
Korali
High-performance framework for Bayesian uncertainty

quantification and optimization

13.12.2019 - CSCS Lugano
 Dr. Sergio Martin

Why Uncertainty Quantification

G. Arampatzis, et al. “Langevin diffusion for population based sampling with an application in bayesian inference for pharmacodynamics", 2018

Medicine: Designing better drugs and treatments for cancer patients.

2

time (months)
Tu

m
or

 S
iz

e

Robust PredictionsMeasurements

Tu
m

or
 S

iz
e

time (months)

Why Optimization
Improving medical devices for diagnosys.

D. Rossinelli et al., “The In-Silico Lab-on-a-Chip: petascale and high-throughput simulations of microfluidics at cell resolution," in Proceedings of Supercomputing (SC) ’15, 2015.3

https://docs.google.com/file/d/16UhorYNlVYNF5DEpqJgghbEu5XMYf2ze/preview

Methodology: Bayesian Inference

4

Experimental Data
(i.e, Physical Observations)

Computational Model
(e.g. MPI-Based

hydrodynamics solver)

Statistical Assumptions
(e.g. Model parameters)

Posterior Distribution
of Parameters

Applying Bayes’
Theorem Bayesian Inference:

Evidence-based
knowledge about the

physical reality.

Currently at CSELab @ ETH Zürich

Computational Model
Mirheo: State-of-the-Art GPU-based microfluidics solver.

Physical Model
Row of two posts with periodic boundary conditions.

Statistical Model
Optimization of post configuration over ~50 RBC types.

RBC Membrane Viscosity
Distribution

Optimal Post
Configuration

~50
Optimizations

Angle

S
ep

aration

5

We need an extreme-Scale UQ/O Framework

GPU-Time per Evaluation: ~7 hours
50 Optimization Experiments x 400 Evaluations

= 60,000 Model Evaluations

Total usage: ~140,000 Node Hours

Computational Demands Estimation:

This represents 100% Piz Daint for a whole day!

6

No existing libraries offer nor have demonstrated:

State of the art UQ/Opt Libraries

Software Optimization Bayesian Inference Parallelism Language

APT-MCMC no yes Local (Thread-based) C++

BCM no yes Local (Thread-based) C++

EasyVVUQ no yes Fork-Join Concurrency Python

GAMBIT yes yes no C++

PSUADE yes yes Job-Scheduler Concurrency C++

Stan yes yes no C++

UQLab yes yes no MATLAB

7

● Seamless Integration with MPI/CUDA Computational Models
● Efficient execution at at extreme scales (thousands of nodes).

The Korali Framework

About the Project:
● Development started on early 2019.
● Programmed with C++ and Python.
● Open-Source (github)

Mission:
 Develop an UQ and optimization framework for extreme-scale studies.

Motivation:
● Ensure a seamless integration with parallel/distributed computational models.
● Maximize node usage.
● Restore jobs in case of failure with minimal loss of progress.
● Highly documented, easy to use, and adopted by the wider community.

8

Bayesian Inference with Korali (I)
Given:

A square metal plate with 3 sources of heat
underneath it.

Can we infer the (x,y) locations
 of the 3 heat sources?

We have: ~10 temperature measurements at
different locations

9

https://docs.google.com/file/d/1fpG8O6Etv3mxdQBcQBReYORlQwzm4d9V/preview

Bayesian Inference with Korali (II)

Experiment

Problem:
Parameter Inference

Model:
2D Heat Equation (MPI)

Solver:
Sampler

 Run

Heat
Source 1

Heat
Source 2

Heat
Source 3

X Y

Likelihood Probability
Distributions

10

To use Korali, users define an Experiment.

Example: Sampling Parameter Probability Distribution.

Korali Generation-Based Engine (I)

Approximation to the real
Distribution

Parameter Space

11

https://docs.google.com/file/d/18oM7-OHKS7eNkv3OimHaEhLozzHRNzGp/preview

Example: Parameter Optimization.

Korali Generation-Based Engine (II)

12

https://docs.google.com/file/d/1FRNr0UGMM243TOxteUHA0L90WYbnfqDG/preview

+ Software Engineering Goals
+ Usability
+ Extensibility
+ Self-Enforced Engineering

+ High-Performance Goals
+ Heterogeneous Model Support
+ Scalable Distributed Sampling
+ Self-Enforced Fault Tolerance
+ Efficiency at extreme scale.

