of blocks. Reconstruction in y
and z direction is similar to the x direction. Ghost cells for
reconstruction in z direction are directly embedded into the
textures.

HLLC Flux Divergence

The last step in the loop of Algorithm 2 computes the flux
divergence of Equation (7) based on the HLLC flux shown in
Equation (8). The flux divergence for individual directions
is added up according to the dimensional splitting in Equa-
tion (6) and written into the global memory buffer A, see
Figure 2. To guarantee coalesced writes into buffer A, the
computation of the flux divergence in the x direction must
be split into two parts. The first part computes the HLLC
flux on all cell faces normal to x. Because the 2D thread
blocks map to cell faces, it is not possible for a warp to span
along the ¢, index, see Figure 3. Therefore, writes to the
buffer A are non-coalesced in that particular case. To avoid
this problem, a second kernel is launched that transposes
the data using shared memory. The flux divergence is then
computed from the transposed data and written back into
buffer A.

3.3 MPI

We rely on the message passing interface (MPI) for run-
ning simulations on distributed memory architectures. Pro-
cesses are organized on a cartesian topology for point-to-
point communication of ghost cells, required at each Runge-
Kutta stage. The current implementation exchanges ghost
cells for all K segments before a Runge-Kutta stage is exe-
cuted. Ghost cells are then extracted from the MPI messages
during the memory copies in Algorithm 1. This implemen-
tation does reduce the granularity of message exchange but
does not allow for compute/transfer overlap. Similar tech-
niques for compute/transfer overlap already used in [16] can
be applied in this context. Additionally, at the start of every
timestep n, a reduction is required for the computation of
the timestep size Aty,.

4. PERFORMANCE

The performance of our solver was evaluated on Piz Daint.
A compute node on Piz Daint consists of an 8-core Intel
Xeon E5-2670 CPU and a Nvidia Tesla K20X GPU. We rely
on GCC 4.7.2 and the CUDA 6.5 toolkit. The Nvidia nvprof
profiler from the CUDA toolkit was used for measuring GPU
performance figures. All measurements were performed on
simulations running in single precision.

41 GPU

In this section, we show the performance of the imple-
mented GPU kernels by means of the roofline model [19].
We utilize the scalable heterogeneous computing benchmark
suite? (SHOC) to build the roofline ceiling of the memory-
bound region. A small compute kernel has been written to
build the ceiling for peak performance. We measure a mem-
ory bandwidth of 176.3GB/s (70.5% of nominal peak) and a
single precision performance of 3.51 Tflop/s (89.2 % of nom-
inal peak). ECC was enabled for the memory bandwidth

http:/ /keeneland.gatech.edu/software/keeneland /shoc
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Figure 4: Roofline for the Nvidia K20X GPU with
measured kernel performances.

measurements. Figure 4 shows the roofline for the K20X
GPU on a single compute node. All of our compute kernels
exhibit excellent performance on the K20X. References for
10 %, 25 % and 50 % of nominal peak performance are in-
dicated by the black roofline. The red ceilings correspond
to our measurements based on the micro benchmarks men-
tioned above. The operational intensity of the GPU kernels
is calculated under the assumption of compulsory memory
reads only. The conversion kernel has an operational inten-
sity of 0.3 Flop/Byte. We use the Nvidia profiler to count
the number of floating point instructions and measure the
runtime of the kernel. From these numbers, we determine
a performance of 54.8 Gflop/s. This corresponds to 97.1 %
of the performance predicted by the roofline ceiling and is
indicated by the black circle in Figure 4. The template
for the reconstruction kernel has an operational intensity
of 6 Flop/Byte. Because of the high floating point instruc-
tion density, the WENO reconstruction kernel is expected to
show the highest performance among the other kernels. Pro-
filing for this kernel yields a performance of 907.6 Gflop/s,
which corresponds to 85.8 % of the roofline prediction and
23 % of nominal peak performance. The WENO reconstruc-
tion is indicated by the triangles in Figure 4. The opera-
tional intensity for the fused HLLC kernel is 3 Flop/Byte.
Note that we assume the same operational intensity for the
split HLLC kernel in the x direction. The measured perfor-
mance for this kernel is 430.9 Gflop/s for the y and z direc-
tions and 388.4 Gflop/s for the = direction. These numbers
are indicated by the diamonds in Figure 4 and correspond
to 81.5 % and 73.4 % of the roofline prediction, respectively.
The performance of the HLLC computation in x direction
is lower due to the data transposition required to ensure co-
alesced memory access. The measured throughput of the
transposition kernel is 136.3 GB/s, corresponding to 77.3 %
of the bandwidth measured by the SHOC benchmark. We
limit the register usage of the HLLC kernel in z direction to
32 registers per thread by declaring individual launch bound
specifiers [14]. This allows for running more thread blocks
simultaneously at a small number of register spills. The
transposition kernel is not forced by launch bounds and re-
quires 64 registers per thread, see Table 3. The measurement
for HLLC i, in Figure 4 corresponds to this configuration.
Finally, if all of the kernel calls are combined, an overall
operational intensity of 4.2 Flop/Byte is computed for the

