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Introduction
Blood-borne metastasis is initiated by cancer cells that are trans-
ported through the circulation from the primary tumor to vital dis-
tant organs, and it is directly responsible for most cancer-related 
deaths. Addressing this challenge, however, is confounded by our 
limited understanding of the process by which tumor cells exit 
from their primary site, intravasate into the circulation, and then 
establish distant lesions in the lung, brain, liver, or bone. Tumor 
cells that are identified in transit within the blood stream are re-
ferred to as circulating tumor cells (CTCs). Although their exact 
composition is unknown, a fraction of these are thought to be via-
ble metastatic precursors capable of initiating a clonal metastatic 
lesion. However, CTCs are extraordinarily rare (estimated at one 
CTC per billion normal blood cells in the circulation of patients 
with advanced cancer); our understanding of their biological 
properties has thus been limited by the availability of technologies 
capable of isolating them in sufficient numbers and under condi-
tions that are compatible with detailed molecular and functional 
experiments. Despite the limitations of current CTC-isolating 
methods, circulating cancer cells have been detected in a majority 
of epithelial cancers, including those from breast, prostate, lung, 

and colon. Patients with metastatic lesions are more likely to have 
CTCs detected in their blood; however, these have also been re-
ported in some localized cancers. A better understanding of the 
identity of CTCs and the factors underlying their shedding into 
the vasculature is critical to identifying the key drivers of human 
cancer metastasis and devising rational therapeutic approaches.

Much of our current understanding of processes involved 
in cancer metastasis has been derived from mouse models of me-
tastasis. Recent studies in these models have raised interesting 
mechanistic insights. For example, CTCs captured in xenograft 
prostate cancer models have highlighted the importance of  
pathways conferring resistance to apoptosis in these cells  
(Berezovskaya et al., 2005; Howard et al., 2008; Helzer et al., 
2009). In a mouse model of breast cancer, disseminated tumor cells 
(DTCs) in the bone marrow can be detected in the premalignant 
phases of breast cancer, suggesting an early spread to distant or-
gans (Hüsemann et al., 2008). Studies of the effects of epithelial–
mesenchymal transition (EMT) in the generation of CTCs and 
distal metastases have suggested that this mesenchymal trans-
formation may enhance the ability of cells to intravasate but may 
reduce their competence to initiate overt metastases (Tsuji et al., 
2008, 2009). Mouse studies have also identified bone marrow–
derived hematopoietic progenitor cells that express VEGF recep-
tor 1 (VEGFR1) and may form a premetastatic niche that precedes 
the arrival of tumor cells (Kaplan et al., 2005). Moreover, Kim  
et al., (2009) have recently proposed a new concept of tumor self-
seeding, in which injected tagged human cancer cell lines may 
colonize an existing tumor deposit, with the newly recruited  
tumor cells conferring increased aggressiveness to the existing 
tumor. Finally, the possibility of intravascular proliferation of 
CTCs adherent to vascular endothelium has been proposed based 
on in vivo imaging of tagged cells (Al-Mehdi et al., 2000).

Although these mouse studies offer fascinating insights into 
potential mechanisms of metastasis, certain limitations apply: xeno-
graft models using established human cancer cell lines do not  
recapitulate the complex evolving vasculature and microenviron-
ment of endogenous cancers, nor, of course, does direct intravascu-
lar inoculation of cancer cell lines into the tail vein. On the other 
hand, most endogenous mouse tumor models metastasize late, if at 

Circulating tumor cells (CTCs) shed from primary and 
metastatic cancers are admixed with blood components 
and are thus rare, making their isolation and character-
ization a major technological challenge. CTCs hold the 
key to understanding the biology of metastasis and pro-
vide a biomarker to noninvasively measure the evolution 
of tumor genotypes during treatment and disease pro-
gression. Improvements in technologies to yield purer CTC 
populations amenable to better cellular and molecular 
characterization will enable a broad range of clinical  
applications, including early detection of disease and the 
discovery of biomarkers to predict treatment responses 
and disease progression.

Circulating tumor cells: approaches to isolation  
and characterization
Min Yu,1,2 Shannon Stott,3 Mehmet Toner,3 Shyamala Maheswaran,2 and Daniel A. Haber1,2

1Howard Hughes Medical Institute, 2Massachusetts General Hospital Cancer Center, and 3Center for Engineering in Medicine, Harvard Medical School,  
Charlestown, MA 02129

© 2011 Yu et al. This article is distributed under the terms of an Attribution–Noncommercial–
Share Alike–No Mirror Sites license for the first six months after the publication date (see 
http://www.rupress.org/terms). After six months it is available under a Creative Commons 
License (Attribution–Noncommercial–Share Alike 3.0 Unported license, as described at 
http://creativecommons.org/licenses/by-nc-sa/3.0/).

T
H

E
J

O
U

R
N

A
L

O
F

C
E

L
L

B
IO

L
O

G
Y

 on M
arch 22, 2016

jcb.rupress.org
D

ow
nloaded from

 
Published February 7, 2011

The Rockefeller University Press
J. Cell Biol. Vol. 192 No. 3 373–382
www.jcb.org/cgi/doi/10.1083/jcb.201010021 JCB 373

JCB: Review

Correspondence to Daniel A. Haber: dhaber@partners.org
Abbreviations used in this paper: CAM, cell adhesion molecule; CTC, circulating 
tumor cell; DTC, disseminated tumor cell, EGFR, EGF receptor; EMT, epithelial– 
mesenchymal transition; EpCAM, epithelial CAM; HB, herringbone; PSA, prostate-
specific antigen.

Introduction
Blood-borne metastasis is initiated by cancer cells that are trans-
ported through the circulation from the primary tumor to vital dis-
tant organs, and it is directly responsible for most cancer-related 
deaths. Addressing this challenge, however, is confounded by our 
limited understanding of the process by which tumor cells exit 
from their primary site, intravasate into the circulation, and then 
establish distant lesions in the lung, brain, liver, or bone. Tumor 
cells that are identified in transit within the blood stream are re-
ferred to as circulating tumor cells (CTCs). Although their exact 
composition is unknown, a fraction of these are thought to be via-
ble metastatic precursors capable of initiating a clonal metastatic 
lesion. However, CTCs are extraordinarily rare (estimated at one 
CTC per billion normal blood cells in the circulation of patients 
with advanced cancer); our understanding of their biological 
properties has thus been limited by the availability of technologies 
capable of isolating them in sufficient numbers and under condi-
tions that are compatible with detailed molecular and functional 
experiments. Despite the limitations of current CTC-isolating 
methods, circulating cancer cells have been detected in a majority 
of epithelial cancers, including those from breast, prostate, lung, 

and colon. Patients with metastatic lesions are more likely to have 
CTCs detected in their blood; however, these have also been re-
ported in some localized cancers. A better understanding of the 
identity of CTCs and the factors underlying their shedding into 
the vasculature is critical to identifying the key drivers of human 
cancer metastasis and devising rational therapeutic approaches.

