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Artificial Intelligence: Computational ability to achieve goalsIntelligence ?

From the movie “Microcosmos”

John McCarthy



Learning  
to  
Optimize



STOCHASTIC OPTIMIZATION for FLUID MECHANICS

Black Box scenario

➡In Fluid Mechanics gradients are not available or not useful  
➡Commercial(Black box) solvers, Experimental Set-ups 
➡Multiple Local Minima, Noisy Output

DATA



Surrogates and Covariance Matrix Adaptation ES

Model to render search 
more efficient than 
random sampling

select
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meta-models to replace 
expensive evaluations in the 
selection process

D. Bueche, N. Schraudolph, P. Koumoutsakos, Accelerating 

evolutionary algorithms with Gaussian process fitness function models, 

IEEE Trans. on Systems, Man and Cybernetics,, 35,, 2005

N. Hansen, S. D. Müller, and P. Koumoutsakos, “Reducing the time complexity of the 
derandomized evolution strategy with covariance matrix adaptation (CMA-ES)," 
Evolutionary computation, vol. 11, iss. 1, p. 1–18, 2003. 



C-start is an escape pattern

Is C-start optimal?

Liao Lab’s Channel - YouTube

Preparatory stroke Propulsive stroke

Muller, van den Boogaart, van Leeuwen. J. of Exp.Biology, 2008.



C-start is OUTCOME of optimization

1. Fluid region trapped by C-shape 
2. Acceleration by propulsive stroke
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MACHINE
LEARNING

STOCHASTICS



Learning  
to  
Control



• Behavioral Traits -  Vortex Dynamics 
• Energetic  benefits ?

FISH SCHOOLING



Hydromechanics of Fish Schooling 
 Daniel Weihs

•Vortex Dynamics AND/OR Behavioral Traits? 
•Energy, Predation benefits ?



Title Text

• Simple model of fish schooling: a leader and follower 

Re =
L2/T

⌫
= 5000

L

T
Trailing fish’s head intercepts positive vorticity: velocity increases

leading fish trailing fish

• Swimming in a wake can be beneficial  or detrimental

Trailing fish’s head intercepts negative vorticity: velocity decreases

Initial tail-to-head distance = 1 L

Initial tail-to-head distance = 1.25 L



Learning: Behavioral changes due to 
Experiences (Action, Stimulus, Reward)

Reinforcement:  stimulus-action pattern is 
rewarded -> actor is conditioned to a behavior.

Reinforcement  Learning

CREDIT: B.F. Skinner Foundation



RL in Psychology: Conditioning

Ivan Pavlov - 1890



• Psychology - Behaviorism and Decision Making - I. Pavlov, R.F. Skinner 

• Mathematics -  Dynamic Programming - P.J. Werbos, D. Bertsekas, J. Tsitsiklis 

• Economics - Game Theory - John von Neumann 

• Computer Science - Algorithms and Deep Networks - A. Barto, R. Sutton, DeepMind	

• … 

Reinforcement Learning: Over 150 years of history



I.  DYNAMIC PROGRAMMING ->REINFORCEMENT LEARNING

Markov Decision Processes 

Xt+1 = F(Xt, αt, ϵt)
action

THE FLOW SOLVER

J = ⟨
T

∑
t=1

γt ℛ(st, αt)⟩Expected 
Utility

reward

THE COST FUNCTION

st = 𝒢(Xt, ηt)
Observation/State

state

THE DATA

REINFORCEMENT LEARNING:   
    observed  

BUT  
not known -  
SAMPLING

D = (𝒢, ℛ)



STATE

II. Reinforcement Learning:  Find Policy to Maximize Long Term Reward

STATE
ENVIRONMENT

Gaussian

st 

πw
mean action

std of action

Observe	State

Receive	Reward

Take	Action

AGENT

m(st)
σ(st)

w
parameters

Deep NN

J(w) = 𝔼
at ∼ πw(a |st)
st+1 ∼ 𝒟(s|at,st)

[∑
t

rt]



REINFORCEMENT LEARNING : An agent learning an action policy trough rewards

Goal: Maximize the 
value function

action
  state
reward

ENVIRONMENT

AGENT Vπw
(s) = 𝔼

ak ∼ πw(a |sk)
sk+1 ∼ 𝒟(s|ak,sk)