Korali’s 7 Design Goals

13

Usability
Approach: We use a descriptive interface. Specifies the what, not the how.
from myModels import myModel

e = korali.Experiment()

Configuring problem

e["Problem"]["Type"] = "Evaluation/Direct"

e["Problem"]["Objective Function"] = myModel

e["Variables"][0]["Name"] = "Mu"

e["Variables"][0]["Minimum"] = 0.0

e["Variables"][0]["Maximum"] = 100000.0

e["Variables"][1]["Name"] = "Sigma"

e["Variables"][1]["Minimum"] = 0.0

e["Variables"][1]["Maximum"] = 100000.0

Configuring Solver

e["Solver"]["Type"] = "Sample/MCMC"

e["Solver"]["Population Size"] = 3

e["Solver"]["Burn In"] = 5

e["Solver"]["Max Samples"] = 10000

korali.run(e)

Minimal programming knowledge required.
 No function calls used, other than run()

User does not need to know how Korali operates.
 Only describe the innate characteristics of the problem.

Independent from implementation.
 This same interface could be used by other libs.

Mostly Language-independent.
 Add semicolons for C++ or load from config file.

Problem

Variables

Solver

14

+ Software Engineering Goals
+ Usability
+ Extensibility
+ Self-Enforced Engineering

+ High-Performance Goals
+ Heterogeneous Model Support
+ Scalable Distributed Sampling
+ Self-Enforced Fault Tolerance
+ Efficiency at extreme scale.

Korali’s 7 Design Goals

15

Korali Modular Design

Three problem families
Total: 8 different problem types.

Several more modules are currently in development.

Two solver families
Total: 8 different solver methods.

16

Extending Korali

Anyone can add a new solver or problem into Korali.
+ Allow users to develop and test new methods at scale.
+ Create a user community that develops and extends Korali organically.

+ Requirements: Basic object-based C++ knowledge.
+ Strategy: Plug-and-Play (automatic module detection).

 Example: Adding a new optimizer.

/solvers/optimizer/CMA-ES

 /CCMA-ES

 /LM-CMA-ES

 /DEA

 /Rprop
/myOptimizer

/myOptimizer._hpp
Defines the myOptimizer class.
Inherits responsibilities from the parent (optimizer) class

/myOptimizer._cpp
Defines how this class satisfies these responsibilities

/myOptimizer.config
Specifies and documents user-configurable settings
Uses JSON (JavaScript Object Notation) format.

Add
in

g
3

Fi
le

s.
..

17

+ Software Engineering Goals
+ Usability
+ Extensibility
+ Self-Enforced Engineering

+ High-Performance Goals
+ Heterogeneous Model Support
+ Scalable Distributed Sampling
+ Self-Enforced Fault Tolerance
+ Efficiency at extreme scale.

Korali’s 7 Design Goals

18

Self-Enforced Software Engineering (I)

/myOptimizer.config

We want Korali to be community-driven. Therefore…
 We need to enforce good SW practices systematically.

1) Every configuration item shall be documented.

"Name": ["Population Size"]
"Type": "size_t"
"Description": "Specifies the number of
 samples to evaluate per generation..."

"Name": ["Mu Value"]
"Default": "32"
"Type": "size_t"
"Description": "Number of samples used
 to update the covariance matrix"

Automatic Web-based Documentation

19

Self-Enforced Software Engineering (II)

2) Every new module needs a tutorial.

Must be a representative
 Python or C++ application

/tutorial/a1-myOptimizer/run-myOptimizer.py

/tutorial/a1-myOptimizer/README.md

Uploaded automatically to our Webpage

20

Self-Enforced Software Engineering (II)

3) Korali automatically converts all tutorials into CircleCI regression tests:

All tests must pass before accepting the new module:

21

+ Software Engineering Goals
+ Usability
+ Extensibility
+ Self-Enforced Engineering

+ High-Performance Goals
+ Heterogeneous Model Support
+ Scalable Distributed Sampling
+ Self-Enforced Fault Tolerance
+ Efficiency at extreme scale.

Korali’s 7 Design Goals

22

Heterogeneous Model Support

+ Sequential (default):
 For simple function-based Python/C++ models (e.g., f(x) = x2).