Much of our current understanding of processes involved 
in cancer metastasis has been derived from mouse models of me-
tastasis. Recent studies in these models have raised interesting 
mechanistic insights. For example, CTCs captured in xenograft 
prostate cancer models have highlighted the importance of  
pathways conferring resistance to apoptosis in these cells  
(Berezovskaya et al., 2005; Howard et al., 2008; Helzer et al., 
2009). In a mouse model of breast cancer, disseminated tumor cells 
(DTCs) in the bone marrow can be detected in the premalignant 
phases of breast cancer, suggesting an early spread to distant or-
gans (Hüsemann et al., 2008). Studies of the effects of epithelial–
mesenchymal transition (EMT) in the generation of CTCs and 
distal metastases have suggested that this mesenchymal trans-
formation may enhance the ability of cells to intravasate but may 
reduce their competence to initiate overt metastases (Tsuji et al., 
2008, 2009). Mouse studies have also identified bone marrow–
derived hematopoietic progenitor cells that express VEGF recep-
tor 1 (VEGFR1) and may form a premetastatic niche that precedes 
the arrival of tumor cells (Kaplan et al., 2005). Moreover, Kim  
et al., (2009) have recently proposed a new concept of tumor self-
seeding, in which injected tagged human cancer cell lines may 
colonize an existing tumor deposit, with the newly recruited  
tumor cells conferring increased aggressiveness to the existing 
tumor. Finally, the possibility of intravascular proliferation of 
CTCs adherent to vascular endothelium has been proposed based 
on in vivo imaging of tagged cells (Al-Mehdi et al., 2000).

Although these mouse studies offer fascinating insights into 
potential mechanisms of metastasis, certain limitations apply: xeno-
graft models using established human cancer cell lines do not  
recapitulate the complex evolving vasculature and microenviron-
ment of endogenous cancers, nor, of course, does direct intravascu-
lar inoculation of cancer cell lines into the tail vein. On the other 
hand, most endogenous mouse tumor models metastasize late, if at 

Circulating tumor cells (CTCs) shed from primary and 
metastatic cancers are admixed with blood components 
and are thus rare, making their isolation and character-
ization a major technological challenge. CTCs hold the 
key to understanding the biology of metastasis and pro-
vide a biomarker to noninvasively measure the evolution 
of tumor genotypes during treatment and disease pro-
gression. Improvements in technologies to yield purer CTC 
populations amenable to better cellular and molecular 
characterization will enable a broad range of clinical  
applications, including early detection of disease and the 
discovery of biomarkers to predict treatment responses 
and disease progression.

Circulating tumor cells: approaches to isolation  
and characterization
Min Yu,1,2 Shannon Stott,3 Mehmet Toner,3 Shyamala Maheswaran,2 and Daniel A. Haber1,2

1Howard Hughes Medical Institute, 2Massachusetts General Hospital Cancer Center, and 3Center for Engineering in Medicine, Harvard Medical School,  
Charlestown, MA 02129

© 2011 Yu et al. This article is distributed under the terms of an Attribution–Noncommercial–
Share Alike–No Mirror Sites license for the first six months after the publication date (see 
http://www.rupress.org/terms). After six months it is available under a Creative Commons 
License (Attribution–Noncommercial–Share Alike 3.0 Unported license, as described at 
http://creativecommons.org/licenses/by-nc-sa/3.0/).

T
H

E
J

O
U

R
N

A
L

O
F

C
E

L
L

B
IO

L
O

G
Y

 on M
arch 22, 2016

jcb.rupress.org
D

ow
nloaded from

 

Published February 7, 2011

...

...

158 S. Zheng et al. / J. Chromatogr. A 1162 (2007) 154–161

Table 1
Recovery tests for circular pore design and oval pore design

Test number Circular pore Oval pore

Cells recovered Cells in flow-through Cells recovered Cells in flow-through

1 346 2 79 0
2 400 1 84 0
3 344 0 74 0
4 327 1 78 0
5 339 0 68 0

The expected cell number for circular pore design was 402 ± 56. The expected cell number for oval pore design was 86 ± 15.

Table 2
Capture limit tests for circular pore design and oval pore design

Test number Circular pore Oval pore

Cells recovered Cells in flow-through Cells recovered Cells in flow-through

1 4 0 7 0
2 3 0 7 0
3 3 0 6 0
4 3 0 9 0
5 3 0 7 0

The expected cell number for circular pore design was 4 ± 1. The expected cell number for oval pore design was 8 ± 2.

recovery rates of samples containing <10 cells/mL were mea-
sure and demonstrated in Table 2. Using the circular pore
design, we were able to recover at least three cells when four
cells were expected and at least six cells were recovered when
expected cell count of eight cells were applied with the oval
pores. For each experiment, the expected cell numbers were
determined by manual count using hemacytometer and the inter-
sample variation is 10–20%. Judging from the results above,
we did not experience a significant difference in performance
between the oval and circular pore designs; therefore, we have
based our filters with integrated electrodes using the circular
design.

SEM pictures were taken for LNCaP cells isolated on-
membrane filer (Fig. 5). Compared with commercially available
polycarbonate filters (Fig. 5A), parylene filters (Fig. 5B and
C) are more dense and without fused pores. The SEM fixation
procedure (Fig. 5D) preserved the cell shape better than those
without fixation (Fig. 5C).

3.2. Capture of hematoxylin pre-stained tumor cells spiked
in whole human blood

To mimic the real clinical samples obtained from cancer
patients, the device performance was also tested by spiking

Fig. 5. SEM pictures. (A) Commercial membrane filter with sparse and occasionally fused pores, (B) microfabricated parylene membrane filter, (C) parylene
membrane filter with cells captured without SEM fixation treatment and (D) parylene membrane filter with cells captured after SEM fixation procedure.

Zheng et al., "Membrane 
microfilter device for selective 

capture, electrolysis and genomic 
analysis of human circulating 

tumor cells", Journal of 
Chromatography A, 2007.
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Red Blood Cell Model



Blood modeling

Basic constituents of blood:
• red blood cells
• plasma

Red Blood Cells
- biconcave shape
- viscoelastic membrane
- constant area & volume

Plasma
- 95% water

modeling requirements:
- incompressible fluid
- hydrodynamic behavior 

(mass & momentum 
conservation)

RBC membrane 
particles

solvent particles

Particle-based methods:
- Coarse-grained model for RBC membrane
- Dissipative Particle Dynamics for solvent

Fcell

- Prescribe forces between RBC particles.
- Calibration of parameters to best fit experiments.



2.1 Mesoscopic modeling of RBCs

2.1.1 Membrane modeling

Following Fedosov et al.19 we discretize the RBC membrane on a triangulated mesh, composed of Nv vertices and Ns
links (springs). The elasticity of the spectrin cytoskeletion is decomposed into two terms: a shear energy modeled by
in-place elastic forces between the springs, and a stretch energy modeled by a local area constrain. The presence of
the lipid bilayer is modeled through three different terms: (i) resistance to bending, incorporated through an energy
potential whose magnitude depends on the angle between neighboring triangles, (ii) viscosity, modeled through
viscous dissipation on the springs, and (iii) membrane incompressibility, represented by a global area constraint.
Finally, the incompressibility of the enclosed hemoglobin is represented by a volume constraint term. The latter is
necessary in the cases where the solvent is not strictly modeled as an incompressible fluid. The total potential energy
on the RBC membrane is therefore composed of four terms:

U = Uin-plane +Ubending +Uarea +Uvolume , (1)

Uin-plane accounts for the energy of the elastic spectrin network of the RBC membrane, modeled by an attractive
wormlike chain potential and a repulsive potential such that a nonzero equilibrium spring length can be obtained,

Uin-plane =
Ns

Â
j=1

2

64
kslm

⇣
3x2

j �2x3
j

⌘

4(1� x j)
+

kp j

l j

3

75 , (2)

where ks is a spring constant, l j is the length of the jth spring, x j = l j/lm, lm is the maximum spring extension, and
kp j is computed such that the total spring force on each spring is zero at equilibrium (l j = l0 j ). The bending energy
term, Ubending, accounts for the bending resistance of the lipid bilayer and is modeled as

Ubending = kb

Ns

Â
j=1

⇥
1� cosq j

⇤
, (3)

where kb is a bending coefficient and q j is the angle between two adjacent triangles. Uarea and Uvolume represent the
area and volume conservation constraints respectively,

Uarea =
ka(A�A0)2

2A0
+

Nt

Â
j=1

kd(A j �A0 j)
2

2A0 j

(4)

Uvolume =
kv(V �V0)2

2V0
, (5)

where A j and A0 j are the current and initial area of the jth triangle, A and A0 are the current and initial total membrane
area, V and V0 are the current and initial volume enclosed by the membrane and ka, kd , kv are coefficients for the
global area, local area and volume, respectively.