[
∞

∑
k=0

γtrt+k+1 |st = s]

➡ The celebrated
- Bellman Equation:

⟹ Vπw
(s) = ∑

a

πw(a |s)∑
s′ ,r

D(s′ , r |s, a)[r + γ vπw
(s′ )]

‣ Bellman Equation:

value-action function



• ATARI Games:
• State from pixels

Mnih 2015

• Robotic Benchmarks:
• Continuous actions, Precise controls

Schulman 2015

• Chess and GO
• Breadth of game-state dimensionality

Silver 2016

• Advanced games
• Generality, Partial observability

Jaderberg 2016



Reddy et al,  
PNAS 2017,  Nature 2018

Gueniat et al,  
Theor. Comp. Fluid Dyn., 2016

RL+ Fluids

Colabrese et al,  
PRL 2017, PR Fluids 2018



Gazzola et al,  
SIAM J. Sci. Comp., 2014

Gazzola et al,  
J. Fluid Mech., 2016

Verma et al,  
PNAS, 2018

Novati et al,  
PR Fluids, 2019

RL + Fluids @  ETHZ

Novati et al,  
Bioinsp. Biomim., 2017



1Y in 1997 ~  3’ in 2019



Reinforcement Learning -Parametric policy

GOAL: Define a cost function   
 identify optimal 

J(w)
wEnvironment at random initial condition

Following agent’s action, 
environment advances in time and 

agent receives reward

πw(a | st) := 𝒩(a |μ(st; w), σ2(st; w)) := 𝒩(a |μw(st), σw(st)2)

NOTE: Here assume a deterministic environment

s0 ⇠ D0(s)

a0 ⇠ ⇡w(a | s0)
s1, r1 = D(s0, a0)

...

at ⇠ ⇡w(a | st)
st+1, rt+1 = D(st, at)

<latexit sha1_base64="E8Sg10XvZUTA7128hR5HlK6u7Jk="></latexit>

w⋆ = arg max
w

J(w)

J(w) = 𝔼
at ∼ πw(a |st)
st+1 ∼ 𝒟(s|at,st)

[∑
t

rt]



PARAMETRIZED POLICIES

πw(a | st) := 𝒩(a |μ(st; w), σ2(st; w)I)

at ∼ π(a |st ; w) = πw(a |st)

EXAMPLE: GAUSSIAN

Neural Network to approximate 

st → (μ, σ)

LSTM Recurrent Neural Network:

use temporal evolution for
partially observable systems

Deep Feed Forward Network:

for fully observable system



How to chose  ?g(w)

Policy Update -> update the weights

wn+1 = wn + λ g(wn)

wn+1 = wn + λ∇J(wn)

Policy Gradient Methods

Stochastic Estimator 

J(w) := vπw
(s)

(Sutton, ’00)



Policy Gradient Update (Sutton, ’00)

Let : J(w) := vπw
(s)

Estimate gradient by sampling and taking an expectation over policy (Degris et. al., 2012)

∇wJ(w) = 𝔼πw[∑
a

πw(a |st) qπw
(s, a)

∇wπw(a |s, w)
πw(a |st)

]

qπw
(s, a) = 𝔼πw[

∞

∑
t=0

γt rt+1 | (s0 = s, a0 = a, at = πw(st))]



EXPERIENCES IN REINFORCEMENT LEARNING  - OFF POLICY LEARNING 

How to utilize off policy/past  experiences?

πw0

πw0

ENVIRONMENT 
DYNAMICS

𝒟

start with 

sample

update πw1

{{st, rt, πw0
, at}1:T}1:M

Experiences:

ENVIRONMENT 
DYNAMICS

𝒟

sample

{{st, rt, πw1
, at}1:T}1:M

Experiences:

update πw2

ENVIRONMENT 
DYNAMICS

𝒟

sample

{{st, rt, πw2
, at}1:T}1:M

Experiences:

w0 → w1 w1 → w2

πwN⋯

After updating , the data collected with policies   are past experienceswn πwk
k ∈ [n − 1,n − 2,....]



• Policy:  Best action for  current state to maximize  long term reward 

IN FLOW CONTROL 
• Transitions can be sampled but may not be known analytically 
• Policy/Transitions are not stationary  
• Samples are expensive to evaluate 

• Policy: How to Balance Exploration and Exploitation 
• How to use Memories and Experiences ?	