+ Concurrent:
 For legacy code or pre-compiled applications (e.g., LAMMPS, Matlab, Fortran).

+ Distributed:
 For MPI/UPC++ distributed models (e.g., Mirheo).

Korali exposes multiple “Conduits”: ways to run computational models.

23

Sequential Conduit
Links to the model code and runs the model sequentially via function call:

e = korali.Experiment()

k = korali.Engine()

...

e["Problem"]["Objective Function"] = myModel

k["Conduit”]["Type"] = "Sequential"

k.run(e)

Korali Application

def myModel(sample):

 x = sample["Parameters"][0]

 y = sample["Parameters"][1]

 # ... computation...

 sample["Evaluation"] = result

Computational Model

$./myKoraliApp.py

Running Application

24

Concurrent Conduit
Uses fork/join to create multiple concurrent worker processes.

e = korali.Experiment()

k = korali.Engine()

...

e["Problem"]["Objective Function"] = myModel

k["Conduit”]["Type"] = "Concurrent"

k["Conduit”]["Concurrent Jobs"] = 4

k.run(e)

Korali Application

def myModel(sample):

 x = sample["Parameters"][0]

 y = sample["Parameters"][1]

 os.shell.run("srun -n 32 ./myModel" + x + y)

 result = parseResults('ResultFile.out')

 sample["Evaluation"] = result

Computational Model

$./myKoraliApp.py

Running Application

Korali Main
Process

Worker
0

Worker
1

Worker
2

Worker
3

Fork

Join

Sample Sample Sample
Sample

Sample
Sample

Sample

Sample

25

Distributed Conduit
Links to and runs distributed MPI/UPC++ applications through sub-communicators.

e = korali.Experiment()

k = korali.Engine()

...

e["Problem"]["Objective Function"] = myModel

k["Conduit”]["Type"] = "Distributed"

k["Conduit”]["Backend"] = "MPI"

k["Conduit”]["Ranks Per Sample"] = 4

k.run(e)

Korali Application

def myModel(sample, MPIComm):

 x = sample["Parameters"][0]

 y = sample["Parameters"][1]

 myRank = comm.Get_rank()

 rankCount = comm.Get_size()

 # ... Distributed Computation...

 sample["Evaluation"] = result

Computational Model

$ mpirun -n 17 ./myKoraliApp.py

Running Application

Rank
0

Rank
1

Rank
2

Rank
3

Rank
4

Rank
5

Rank
6

Rank
7

Rank
8

Rank
9

Rank
10

Rank
11

Rank
12

Rank
13

Rank
14

Rank
15

Subcomm 0

Subcomm 1

Subcomm 2

Subcomm 3

26

Korali
Engine
Rank

+ Software Engineering Goals
+ Usability
+ Extensibility
+ Self-Enforced Engineering

+ High-Performance Goals
+ Heterogeneous Model Support
+ Scalable Distributed Sampling
+ Self-Enforced Fault Tolerance
+ Efficiency at extreme scale.

Korali’s 7 Design Goals

27

Idle

Idle

Idle

Idle

Korali’s Scalable Sampler

Start Experiment
Samples

Busy

Busy

Busy

Busy

Done

Done

Done

Done

Save Results
 Check For Termination

 Run Next Generation

Idle

Idle

Idle

Idle
28

Scheduling Multiple Experiments

Samples

Samples
Idle

Done

Busy

Korali can schedule
Multiple Simultaneous

Experiments

Busy

Start Experiments

29

Korali’s 7 Design Goals

+ Software Engineering Goals
+ Usability
+ Extensibility
+ Self-Enforced Engineering

+ High-Performance Goals
+ Heterogeneous Model Support
+ Scalable Distributed Sampling
+ Self-Enforced Fault Tolerance
+ Efficiency at extreme scale.

30

Self-Enforced Fault Tolerance (I)

Korali saves the entire state of the experiment(s) at every generation.

Gen 1

Gen 1Gen 0

Gen 0 Gen 2

Gen 2

Gen 3

Gen 3

Time (Hours)

Slurm Job #1 (4000 Nodes)

Experiment 0

Experiment 1

Korali Engine

Fatal Failure

Gen 4

Gen 4

Final

Final

Slurm Job #2 (4000 Nodes)

Experiment 0

Experiment 1

Korali Engine

Korali can resume any Solver / Problem / Conduit combination.
How? Enforced Serialization 31

Enforced Serialization (I)

/myOptimizer.config
Documents the configuration

and state variables of the

module.