The viscous dissipation of the membrane is modeled through the addition of a dissipative force term on the springs.
We use the membrane viscosity formulation presented in Fedosov et al.19 and set the non-central part of the force to
zero (gT = 0), as this term does not conserve the angular momentum. In this case, the dissipative force on a spring
connecting the vertices i and j is

FFFD
m,i j = �gC �vvvi j · eeei j

�
eeei j (6)

where eeei j is the unit vector along the membrane vertex centers, eeei j = rrri j/krrri jk, and rrri j = rrri � rrr j, with rrri being the
positional vector of vertex i.
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Addition of viscous diffusion:
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necessary in the cases where the solvent is not strictly modeled as an incompressible fluid. The total potential energy
on the RBC membrane is therefore composed of four terms:

U = Uin-plane +Ubending +Uarea +Uvolume , (1)

Uin-plane accounts for the energy of the elastic spectrin network of the RBC membrane, modeled by an attractive
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where ks is a spring constant, l j is the length of the jth spring, x j = l j/lm, lm is the maximum spring extension, and
kp j is computed such that the total spring force on each spring is zero at equilibrium (l j = l0 j ). The bending energy
term, Ubending, accounts for the bending resistance of the lipid bilayer and is modeled as
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area, V and V0 are the current and initial volume enclosed by the membrane and ka, kd , kv are coefficients for the
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The viscous dissipation of the membrane is modeled through the addition of a dissipative force term on the springs.
We use the membrane viscosity formulation presented in Fedosov et al.19 and set the non-central part of the force to
zero (gT = 0), as this term does not conserve the angular momentum. In this case, the dissipative force on a spring
connecting the vertices i and j is
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necessary in the cases where the solvent is not strictly modeled as an incompressible fluid. The total potential energy
on the RBC membrane is therefore composed of four terms:
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where ks is a spring constant, l j is the length of the jth spring, x j = l j/lm, lm is the maximum spring extension, and
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area, V and V0 are the current and initial volume enclosed by the membrane and ka, kd , kv are coefficients for the
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The viscous dissipation of the membrane is modeled through the addition of a dissipative force term on the springs.
We use the membrane viscosity formulation presented in Fedosov et al.19 and set the non-central part of the force to
zero (gT = 0), as this term does not conserve the angular momentum. In this case, the dissipative force on a spring
connecting the vertices i and j is
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in-place elastic forces between the springs, and a stretch energy modeled by a local area constrain. The presence of
the lipid bilayer is modeled through three different terms: (i) resistance to bending, incorporated through an energy
potential whose magnitude depends on the angle between neighboring triangles, (ii) viscosity, modeled through
viscous dissipation on the springs, and (iii) membrane incompressibility, represented by a global area constraint.
Finally, the incompressibility of the enclosed hemoglobin is represented by a volume constraint term. The latter is
necessary in the cases where the solvent is not strictly modeled as an incompressible fluid. The total potential energy
on the RBC membrane is therefore composed of four terms:

U = Uin-plane +Ubending +Uarea +Uvolume , (1)

Uin-plane accounts for the energy of the elastic spectrin network of the RBC membrane, modeled by an attractive
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where ks is a spring constant, l j is the length of the jth spring, x j = l j/lm, lm is the maximum spring extension, and
kp j is computed such that the total spring force on each spring is zero at equilibrium (l j = l0 j ). The bending energy
term, Ubending, accounts for the bending resistance of the lipid bilayer and is modeled as
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where A j and A0 j are the current and initial area of the jth triangle, A and A0 are the current and initial total membrane
area, V and V0 are the current and initial volume enclosed by the membrane and ka, kd , kv are coefficients for the
global area, local area and volume, respectively.

The viscous dissipation of the membrane is modeled through the addition of a dissipative force term on the springs.
We use the membrane viscosity formulation presented in Fedosov et al.18 and set the non-central part of the force to
zero (gT = 0), as this term does not conserve the angular momentum. In this case, the dissipative force on a spring
connecting the vertices i and j is
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where ks is a spring constant, l j is the length of the jth spring, x j = l j/lm, lm is the maximum spring extension, and
kp j is computed such that the total spring force on each spring is zero at equilibrium (l j = l0 j ). The bending energy
term, Ubending, accounts for the bending resistance of the lipid bilayer and is modeled as
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where A j and A0 j are the current and initial area of the jth triangle, A and A0 are the current and initial total membrane
area, V and V0 are the current and initial volume enclosed by the membrane and ka, kd , kv are coefficients for the
global area, local area and volume, respectively.

The viscous dissipation of the membrane is modeled through the addition of a dissipative force term on the springs.
We use the membrane viscosity formulation presented in Fedosov et al.19 and set the non-central part of the force to
zero (gT = 0), as this term does not conserve the angular momentum. In this case, the dissipative force on a spring
connecting the vertices i and j is
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where eeei j is the unit vector along the membrane vertex centers, eeei j = rrri j/krrri jk, and rrri j = rrri � rrr j, with rrri being the
positional vector of vertex i.
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where ks is a spring constant, l j is the length of the jth spring, x j = l j/lm, lm is the maximum spring extension, and
kp j is computed such that the total spring force on each spring is zero at equilibrium (l j = l0 j ). The bending energy
term, Ubending, accounts for the bending resistance of the lipid bilayer and is modeled as
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where A j and A0 j are the current and initial area of the jth triangle, A and A0 are the current and initial total membrane
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in-place elastic forces between the springs, and a stretch energy modeled by a local area constrain. The presence of
the lipid bilayer is modeled through three different terms: (i) resistance to bending, incorporated through an energy
potential whose magnitude depends on the angle between neighboring triangles, (ii) viscosity, modeled through
viscous dissipation on the springs, and (iii) membrane incompressibility, represented by a global area constraint.
Finally, the incompressibility of the enclosed hemoglobin is represented by a volume constraint term. The latter is
necessary in the cases where the solvent is not strictly modeled as an incompressible fluid. The total potential energy
on the RBC membrane is therefore composed of four terms:
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where ks is a spring constant, l j is the length of the jth spring, x j = l j/lm, lm is the maximum spring extension, and
kp j is computed such that the total spring force on each spring is zero at equilibrium (l j = l0 j ). The bending energy
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where A j and A0 j are the current and initial area of the jth triangle, A and A0 are the current and initial total membrane
area, V and V0 are the current and initial volume enclosed by the membrane and ka, kd , kv are coefficients for the
global area, local area and volume, respectively.

The viscous dissipation of the membrane is modeled through the addition of a dissipative force term on the springs.
We use the membrane viscosity formulation presented in Fedosov et al.19 and set the non-central part of the force to
zero (gT = 0), as this term does not conserve the angular momentum. In this case, the dissipative force on a spring
connecting the vertices i and j is
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energy corresponds to local area dilatation.

The nodal forces corresponding to the above energies are derived from the following

formula

fi = −∂V ({xi})/∂xi, i ∈ 1...Nv. (3.8)

Exact force expressions are derived analytically in appendix A.