HLLC i, Convert, 2.1%

WENOS5 i, 27.99%, CUDA API

12.7% (SFC)
HLLC i, 111%
12.4%
12.4 -
' %10.4% WENOS5 iy
WENOS iy, ,
HLLC iy

Figure 5: Execution time distribution for the kernels
on the K20X.

DT, 3.1%
up Data copies into
14.7% - pinned CPU buffers
D2H 12.9%
14.9% H2D
37.4%
GPU

Figure 6: Execution time distribution for the com-
pletion of timestep n. The abbreviation DT stands
for the computation of timestep At,, H2D/D2H for
host to device and device to host copies, respec-
tively, and UP for the Runge-Kutta update.

evaluation of £ (per segment). Measuring the number of
floating point instructions as well as the execution time of a
single evaluation of £ yields a performance of 462.4 Gflop/s.
This corresponds to 62% of the roofline prediction and 11.7%
of nominal peak performance. The measurement is indicated
by the black square in Figure 4. The performance of the
CUBISM-MPCF flow solver is 143.8 Gflop/s on one node for
the same problem [16]. Compared to this measurement, the
present GPU implementation offers a 3.2x speedup in terms
of the right-hand side computation in Equation (5). Fur-
thermore, the CUBISM-MPCF performance for a BlueGene/Q
node reported in [6] is 149.1 Gflop/s, corresponding to a
speedup of 3.1x for the same problem. A maximum speedup
of 1.4x for techniques involving textures is reported in Ta-
ble 1 of reference [13]. Moreover, the GPU-CPU improve-
ment is consistent with the maximum speedup imposed by
the faster GDDR5 memory on the GPU with respect to the
CPU.

The execution time distribution of the GPU kernels is
shown by the pie-chart in Figure 5. The GPU kernels in-
dicated in that figure correspond to the steps executed in
Algorithm 2. The CUDA API slice (SFC) corresponds to
the CUDA 3D array copy of step two of Algorithm 2. Each
of the three WENO slices involves seven kernel invocations,
one for each primitive variable in W. The HLLC slices in-
volve two kernel invocations for the 7, direction and one
fused kernel invocation for the i, and 4. directions. A large
amount of time is spent in the CUDA 3D array copy func-
tion, which is needed for texture memory. Copying the data
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Figure 7: Weak efficiency for up to 4096 nodes on Piz Daint (left) and time to solution (right) averaged over

nodes.

into the CUDA 3D array on the GPU is still faster than con-
verting to primitive variables on the CPU and performing
the CUDA array copy while sending the data to the GPU.
The reordering of the 3D data by the CUDA 3D array copy
operation ensures spatial locality and therefore an efficient
use of the texture cache. The gap between the evaluation
of the right-hand side £ (black square) and the roofline ceil-
ing in Figure 4 is due to the expensive data reordering. For
example, if we neglect the CUDA 3D copy operation, the
roofline predicts an overall performance of 635.4 Gflop/s cor-
responding to 86 % of the predicted performance and 16 %
of nominal peak performance. The black pentagon in the
roofline of Figure 4 illustrates this case.