• … 

Reinforcement Learning and Flow Control

ak ∼ πw(a |sk)



SAMPLING ONLINE POLICY ->EXPLORE —> EXPENSIVE to EXPLOIT

EXPERIENCE REPLAY:  Store subset of experiences, and‘‘replays’’ them 
offline, learning anew from past successes/failures , (Long-Ji Lin, 1992)

How to reduce the computational cost of RL and its online sampling ?

Economize by using existing samples -> use memory of the system  

Experience Replay is critical to maximizing data efficiency, avoids the 
destabilizing effects of learning from consecutive correlated experiences, 
and allows the network to learn a viable value function even in complex, 
highly structured sequential environments such as video games.
(Hassabis et. al. , 2017, Neuron Review) 



SAMPLING ONLINE POLICY—> EXPENSIVE

EXPERIENCE REPLAY (Long-Ji Lin, 1992):  Store subset of experiences, 
and‘‘replays’’ them offline, learning anew from past successes/failures 

EXPERIENCE REPLAY -> IMPORTANCE SAMPLING  
Change of probability distribution for computing Expectations

BUT  
how good are the experiences  ?

(each sample a simulation)



IMPORTANCE SAMPLING WITH EXPERIENCES

-0.5 0 0.5 1 1.5
action

0.0001

0.01

1

100

old policy experienced by agent 
(training data)

πw(a | st)

μt(a | st)

Current policy that we aim to update

ρw,t(st, at) =
πw(at | st)
μt(at | st)

Unbounded (0 to ) Importance weight, 
increases the variance and lowers the 
accuracy of the cost function .

∞

J̃(w)

at

If distribution of training data is too 
dissimilar from on-policy outcomes, data 
may be irrelevant to updating the policy

ISSUE #1

state

P(s)

ISSUE #2 st ∼ ημt (s)

st ∼ ηπw (s)

state with old policies (training)

state with current policy

Proposed solution: constrain policy changes to past policies

log P(a)





Remember and Forget Experience Replay

(Novati & Koumoutsakos, ICML ’19

ReF-ER works with most RL methods that learn a policy by Experience Replay (e.g. DPG, NAF, ACER, SAC, …)

II. Penalization, based on KL divergence, attracts 
policy back towards training behaviors.

I. Reject samples if importance weight  lies 
outside of a trust region.

πw/μt



Results

           DDPG + 
Experience Replay

        DDPG +
Prioritized ER
(Schaul et al., 2016)

• ReF-ER with: Off-policy pol.-gradients (ACER, Wang et al. 2017), Q-learning (NAF, Gu et al. 2016), DPG (DDPG, Lillicrap et al. 2016).
• We observe: effectively constrained DKL, increased stability and performance.
• At the price of: sometimes slower progress at the beginning of training.

           DDPG +
ReF-ER

DDPG on OpenAI gym MuJoCo tasks
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time step 106
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Legend:

ReF-ER with C=2, C=4, C=8 

Vanilla ER, Prioritized ER, PPO

Humanoid Benchmark



with L. Mahadevan (Harvard U.)

Reinforcement Learning
 vs 

Optimal Control







Model of  gliding-Arthropod
Gravity-driven motion of ellipse (Lamb, 1932)

• Closure with model of fluid forces 
validated through experiments and 
simulations by Wang et al 2004-06

• Dynamics characterized by:  
• the aspect ratio  β   = b / a 
• the density ratio ρ* = ρs / ρf 

• Augmented with a control torque (Paoletti 2011) 
rotating limbs /moving centre of mass 

• Ability to exert torque is constrained (|τ|<1)

Minimize: 
• Time to target
• Energy to target

Start at {0, 0}, no initial velocity

Y

X

? Land at XG= 100 YG= -50, 
     with perching angle θG= 45° 



Shaping the reward
• Objective: time/energy-optimal trajectories - compare with optimal control