3.2.2 Macroscopic elastic properties

Several parameters must be chosen in the membrane network model. To eliminate ad-

justment of the model parameters a relationship between them and corresponding network

macroscopic properties (see fig. 3.1) has to be derived. Theoretical analysis of the hexago-

nal network is presented further to obtain its linear macroscopic properties with respect to

the selected network parameters. We extend the linear analysis of a two-dimensional sheet

of springs built with equilateral triangles [42]. Figure 3.2 shows an element of the hexagonal

network with the central vertex v placed at the origin. From the virial theorem (see chapter

(b - a ,b - a )x y

(b ,b )x y

x

y

A

x y

b

a

c = |b - a|

v

S (a ,a )x y

Figure 3.2: An element of the hexagonal network with the central vertex v placed at the
origin.

2 of [7]), the Cauchy stress at the vertex v surrounded by the area element S = 2A is given

by
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Validation & Applications in Literature
buckling. However, this feature seems to be less pronounced for
higher Nv. Other membrane models yield similar shapes.

Despite the demonstrated success of the RBC models, several
problems remain due to the fact that the membrane is not stress-free.
Fig. 6 shows the RBC response of the WLC-C (Nv=500) model for
different stretching directions (left) with energy relaxation triangu-
lation and the RBC response for models with different triangulations
(right). While the RBC triangulated through the energy relaxation
method gives satisfactory results with differences in the stretching
response on the order of 5–8%, RBCs triangulated by other methods
show a much greater discrepancy with the experiment.

Fig. 7 shows the RBC shapes at equilibrium and at the stretching
force of 100 pN for point charges, advancing front triangulations
(WLC-C model), and for a “stress-free” model introduced in the next
section. The RBCs triangulated by point charges and advancing front
methods show pronounced buckling and a non-biconcave shape for
realistic bending and elastic RBC properties due to stronger local
stresses arising from more irregular triangulation when compared to
the energy relaxation mesh. In order to obtain a smooth biconcave
shape the membrane bending rigidity has to be set to about 500(kBT)P

and 300(kBT)P for point charges and advancing front methods,
respectively, which is much higher than the bending rigidity of the
real RBC of about 56(kBT)P. Local buckling features are less pro-
nounced for stretched cells since the membrane is subject to strong

stretching stresses. Moreover, Fig. 6 shows that these models have
higher effective elastic moduli than those measured as they are
subject to a higher membrane stress at equilibrium due to triangu-
lation artifacts. Also, they appear to give a stronger stretching ani-
sotropy (10–15%) compared to the free energy relaxation method.
The effect of local stresses on the membrane equilibrium shape
appears to be a drawback for existing models [19], which is often
compensated by setting artificially high values for the bending
rigidity. Fig. 7 also shows the corresponding RBC shapes (advancing
front triangulation) with a “stress-free” model which proves to be
independent of triangulation and will be proposed next.

4.2. Stress-free membrane model

To eliminate the aforementioned membrane stress anomalies we
propose a simple “annealing” procedure. For each spring we define l0i

i=1...Ns which are set to the edge lengths after the RBC shape
triangulation, since we assume it to be the equilibrium state.
Accordingly we define lmax

i = l0i ×x0 and A0
j j=1...Nt for each triangular

plaquette. The total RBC area Atot
0 = ∑j=1:::Nt A

j
0 and the total volume

V0
tot is calculated from the RBC triangulation. Then, we define the

average spring length as, l!0 = 1
NS
∑i=1:::Ns l

i
0, and the average-

maximum spring extension as l-max=l-0×x0; these are then used in
the linear elastic properties estimation using Eqs. (14c,d) and (17c,d).

Fig. 4. Computational results for different Nv (left) and spring models (right) compared with the experiments in [4] and the spectrin-level RBC model in [14].

Fig. 5. RBC shape evolution at different Nv and total stretching forces for the WLC-C model.
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Fig. 8. Stress-free RBC model for different triangulation methods with Nv=500 (left) and number of vertices with the energy relaxation triangulation (right) compared with the
experiments in [4].

Fig. 9. RBC shapes for highly coarse-grained models (Nv=100,250) and the spectrin-level model (Nv=27,344).

Fig. 10. The stretching response of the stress-free RBCmodel for different ratio x0 (left) and number of vertices in percents which are subject to the stretching force (right) compared
with the experiments in [4].
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Stretching

the modeled RBC is attached to a solid surface, where the
wall-adhesion is modeled by keeping stationary 15% of
vertices on the RBC bottom, although other vertices are
free to move. The adhered RBC is filled and surrounded
by fluids having viscosities much smaller than the membrane
viscosity, and therefore, only the membrane viscous contri-
bution is measured. The microbead is simulated by a set of
vertices on the corresponding sphere subject to a rigid
body motion. The bead attachment is modeled by including
several RBC vertices next to the microbead bottom into the
rigid motion.

A typical bead response to an oscillating torque measured
in simulations is given in Fig. 2 b. The bead displacement
has the same oscillating frequency as the applied torque

per unit volume, but it is shifted by a phase angle f depend-
ing on the frequency. The phase angle can be used to derive
components of the complex modulus according to linear
rheology as

g
0ðuÞ ¼ DT

Dd
cosðfÞ;

g00ðuÞ ¼ DT

Dd
sinðfÞ;

(14)

where g0(u) and g00(u) are the two-dimensional storage and
loss moduli (G0 and G00 in three dimensions), and DT and
Dd are the torque and bead displacement amplitudes. Note
that under the assumption of no inertial effects, the phase
angle satisfies the condition 0 % f < p/2.

Fig. 3 presents components of the complex modulus
compared with the experimental data of Puig de Morales-
Marinkovic et al. (6). A good agreement of the membrane
moduli in simulations with the experimental data is found
for the bending rigidity kc ¼ 4.8 $ 10% 19 J and the mem-
brane viscosity hm ¼ 0.022 Pa $ s. Note that this corresponds
to a bending rigidity that is two times larger than the widely
accepted value of 2.4 $ 10% 19 J. In general, simulations for
various Young’s moduli and bending rigidities showed the
dependence of g0(u) ~ kc

0.65Y0
0.65. In Fig. 3, only the

membrane bending rigidity is varied, as the Young’s
modulus was obtained in the RBC stretching tests above.

The loss modulus appears to be independent of the RBC
elastic properties and is governed by the membrane
viscosity. The modeled g00 exhibits the exponent 0.85 with
respect to frequency, while the exponent 0.64 was observed
in the experiments. This discrepancy may result from both

displacement

oscillating torque

0 2 4 6 8 10 12
−1

−0.75

−0.5

−0.25

0

0.25

0.5

0.75

1

Dimensionless time − tw

T
or

qu
e 

pe
r 

un
it 

vo
lu

m
e 

(P
a)

0 2 4 6 8 10 12
−300

−200

−100

0

100

200

300

D
is

pl
ac

em
en

t (
nm

)

 

 
w  = 33.1 Hz

Torque Displacement

f

a

b

FIGURE 2 A setup of the TTC (a) and the characteristic response of a

microbead subjected to an oscillating torque (b).

10
−2

10
−1

10
0

10
1

10
2

10
310

−5

10
−4

10
−3

10
−2

10
−1

Frequency (Hz)

g’
 a

nd
 g

’’ 
(P

a/
nm

)

 

 

g’ − experiment (OMTC)
g’’ − experiment (OMTC)
g’ −
g’ −
g’’ −
g’’ −
g’’ −

k
c
= 2.4×10−19  J

k
c
= 4.8×10−19  J

η
m

= 0.01 Pa⋅s
η

m
= 0.022 Pa⋅s

η
m

= 0.04 Pa⋅s

ω0.85

ω0.65

FIGURE 3 Two-dimensional storage and loss (g0 and g00) moduli of the

RBC membrane obtained from simulations for different membrane viscosi-

ties and bending rigidities in comparison with the experiments (6).