Figure 6 shows the execution time distribution for the
completion of timestep n. The pie-chart in Figure 6 corre-
sponds to a single evaluation of At,, followed by the exe-
cution of Algorithm 1 (three times). The copy operations
into pinned memory buffers correspond to line 2 and 10 in
Algorithm 1. The GPU slice corresponds to the time spent
in Algorithm 2. A detailed pie-chart for this slice is shown
in Figure 5. The H2D transfers are slightly more expensive
compared to the D2H transfers due to the additional ghost
cells that must be sent to the GPU.

4.2 Weak Scaling

We have conducted a weak scaling study on 4096 nodes
of the Piz Daint cluster using a domain with 110 Million
cells on each node. The domain is decomposed into four
segments, where each segment contains roughly 28 Million
cells. The decomposition occupies 96 % of the K20X mem-
ory, accounting for two sets of buffers on the GPU as well as
for ECC. Domain boundaries are periodic. Figure 7 shows
the weak efficiency (left) and time to solution (right) av-
eraged over nodes. The current implementation exchanges
ghost cells for all of the segments on a node. Because the
processing of individual segments depends on the completion
of inter-node communication, the loss in efficiency is justi-
fied by the lack of compute/transfer overlap in our present
solver. Furthermore, we observe a large deviation in the
mean time to solution for more than one node. One rea-
son for this observation is network contention due to other
running jobs on the cluster. The data shown in Figure 7
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Figure 8: Initial condition for 10 bubbles aligned on
a straight line. The position of the initial 40 MPa
planar shock is at z, = 0.25 mm.

accounts for 20 measurements. A highly tuned MPI imple-
mentation was beyond the goals of this work.

S. SIMULATION

We simulate the shock-induced collapse (SIC) of 10 equally-
spaced and identical bubbles with radii 7, = 125 um. Bub-
bles are aligned on a straight line through the center of
the domain with a gap of r,/5 between neighboring bub-
ble shells. The domain extent is 4 X 1 X 1 mm in the z, y
and z direction, respectively. The gas inside the bubbles is
non-condensable air, initially in equilibrium at 1bar with the
surrounding water. The specific heats and correction pres-
sures for the two materials are given in Table 1. The collapse
of the bubbles is initiated by a planar shock wave located at
zs = 0.25 mm. The pressure jump across the shock wave is
Apo = 400 bar. The speed of the wave is roughly equal to
the speed of sound in water at the initial conditions. Fig-
ure 8 illustrates a numerical schlieren [15] visualization for
the initial condition in the xy-plane at z = 0.5 mm. The
air/water interfaces are illustrated by the circles and the
initially planar shock is visible by the vertical line.

The domain is discretized with 4096 cells in the x direction
and 1024 cells in the y and z direction, respectively. The
total number of cells used for this simulation is 4.29 Billion.
Such discretization leads to a resolution of 128 p.p.r.2>for
and a gap resolution of 25 cells. The simulation was run

3Points per radius, where a point is equivalent to a cell.



w 76
100*_Mmax
80|
14
T : o
= 13
QE.S 407 / 722‘5
20 11
of 10
0 1 2 3
t[ps]

Figure 9: Temporal evolution of the pressure ampli-
fication factor and maximum Mach number.

| | | |
O0 0.5 1 1.5 2 2.5 3 3.5 4
1 T T T T T T T
g | Y N [ T YA il
=, 0.5 oS oo/ \ N\ _\_/
=Y
0 | | | | | | |

Figure 10: Schlieren images of the pressure wave
structure (top) and air/liquid interfaces (bottom)
at time ¢t = 2.11 us.

in single precision on 64 nodes of Piz Daint for 32800 steps
until £ = 3.16 us. The CFL number is 0.32, resulting in an
average timestep of 100 ps. We specify a Dirichlet inflow
boundary and absorbing at the remaining boundaries.