• RL task designed to nudge system towards desired behavior only through rewards 
• sample initial state                                               
• rewards must nudge towards xG = 100 and penalize time/energy:

s0 ⇠ {U(�10, 10), 0, 0, 0, 0, 0}

rt = �ct + kxG � xt�1k � kxG � xtk

rT = kxG � xT k+K
⇣
e�(xG�xT )2 + e�10(✓G�✓T )2

⌘
terminal reward:

ct, time =

Z t+�t

t
dt = �t ct, energy =

Z t+�t

t
⌧2dt = ⌧2�t

• Note that the sum of rewards along any trajectory that monotonically moves toward xG:

baseline, no effect on policy

TX

t=0

rt = �
TX

t=0

ct + kxG � x0k+K
⇣
e�(xG�xT )2 + e�10(✓G�✓T )2

⌘

bonus for reaching xG, θGtotal cost



Two emerging gliding strategies
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Tumbling flight: energy optimal β=0.1 ρ*=200
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• Bounding flight owes name to energy-
saving flight pattern employed by birds 

• Composed of 2 phases: 
• positive torque inducing tumbling to 

generate lift 
• negative torque to glide while 

maintaining small angle of attack

Thanks to Greg from San Diego for the bounding flight sketch.
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• Tumbling flight consists of: 
• maintaining an almost-constant 

minimal torque until landing 
• continuous generation of lift
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RL vs. optimal control
Time-optimal Energy-optimal

• Strategies found by RL slightly surpass the performance of 
those obtained with optimal control ( Paoletti 2011 ) 

• Qualitative behavior is preserved 

• RL is shown to be robust to perturbation of model parameters 
and unseen initial conditions

Legend: RL, OC for β = 0.1  ρ* = 100
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RL FAILURE : Brachistochrone problem (Johann Bernoulli in 1696)

"Given two points A and B in a vertical plane, what is 
the curve traced out by a point acted on only by gravity, 
which starts at A and reaches B in the shortest time.”

π𝚠 := 𝒩(m𝚠(x), σ𝚠(x)2)

x

trajectory #:

1 
8 

60 
500 

4000 
30000

y
∼

π𝚠 (⋅
|

x)

Solution is a cycloid which always starts at a cusp.

0 L

H

minimize
T

T =

Z L

0

1

vx
dx

subject to v
2
x + v

2
y = 2

p
g�y

y(x = 0) = H

y(x = L) = 0

y(x) ⇠ ⇡
w(y | x)





Learning to Capture Vortices

Liao, Beal, Lauder, Triantafyllou, Science 2003

Kármán gait employed by fish to decrease 
effort when swimming behind obstacles State: 

Action: 

Reward:

• Relative position Δr, angle θ, velocities

• Shear stress sensors (lateral-line):


• Increase/decrease undulation amplitude

• Tail-beating frequency


• Minimize the swimmer’s energy output:


• Terminate if reaches border: rT = − 100

Agent : a self-propelled swimmer

Δr

θ

r = �Pdef =

Z

S
udeformation · dFfluid

• swimmer’s power output decreases by 45% relative to swimming in quiescent flow



Sensitivity/Failure of Deep Reinforcement Learning

at Re = 1200

Policy trained at Re = 1000

at Re = 2000



FAILURE of Deep Reinforcement Learning

State: • Relative position Δr, angle θ, velocities

• Shape in previous two timesteps  

• Shear stress sensors (lateral-line): 

Δr

θ

or
State: • Relative position Δr, angle θ, velocities


• Shape in previous two timesteps  

• Shear stress sensors (lateral-line): 

Deep Reinforcement Learning 
is very sensitive to the choice 

of states



Two FISH



REWARD :distance to leader OR  swimming-efficiency

ACTIONS:

• Decrease curvature

• Increase curvature
Modulate body deformation

STATES
• Orientation relative to leader: Δx, Δy, θ 

Δx

Δy

θ

• Current manoeuvre

• Time since previous tail beat: Δt

Synchronisation through Learning for Self-propelled Swimmers



Smart-follower vs.solo fish

• Smart Follower:  

• Stay in the leader’s wake 

• Steer and course correct 

• Pdef   drops : decreased fluid resistance     
due to assistance from vortices

GOAL I : minimize ∆y

Pdef =

Z
F · udefdS



Title Text

IS IT EFFICIENT TO SWIM IN A WAKE ?