Biophysical Journal 98(10) 2215–2225

Multiscale Red Blood Cell Model 2219

the modeled RBC is attached to a solid surface, where the
wall-adhesion is modeled by keeping stationary 15% of
vertices on the RBC bottom, although other vertices are
free to move. The adhered RBC is filled and surrounded
by fluids having viscosities much smaller than the membrane
viscosity, and therefore, only the membrane viscous contri-
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rigid motion.
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where g0(u) and g00(u) are the two-dimensional storage and
loss moduli (G0 and G00 in three dimensions), and DT and
Dd are the torque and bead displacement amplitudes. Note
that under the assumption of no inertial effects, the phase
angle satisfies the condition 0 % f < p/2.

Fig. 3 presents components of the complex modulus
compared with the experimental data of Puig de Morales-
Marinkovic et al. (6). A good agreement of the membrane
moduli in simulations with the experimental data is found
for the bending rigidity kc ¼ 4.8 $ 10% 19 J and the mem-
brane viscosity hm ¼ 0.022 Pa $ s. Note that this corresponds
to a bending rigidity that is two times larger than the widely
accepted value of 2.4 $ 10% 19 J. In general, simulations for
various Young’s moduli and bending rigidities showed the
dependence of g0(u) ~ kc
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membrane bending rigidity is varied, as the Young’s
modulus was obtained in the RBC stretching tests above.

The loss modulus appears to be independent of the RBC
elastic properties and is governed by the membrane
viscosity. The modeled g00 exhibits the exponent 0.85 with
respect to frequency, while the exponent 0.64 was observed
in the experiments. This discrepancy may result from both
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contributes to both bending and stretching fluctuations, whereas
metabolic shear modulus fluctuations µlm(t) in an isolated network
generate direct active forces both in the tangential and normal
directions. When the network is coupled to the bilayer, however,
we predict the local bilayer incompressibility to systematically
cancel the direct active normal force and we end up with an
additional active source of noise for the stretching modes only,
ZA

lm(t) = (0,⌦A
lmµlm(t)). This is, therefore, in contrast to previous

phenomenological active models based on the existence of a direct
active normal force16,42. Tangential metabolic noise nevertheless
perturbs normal membrane motions via the curvature-mediated
coupling between bending and stretching modes (non-diagonal
components of the matrix Wlm). This e�ect is dampened by the
friction between the bilayer and the network, and therefore depends
critically on the tangentially fluid character of the bilayer. The
membrane shape fluctuation spectrum for each spherical harmonic
(l ,m) can be calculated in Fourier space as a sum of the dissipative
part of the response function � 00

lm(f ) and this active contribution

Clm(f )= 2kBT
2⇡f

� 00
lm

�
f
�+ 2 hnai(1�hnai)⌧a

1+�
2⇡f ⌧a

�
��Nlm(f )

��2 (3)

where Nlm(f ) captures the complex mode- and frequency-
dependent propagation of tangential active noise into membrane
shape fluctuations. The deviation from FDT is characterized by an
active timescale ⌧a =(ka +ki)�1, which controls the frequency below
which a departure from equilibrium is observed for a specific mode

(l ,m): for active timescales much lower than the typical membrane
relaxation frequency |Wlm|, the membrane does not have time to
move and the metabolic activity is ine�ective, whereas for larger
active timescales the FDT violation increases and finally saturates
at a value set by the maximum energy input in the system (see
Supplementary Fig. 6). We calculate the fluctuation spectrum C(f )
as a sum over the relevant modes (l �2,�l m l) and predict a
violation of FDT for non-zero metabolic activity hnai(1�hnai)>0
and for a prestressed spectrin network ⇠ >1,S>0, in agreement
with previous hypotheses42,43. In contrast, we find here that the
violation vanishes for flat membranes (R! 1). The membrane
curvature is therefore a key feature for propagating tangential
spectrin activity into normal shape motions, and we predict an
increase of active fluctuations with membrane curvature, which
may explain the higher fluctuations recently measured along
the rim of the RBC compared to its central region15,24. To fit the
experimental data for rheological tests we use typical mechanical
parameters for the RBC that have been either experimentally
measured or estimated in simulations, and four fitting parameters
(see Supplementary Table): the active rates ka = 1.12 s�1 and
ki = 5.6 s�1, leading to a mean fraction of active sites hnai ⇡ 17%,
the network prestretch ⇠ =1.04, controlling both passive and active
spectrin mechanics, and the lipid bilayer excess area 1 ⇡ 1.9%,
which determines the bilayer tension56,57 (see Supplementary
Information p29–31). Our model shows excellent agreement with
the passive response of the membrane and can reproduce the active
fluctuation spectrum (Fig. 3d). A broader distribution of active

NATURE PHYSICS | VOL 12 | MAY 2016 | www.nature.com/naturephysics

© 2016 Macmillan Publishers Limited. All rights reserved

517

Turlier et al., "Equilibrium physics breakdown reveals the 
active nature of red blood cell flickering", Nature Physics, 
2016.

Equilibrium fluctuations

Quinn et al., "Combined simulation and experimental study of large deformation of 
red blood cells in microfluidic systems", Annals of Biomedical Engineering, 2011.

with our DPD model for RBC traversal across a 4 lm
wide channel. Three time scales can be identified:

! (Frames 1–2) the time required for the cell to go
from its undeformed state to being completely
deformed in the channel;
! (Frames 2–3) the time it takes the cell to tra-

verse the channel length, and
! (Frames 3–4) the time for complete egress from

the channel.

Here, the cell undergoes a severe shape transition
from its normal biconcave shape to an ellipsoidal
shape with a longitudinal axis up to 200% of the
average undeformed diameter. Figure 2c illustrates
how the longitudinal axis of the cell, measured at the
center of the channel, changes with different channel
widths. Experimental and simulated longitudinal axes
typically differ not more than 10–15%. During such
large deformation, the RBC membrane surface area
and volume are assumed to be constant in our DPD
model. However, the model allows for local area
changes during passage through the channel. The
contours presented in Fig. 2b show the evolution of
such local gradients in area expansion. These results
indicate that, for the smallest length scales, the leading
edge of the cell deforms significantly as the cell enters

the constriction and deforms further as the cell tra-
verses the channel. As expected, little area expansion is
seen during flow through the 2.7 lm high 9 6 lm wide
channel. The local stretch of the underlying spectrin
network scales with the square root of local area
expansion. Therefore, this information may be used to
estimate the maximum stretch of the spectrin network
at any point during this traversal process. This result is
shown in Fig. 2d for the channel widths used in the
experiments. For the smallest width channels, the
maximum stretch increases to k " 1:6:

In Fig. 2e, we compare these shape characteristics to
the results of other meso-scale modeling approaches,
such as the multiparticle collision dynamics (MPC)
models presented by McWhirter et al.15 Here, the
deviation of the RBC shape from that of a sphere is
quantified by its average asphericity Æaæ, where Æaæ = 0
for a sphere and Æaæ = 0.15 for an undeformed disco-
cyte. In larger vessels, the asphericity approaches 0.05
as the cell assumes its well-known parachute-like
shape.15 Our DPD scheme, when used to model flow in
larger vessels, indicates a similar trend as shown in
Fig. 2e. However, in the narrowly constricted chan-
nels, the average asphericity increases significantly
greater than previously known. Thus, our computa-
tional model is capable of capturing a range of shape
deviations in large and small vessels, which correlate
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FIGURE 2. Shape characteristics of RBC traversal across microfluidic channels: (a) experimental (left) and simulated (right)
images of erythrocyte traversal across a 4 lm wide, 30 lm long, 2:7 lm high channel at 22 !C and an applied pressure difference of
0:085 kPa; (b) local area expansion contours for an RBC traversing a 3 lm and 6 lm wide (h 5 2.7 lm) channel under
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well with experimental measurements for the smallest
length scales.