Class members in Korali are defined in the config file.
/myOptimizer._hpp

(Class Declaration and Methods Only)

Korali Source Preprocessor

/myOptimizer.hpp
Class Declaration and Methods

+ Class Members

+ Serialization Declarations

/myOptimizer.cpp
Algorithm-relevant methods

+ Serialization method

+ Deserialization method

/myOptimizer._cpp
(Algorithm-relevant methods only)

Benefit: Collaborating users need not worry about serialization. 32

+ Software Engineering Goals
+ Usability
+ Extensibility
+ Self-Enforced Engineering

+ High-Performance Goals
+ Heterogeneous Model Support
+ Scalable Distributed Sampling
+ Self-Enforced Fault Tolerance
+ Efficiency at extreme scale.

Korali’s 7 Design Goals

33

Korali Benchmark
Study: Red Blood Cell - Strain and bending energy inference

Platform: CSCS Piz Daint (GPU)
+ Processor: Intel® Xeon® E5-2690 v3 @ 2.60GHz
+ GPU: NVIDIA® Tesla® P100 16GB DRAM

Method: Single-Parameter Bayesian Inference with TMCMC

Computational Model: RBC Stretching
+ Mirheo, 1 GPU x ~15 minutes per sample.

Scaling: Weak Scaling (1 Sample, 1 Node)
+ From 256 to 4096 Nodes (71% of GPU Piz Daint)

A. Economides et al. “Hierarchical Bayesian Uncertainty Quantification for a Red Blood Cell Model” [On Review]
34

Korali Benchmark (Results)

Korali introduces
negligible scheduling
or method overheads.

Model Imbalance
can reduce efficiency

35

Execution Timeline (4096 Nodes)
Imbalance causes
loss in efficiency:

36

Addressing Model Imbalance with Korali
Study: Red Blood Cell - Membrane viscosity inference

Platform: CSCS Piz Daint (GPU)
+ Processor: Intel® Xeon® E5-2690 v3 @ 2.60GHz
+ GPU: NVIDIA® Tesla® P100 16GB DRAM

Method: Five Inference Experiments with TMCMC
+ 5 Datasets from [Henon 1999] and [Hochmuth 1979]
+ Apply Hierarchical Bayesian Inference on the results

Computational Model: RBC Relaxation
+ Mirheo, 1 GPU x ~45 minutes per sample.

Scale: Single 512-node run. S. Hénon, et al. "A new determination of the shear modulus of the human erythrocyte membrane using optical tweezers." Biophysical Journal, 1999
R. Hochmuth, et al. "Red cell extensional recovery and the determination of membrane viscosity." Biophysical journal, 1979.

37

Execution Timeline (512 Nodes)
Running Experiments Sequentially:

Average Efficiency
 73.9%

Running Experiments Dynamically:

Average Efficiency
 97.8%

38

Execution Timeline (512 Nodes)
Efficiency Timeline:

Scheduling multiple experiments in a job
realizes sustained efficiency even with model imbalance.

 [We are preparing these results for publication.] 39

Next Steps (I)

Applying Korali to the
Hydrodynamic Cell Sorting Study

Current Situation:
Computational demands exceed our budget.

Opportunities for improvement:
+ High Model Imbalance (~70%).
+ Early detection of failing samples (no separation).

Goal: ~140,000 Node Hours ~60.000 Node Hours
40

Next Steps (II)

41

Extend Korali’s Scope:
● Reinforcement Learning
● Surrogate Modelling
● Gaussian Processes (Interpolation)
● Optimal Sensor Placement (Robotics)

About us

The Korali Team:

George Arampatzis
Postdoc @ ETHZ

Sergio Martin
Postdoc @ ETHZ

Daniel Wälchli
PhD Student @ ETHZ

Student Assistants:
- Mark Martori (MSc Student @ UZH)
- Susanne Keller (MSc Student @ ETHZ)

 Prof. Petros Koumoutsakos
Principal Investigator

Visit our Website: cse-lab.ethz.ch/korali

Source Code: github.com/cselab/korali

Twitter: twitter.com/ethkorali

42

http://www.cse-lab.ethz.ch/korali
http://github.com/cselab/korali
http://twitter.com/ethkorali