• Increased efficiency was not a learning objective: 
• Emerges from learning to stay in leader’s wake

e�ciency =
Tu

Tu+max(
R
F · udefdS, 0)

• Average efficiency increased by 11.8%

Efficiency of follower vs. solo swimmer



R⌘ =
Tu

Tu+max(Pdef , 0)

• Follower opts to interact with wake-vortices 
• Overall, 28% gain in average efficiency

GOAL II : MAX  EFFICIENCY

No distance constraints specified



Autonomous “smart” follower reacts effectively to unfamiliar actions by leader



Influence of Time-history - MEMORY
• Feed Forward Network (FFN) - ‘Vanilla’ RL 

• Action depends explicitly on the current state only 

• Long-term dependencies ignored 
• Overshoots - Frequent course correction necessary

• Recurrent Neural Network (RNN) - ‘Deep’ RL 

• Action depends on information from agent’s time-history 
• Agent anticipates interaction with the flow - more robust control 
• Better attitude-control, but energy expenditure increases considerably



FF NN - distance

RNN - distance

RNN - efficiency

+12%

+28.0%

+17%



Back to Incompressible Flows

3D Schools





What can WE learn from ‘smart’ swimmers?

/L

First 10,000 transitions Last 10,000 transitions

How does behaviour evolve during training?
�x

�y

�



• PI controller:  
• Modulate follower’s undulations (curvature + amplitude) 

• Maintain the target position specified

averaged over one tail beat 



Verma et al., PNAS, 2018



Verma et al., PNAS, 2018



SUMMARY:

LEARNING 

find  an effective algorithm (not ONLY machine learning) for the flow problem.

Education: what survives when what has been learned has been forgotten. (B.F. 





Wind Farms and  wakes of wind turbine

http://www.noaanews.noaa.gov/stories2011/20110426_windwakes.html

CREDIT: P. CHATELAIN, UC LOUVAIN

the velocity field at hub height  and also the instantaneous powers for one “column” of wind turbines





Digital	Wind	Machine	
Gusts	&	Shear



Thank you !



Machine  Learning 
a personal history 



How to Fly with a Broken Wing







NASA SHARC S ubsonic H igh A lpha R esearch C oncept 





POD and Linear PCA

retain	M	<	D	eigenvectors

x̄ =
1
N

N

∑
n=1

xn

S =
1
N

N

∑
n=1

(xn − x̄)(xn − x̄)T

Sui = λiui

(adapted from  C. Bishop)

W ⋅ x = z

WT ⋅ z = x̃

x

x̃

E = | | x̃ − x | |2

= | |WTW ⋅ x − x | |2





ORIGINAL POD NN





http://jmc.stanford.edu/artificial-intelligence/what-is-ai/index.html

Intelligence	is	
the	computational	part	

of	the	ability	to	achieve	
goals	in	the	world.

What	is	Intelligence	?

John McCarthy

A system having a goal or not, is not a property of the system 
itself. It is in the relationship between the system and an 
observer. 

The system is most usefully understood/predicted/controlled 
in terms of its outcomes rather than its mechanisms. 



AI and Fluid Mechanics

Lighthill's position does not come as a surprise. He was, 
after all, a researcher in fluid 
dynamics and aeroacoustics, where it 
is easy to be misled by complicated 
differential equations involving 
'continuous' variables and where 
nonexistent solutions arise so often.  

http://www.mathrix.org

The Lighthill Report (1973)



What will AI technology make cheap ?  
Prediction.  

Prediction is central to decision-making 
under uncertainty 

Better prediction under uncertainty  -> 
new opportunities for all companies

...computers have  made arithmetic cheap. 

Solving complex equations is done more easily and in less time ..

Whereas others see transformational new 
innovation, we see a simple fall in price.



DESIGN  ADAPTIVITY: Self-Optimizing Machines

CREDIT:  NASA Tech Reports 1999
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Histograms of population values (over each panel)

Drag reduction ~ 60 %
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M. Milano, P. Koumoutsakos, and J. Schmidhuber, “Self-organizing nets 
for optimization," IEEE Trans.  on neural networks, vol. 15, iss. 3, 2004. 

Identify and Optimize Critical actuators



25 years DINFK
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Poncet Ph., Hildebrand R., Cottet G.H., Koumoutsakos P., Spatially distributed control for optimal drag reduction of the flow past a circular cylinder, J. Fluid Mechanics, 599, 111-120, 2008

http://www.icos.ethz.ch/cse