Pressure–Velocity Relationship

Figure 3a shows pressure–velocity relationships for
RBC flow across channels of different cross-sectional
dimensions. Local average pressure differences are
inferred from the velocity of neutrally buoyant beads,
which are mixed with our RBC suspensions. The
experimentally measured average bead velocities are
translated to pressure differences using known ana-
lytical solutions for flow in rectangular ducts as well as
the results of a computational fluid dynamics study.
(Complete details of these steps are provided in the
Supplemental Material.) Average cell velocity mea-
surements are taken between the point just prior to the
channel entrance (the first frame in Fig. 2a) and the
point at which the cell exits the channel (the final frame
in Fig. 2a). As such, the time scale examined in these
studies is a combination of entrance times, traversal,
and exit times. These individual time scales are plotted
in Fig. 3b.

The DPD model adequately captures the scaling
of flow velocity with average pressure difference for
4–6 lm wide channels. The significant overlap in the
experimental data for 5–6 lm wide channels can be
attributed largely to variations in cell size and small
variations in channel geometry introduced during their
microfabrication. The relative effects of these varia-
tions are the subject of a sensitivity study we present at
the end of this section; the variations are illustrated
here as error bars on DPD simulation results for select
cases. For the smallest channel width of 3 lm, the
experimentally measured velocities are as much as half
that predicted by the model. This may be attributed to
several factors, including non-specific adhesive inter-
actions between the cell membrane and the channel
wall due to increased contact. Furthermore, this
3! 2:7 lm ð8:1 lm2Þ cross-section approaches the
theoretical 2:8 lm diameter ð6:16 lm2Þ limit for RBC
transit of axisymmetric pores.5 Therefore, very small
variations in channel height (due, for example, to
channel swelling/shrinking due to small variations in
temperature and humidity) can have significant effects.
Thus, this geometry may be taken as a practical limit
of the current modeling scheme for the chosen level of
discretization (500 ‘‘coarse-grained’’ nodes, see Pivkin
and Karniadakis21). In addition, while the total tra-
versal time scales are in close agreement, the data
presented in Fig. 3b indicates that the DPD model
typically over-predicts the relative amount of time the
cell requires to enter the channel constriction. This can
be attributed in part to the use of periodic inlet/outlet
boundary conditions, which do not allow for an

accurate characterization of the incoming fluid
momentum. This is clear when examining the sensi-
tivity of the simulated time scales to the size of the
modeling domain. Doubling the length of the wide part
of the channel (results noted in Fig. 3b) effectively
increases the momentum of the fluid and cell as the cell
enters the channel, leading to a decrease of the char-
acteristic entrance time but having little effect on the
transit and exit times. It is also possible that there is a
physical basis for this discrepancy between relative
contributions of the cell entrance time. For example, at
such high rates of deformation (up to 200% overall
stretch in approximately 0.2 s), the RBC might
undergo an active reorganization of its spectrin
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Flow through stenotic channel

noticed that parachutes are also stable for weak or no conne-
ment when the curvature of the parabolic ow in the center
exceeds a critical value.9,36 At weak connements, we nd off-
center slippers with tank-treading motion for higher ow rates,
and discocytes with tumbling motion for lower ow rates. Both
regions arise from the transition from strongly deformed
parachute to more relaxed (discocyte and slipper) shapes,
similar to the transition seen in the diagram for 2D vesicles.9,10

However, the boundary between slippers and discocytes is
governed by the critical shear rate _g*

ttt of the tumbling-to-tank-
treading transition of a RBC;37,38 tumbling occurs off the tube
center, when the local shear rate drops below _g*

ttt. In the case of
small viscosity contrast between inner and outer uids (equal to
unity here), the origin of the tumbling-to-tank-treading transi-
tion is the anisotropic shape of the spectrin network, which
requires stretching deformation in the tank-treading state,37,38

and therefore cannot be captured by simulations of 2D vesicles.
In addition, near the tumbling-slipper boundary, tumbling

motion of a RBC exhibits a noticeable orbital dri so that the
tumbling axis is not xed and oscillates in the vorticity direction
(see Movie S2†). This effect is qualitatively similar to a rolling
motion (also called kayaking) found in experiments39 and in
simulations40 of a RBC in shear ow. Orbital oscillations of a
tumbling RBC are attributed to local membrane stretching
deformation due to small membrane displacements whose
effect becomes reduced if a RBC transits to a rolling motion.39

At small shear rates _g*, there also exists a so-called snaking
region, rst observed for 2D vesicles in ref. 9 and 10, where a
RBC performs a periodic oscillatory motion near the center line.
In contrast to snaking in 2D, the snaking motion in 3D is fully
three dimensional and exhibits an orbital dri (see Movie S1†),
which is similar to that for a RBC rolling motion in shear ow
occurring in a range of shear rates between RBC tumbling and
tank-treading.39,40 The origin of orbital oscillations in the
snaking regime might be similar to that for a rolling RBC;
however, this issue requires a more detailed investigation. Note
that at very low _g* ( kBT/kr, the rotational diffusion of RBCs
becomes important, and RBC dynamics is characterized by
random cell orientation. Another striking difference between
the phase diagrams in Fig. 2 and in ref. 9 and 10 is that at high
connements the “conned slipper” found in the 2D vesicle
simulations is suppressed in 3D. The conned slipper in 2D
found for c T 0.6 is qualitatively similar to a slipper at low
connements, which is also called “unconned slipper” in ref. 9
and 10, since this vesicle state exists in unbound parabolic ow.
Note that the regions of conned and unconned slippers in 2D
have no common boundary. The absence of slippers at high
connements in 3D is due to the cylindrical shape of a channel,
which would cause the conned slipper to conform to the wall
curvature, which is energetically unfavorable.

To better understand the differences between various RBC
states, we now analyze the cell orientational angle, displace-
ment from the channel center, and asphericity. The RBC
orientational angle is dened as an angle between the eigen-
vector of the gyration tensor corresponding to the smallest
eigenvalue (RBC thickness) and the tube axis. The RBC
displacement r is computed as a distance between the RBC
center of mass and the tube center. The RBC asphericity char-
acterizes the deviation of a cell from a spherical shape and is
dened as [(l1 ! l2)2 + (l2 ! l3)2 + (l3 ! l1)2]/(2Rg

4), where l1 #
l2 # l3 are the eigenvalues of the gyration tensor and Rg

2 ¼ l1 +

Fig. 1 Simulation snapshots of a RBC in flow (from left to right) for c ¼ 0.58. (a) A biconcave RBC shape at _g* ¼ 5; (b) an off-center slipper cell
shape at _g* ¼ 24.8; and (c) a parachute shape at _g* ¼ 59.6. See also Movies S1–S4.†

Fig. 2 A phase diagram for G ¼ 2662 (Yr ¼ 18.9# 10!6 N m!1, kr ¼ 3#
10!19 J), which mimics average membrane properties of a healthy
RBC. The plot shows various RBC dynamics states depending on the
flow strength characterized by _g* and the confinement c. The symbols
depict performed simulations, with the RBC states: parachute (green
circles), slipper (brown squares), tumbling (red diamonds) and snaking
(blue stars) discocytes. The phase-boundary lines are drawn sche-
matically to guide the eye.