The planar shock impacts the proximal surface of the first
bubble after 0.16 us. This generates a supersonic compres-
sion wave inside the bubble and causes the local maximum
Mach number to rise. The sudden pressure jump at the
proximal side and the shielding of the downstream bubble
force a non-spherical collapse of the bubble. At the final
stage of the collapse, the bubble emits a strong pressure
shock that extenuates rapidly as it propagates through the
liquid. Just before the emission, a high kinetic energy jet
develops on the proximal bubble side that pierces through
the bubble center and eventually transforms into potential
energy. Figure 9 illustrates the temporal evolution of the
pressure amplification pmax/Apo and the maximum Mach
number. Termination of a bubble collapse is identified by a
strong peak in the pressure amplification. Each peak is pre-
ceded by an immediate decrease of the Mach number due to
the kinetic/potential energy transformation. This process
continues until the collapse of the final bubble with a pres-

Collapse Type Collapse Time

Single Bubble SIC 654 ns
Rayleigh-Plesset 573 ns

Table 4: Collapse time for a single bubble SIC case
and an inertia driven Rayleigh-Plesset collapse [2].

sure amplification of two orders of magnitude relative to the
initial shock strength.

Figure 10 illustrates schlieren images for the xy-plane at
z = 0.5 mm at time ¢t = 2.11 us. The top image shows the
pressure wave structure, where dark regions are compression
waves and continuous gray regions expansion waves. The
bottom image shows the air/liquid interfaces. The dashed
line in Figure 9 corresponds to the time instant of images
shown in Figure 10. Figure 11 shows a rendering of the pres-
sure field and iso-surfaces for the air/liquid interface. The
iso-value for the shown image is set to I' = 2.4. The dense
orange fields correspond to pressure around 2500 bar while
thin green fields corresponds to pressure around 800 bar.

The shock-induced collapse time for a single bubble and
for an inertia driven Rayleigh-Plesset collapse [2] are given
in Table 4. The single bubble SIC case is computed with
the present solver at similar resolution and precision. The
collapse time is measured from the shock impact on the prox-
imal side of the bubble until the emission of the strong shock
wave that terminates the collapse. The collapse time of the
single SIC bubble is expected to be longer compared to the
Rayleigh-Plesset collapse due to the time required for the
shock to traverse the bubble as well as the non-spherical
collapse. The measured collapse time for the first bubble in
the array is 688 ns, which is longer than the single SIC bub-
ble due to the shielding effect of the downstream bubble. As
the initial planar shock is ruptured by the presence of the
cavities, it is difficult to define a shock impact on proximal
bubble sites for successive collapses. The Mach number in
Figure 9 increases immediately after a pressure peak is ob-
served, indicating a fast formation of the next piercing jet
at the downstream bubble. This event appears almost im-
mediately after a pressure peak is observed. Therefore, we
identify the collapse time for successive bubbles by the time
interval between two peaks in pressure. We measure a col-
lapse time of 212 + 15 ns for the successive collapses, three
times faster than the collapse of the leading bubble.

6. CONCLUSION

We have presented a technique for implementing sten-
cil computations on the GPU using textures. Our explicit
choice of aligned 2D thread blocks enforces temporal local-
ity and allows for optimal utilization of the data cache for
each pass. The approach is general and can be straightfor-
wardly applied to other stencil problems on structured grids.
We have demonstrated a GPU based implementation of a
compressible multicomponent flow solver that is 3.2x faster
compared to the Gordon-Bell winning CUBISM-MPCF [16]
multicore-based flow solver for the offloaded right-hand-side
computation. The overall floating point performance of the
right-hand side computation is 462.4 Gflop/s for the Nvidia
K20X GPU on one node of the Piz Daint XC30 supercom-
puter. The observed performance corresponds to 11.7 % of
the nominal single precision peak performance for the K20X.



Figure 11: Volume rendering of pressure at time ¢ = 1.78 us. Iso-surfaces represent air/liquid interfaces.
Dense orange corresponds to pressure around 2500bar while thin green corresponds to pressure around 800bar.
Rebounds are observed upstream for previous bubble collapses.

Future work will focus on improved compute/transfer over-
lap. Furthermore, the overhead due to the SFC reordering
will be addressed by using a memory layout that resembles
a given static ordering for the data stored on the CPU.
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