4262 | Soft Matter, 2014, 10, 4258–4267 This journal is © The Royal Society of Chemistry 2014
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shear flow, as it leads to a transition from tank-treading to tumbling with increasing viscosity20,21. By altering 
the viscosity contrast, we demonstrate the importance of RBC dynamics within the device when attempting 
to use DLD as a technique for RBC separation. In addition to viscosity contrast C =  5 between the intra- and 
extra-cellular fluids, simulations and experiments were carried out at C =  1 and C =  0.25 for the thick device, and 
C =  2 for the thin device. In the experiments, the viscosity of the outer fluid is increased by adding dextran at var-
ious concentrations. Note that the different choice of C =  1 and C =  2 for the thick and thin devices, respectively, 
is due to pronounced adsorption (or sticking) of RBCs to the upper and lower walls, which occurs in the confined 
environment of the thin device for the higher dextran concentrations required to reach a viscosity contrast less 
than C =  2.

The lateral displacement per post l of the trajectories under these additional viscosity contrast conditions are 
shown in Figs 3(b) and 4(b). Simulations were first used to predict which sections display interesting behavior, 
and these sections were then investigated experimentally in order to validate results. For both C =  1 and C =  0.25 
in sections 1–4 of the thick device, the change in viscosity contrast completely inhibits lane-swapping events. 
This substantial shift away from behavior in the physiological case of C =  5 may be attributed to a change in RBC 
dynamics which will be discussed later. In subsequent sections, there is a transition to almost neutral zig-zag 
modes, with a gradually increasing tendency to adopt an average negative lateral displacement towards the later 
sections of the device. In the sections following the transition, the zig-zag modes at C =  0.25 are slightly more 
positive than those for the C =  1, but the l values for both cases converge in the last two sections of the device. This 
suggests a small difference in dynamic behavior which is only relevant in deciding the lane swapping frequency in 
the middle sections of the device. Generally, we see good agreement between experimental and simulated results, 
the main differences occur in the later sections of the device which we attribute to a distortion of the flow field 
when in close proximity to the device outlet. The difference between the trajectories in the early sections at viscos-
ity contrast C =  5 compared with those at C =  1 and C =  0.25 demonstrates the importance of viscosity contrast 
for RBC sorting since it may dramatically alter the transit modes.

Figure 4(b) shows that the viscosity contrast also plays an important role in the transit of RBCs through 
the thin device. For a viscosity contrast of C =  1, the simulated RBC trajectories undergo a transition from the 
displacement mode to zig-zag mode only at section 10, while for C =  5 the transition occurs earlier, at section 8. 
Additionally, for the intermediate viscosity contrast of C =  2, the transition to zig-zag modes occurs in the same 
section as for C =  5. Well-defined zig-zag modes follow the transition, with a region of positive zig-zag modes 
in sections 8–10. The l values in sections 8–10 are more positive than for the physiological contrast C =  5, and 
represent a behavior intermediate between the C =  5 and simulated C =  1 values. Generally, we see good agree-
ment between simulated and experimental results, as again we have to consider the potential effects of RBC-size 
variations which we already presented in Fig. 5.

There are also differences in the average lateral displacement per post encounter for the viscosity contrasts 
C =  1 and C = 2–5 in later sections of the device, which are especially pronounced in section 11. These results 
suggest that changes in RBC dynamics and deformation are still relevant in the thin device and that their effects 
are most pronounced on well-established zig-zag modes. As a conclusion, our results suggest that the viscosity 
contrast could be used as a targeted separation parameter by itself without other changes in RBC properties.

RBC dynamics in DLDs. The dependence of the transit modes of RBCs traveling through DLD obstacle 
arrays on viscosity contrast has revealed the importance of RBC dynamics. Single RBCs in shear flow have been 
shown experimentally to tumble at low shear rates and tank-tread at high shear rates18,19,22,23. Note that all these 
experiments have been performed under the conditions where the viscosity of suspending media was larger than 
that of the RBC cytosol. However, recent experiments20 and simulations21 indicate that the physiological viscosity 
contrast of η η= =C / 5i o  suppresses the tank-treading motion of RBCs, leading to the preference for RBC tum-
bling. In case of 1 –C 2 3, RBC membrane tank-treading is possible and the transition between tumbling and 
tank-treading for an increasing shear rate is attributed to the existence of a RBC minimum energy state, related to 
the weakly anisotropic shape of the spectrin network, such that the RBC has to exceed a certain energy barrier in 

Figure 6. Stroboscopic images of RBCs in section 2, taken from simulations and experiments. (a) RBC lane 
swapping is promoted by tumbling when η η= =C / 5i o . (b) Tank-treading type dynamics occurs at C =  1 and 
the RBC favors the displacement mode.

Henry et al., "Sorting cells by their dynamical properties", Scientific 
Reports, 2016.

Flow in microfluidics device (DLD)

SINGLE CELLS

Movie S3. Simulation of MS-RBCs under shear flow at H ¼ 0.1. High shear rate of _γ ¼ 4.0 s−1 results in essentially no rouleaux structures. Normal movie
speed.

Movie S3 (MOV)

Movie S4. Simulation for computing themaximum force needed to break up two aggregated RBCs. The breakup pulling force in the normal direction is equal
to about 7 pN with a uniform RBC-RBC separation.

Movie S4 (MOV)

Movie S5. Simulation for computing themaximum force needed to break up two aggregated RBCs. The breakup pulling force in the normal direction is equal
to about 3 pN with a peeling breakup.

Movie S5 (MOV)

Fedosov et al. www.pnas.org/cgi/doi/10.1073/pnas.1101210108 7 of 8

and without aggregation, rouleaux formation and magnitude of
aggregation forces, yield stress, and themicro-to-macro link in ES.

In Silico Versus in Vitro Blood Viscosity. The experimental bulk visc-
osities of well-prepared nonaggregating ES and of whole blood
were measured for various hematocrit values (H) at physiological
temperature 37 °C in refs. 1–3. The blood viscosity in our work
was derived from simulations of plane Couette flow using the
Lees–Edwards periodic boundary conditions for both the MS-
RBC and the LD-RBC suspensions. The shear rate and the cell
density in our simulations were verified to be spatially uniform on
average over time, and the viscosities were computed, with and
without aggregation, as functions of the shear rate over the range
0.005–1;000.0 s−1 (this corresponds to the range of dimensionless
shear rate or capillary number η_γD∕Y between2.5 × 10−6and 0.5,
where η is the solvent viscosity, D is the RBC diameter, and Y is
the membrane Young’s modulus). Fig. 1A shows the relative visc-
osity (RBC suspension viscosity normalized by the viscosity of the
suspending media) against shear rate at hematocrit H ¼ 45%.
The MS-RBC model predictions are in excellent agreement with
the blood viscosities measured in three different laboratories
(1–3). The ES model, consisting only of RBCs in suspension,
clearly captures the effect of aggregation on the viscosity at low
shear rates and suggests that cells and molecules other than RBCs
have little effect on the viscosity, at least under healthy condi-
tions. The LD-RBC model underestimates somewhat the experi-
mental data, but is generally in good agreement over the whole
range of shear rates, and again demonstrates the effect of aggre-
gation. The agreement is remarkable in view of the simplicity and
economy of that model. Errors in simulated viscosities shown in
Fig. 1A are approximately 30% for the shear rate _γ ¼ 0.014 s−1
and decrease rapidly with the increase of _γ, becoming about 1–3%
at high shear rates.

The dependence of whole blood and ES viscosity on hemato-
crit is demonstrated in Fig. 1B. The curves are measured viscos-
ities as a function of H at constant shear rate by Chien et al. (2),
and the points are calculated with the LD-RBC model. The plot
clearly shows how the latter captures the (hematocrit) H depen-
dence on viscosity, and that the model again demonstrates aggre-
gation to be crucial for a quantitative account of the difference
between the viscosity of whole blood and that of washed ES.

Recent attempts in modeling (24, 25) of two-cell and multiple-cell
aggregates (17) simulated only their flow behavior. Specifically, in
ref. 17, the link of viscosity to RBC aggregation was investigated,
but the viscosity predictions failed to capture the steep rise of that
function at low shear rates.

Reversible Rouleaux Formation.The formation of rouleaux in blood
occurs in equilibrium and at sufficiently small shear rates,
whereas large shear rates result in immediate dispersion of fragile
RBC structures. Experimentally, aggregation is observed (1, 4,
26) to be a two-step process: the formation of a few RBCs into
short linear stacks, followed by their coalescence into long linear
and branched rouleaux. As the shear rate increases, the large
rouleaux break up into smaller ones, and at higher values, the
suspension ultimately becomes one of monodispersed RBCs (27).
This process then reverses as the shear rate is decreased.

This typical formation–destruction behavior of rouleaux is con-
sistent with the results of our simulations using both the LD-RBC
and the MS-RBC models as shown in Fig. 2 (see SI Text). At low
shear rates (left frames), the initially dispersed RBCs aggregate
into large rouleaux of up to about 20 RBCs; as the shear rate is
increased to moderate values (middle frames), these structures
are reduced in size until at high rates (right frames) they are dis-
persed almost completely into individual RBCs. Reversibility is
demonstrated by reduction of the shear rate to the formation
value, at which point individual RBCs begin to reaggregate.

Yield Stress and Aggregation. Whole blood is believed to exhibit a
yield stress (i.e., a threshold stress for flow to begin) (1, 10, 11),
but this has been difficult to confirm experimentally or theoreti-
cally. The most reproducible yield stresses for whole blood are
those extrapolated to zero shear rate from viscometric data on
the basis of Casson’s equation given by (28)

τ1∕2xy ¼ τ1∕2y þ η1∕2_γ1∕2; [1]

where τy is a yield stress and η is the suspension viscosity at large _γ.
Note that when the yield stress τy vanishes, Eq. 1 reduces to the
Newtonian liquid. The assumptions of Casson’s relation appear
to hold at least at low shear rates, which was successfully demon-
strated for pigment-oil suspensions (28), Chinese ovary hamster

A B 2
2

Fig. 1. Validation of simulation results for whole blood and Ringer ES. (A) Plot of non-Newtonian relative viscosity (the cell suspension viscosity normalized by
the solvent viscosity) as a function of shear rate at H ¼ 45% and 37 °C. Simulated curves of this work, as indicated and experimental points as follows: Whole
blood: green crosses, Merril et al. (1); black circles, Chien et al. (2; black squares, Skalak et al. (3). Ringer ES: red circles, Chien et al. (2); red squares, Skalak et al.
(3). Error bars on the MS-RBC viscosity curves reflect one standard deviation and each point on the simulated curves corresponds to a single simulation. (B) Plot
of relative viscosity as a function of hematocrit (H) at shear rates 0.052 (black) and 5.20 (blue) s−1: simulated (LD-RBC points), and Chien et al. (2) experimental
fits for whole blood (solid lines), and Ringer ES (dashed lines).

Fedosov et al. PNAS ∣ July 19, 2011 ∣ vol. 108 ∣ no. 29 ∣ 11773
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The recovery length is estimated to be DL E 60 mm downstream
of the constriction, and is expected to be longer as flow rate
increases.

Fig. 3 shows the spatial distribution of RBCs at the inlet, in
the middle and downstream of a 75% constriction. The profiles
downstream are considered at the outlet of constriction and at
x = 160 mm. This result shows that geometrical constriction
coupled with deformability of RBCs can enhance the cell-free
layer (CFL) for a fixed flow rate (e.g., CFL thickness d E 2.5
micron at inlet as opposed to E5.0 micron at outlet). Similarly,
geometrical focusing of RBCs towards the center of the micro-
channel was observed experimentally by Faivre et al.15 As cells
move further downstream of the channel, the upstream CFL
thickness will be recovered due to the RBC pair collisions and
lateral migration. We also note that RBC concentration drops at
the center of constriction, which is caused by the increase in
RBC velocities. Further, the CFL thickness drops as the channel
narrows down (d E 0.4 micron at the throat of the constriction).
In the following sections we present the results on the platelet
distributions and transport with the presence of the constriction.

3.1 Cell distributions

To obtain the profiles in Fig. 3–8, first DPD simulations were
performed long enough (for t* E 4000 DPD time units or E0.72 s)
to achieve steady state conditions, where no more variations in

velocity and hematocrit profiles were detected. Sampling of
RBCs and platelets concentration was performed for the last
Dt* E 400, and these time-averaged concentration profiles

Fig. 2 (a) Snapshot of the blood simulation in a microchannel with 75% degree constriction. The channel height is 30 mm, and blood is at 25%
hematocrit. Red cells represent the deformable red blood cells and black ellipsoidal cells are nondeformable platelets in their resting form. Following
Yazdani et al.,37 the driving body force is the non-uniform pressure gradient derived from numerical solution Navier–Stokes equation at Re = 0.35 for the
same geometry (video for this simulation is provided in ESI†). (b) Left: Velocity contours and streamlines for the flow of blood in the 75%-constriction
microchannel; right: profiles of streamwise velocity component at five different locations along the microchannel length specified by the same colors. A
plug-like velocity profile is achieved for the blood except at the throat.

Fig. 3 Profiles of RBC concentration (hematocrit) at different locations
along the 75% constriction (inlet, middle and outlet) as well as further
downstream of the constriction (red dashed line considered at x = 160 mm).
Here, the average hematocrit of blood is 25%.
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Platelet transport

To look in more detail into the transitions between
different states, we have computed RBC total energy, as
shown in Fig. 3(a) for a RBC with λ ¼ 5 from YALES2BIO
simulations. As expected, the RBC total energy is a
monotonically increasing function of shear rate, because
the cell gets more and more deformed by the shear forces.
However, we observe effective power laws with decreasing
exponents as we go from one dynamic state to the other,
as shown by the lines in Fig. 3(a). This implies that RBCs
adopt an energetically more favorable dynamics, even
though no energy minimum principles can be invoked
here. Therefore, there are no simple energy arguments
which could explain the existence of the shapes and
transitions at specific _γ".
To identify transition mechanisms between different

shapes and dynamics, we monitor RBC behavior for

increasing _γ". First, a TB-RBC in shear flow transits to
a rolling discocyte at low shear rates. Here, a precession in
the TB axis (i.e., the TB axis does not remain within the
shear plane) is first observed, followed by a complete
alignment of the RBC axis with the vorticity direction as
the shear rate is increased [10–12]. This transition has been
described for λ < 1 [10], and therefore, it is expected to
have the same origin for λ larger than unity.
As the shear rate is further increased at λ ¼ 5, a rolling

discocyte transits to a rolling stomatocyte. This transition
might occur due to membrane buckling, but it is difficult to
observe and confirm this effect directly in shear flow.
Therefore, we consider two types of cell deformation
(stretching and compression), which occur in shear flow.
To mimic the elongational component of the flow, a RBC is
stretched (without flow) [28,33] similar to the RBC
deformation by optical tweezers [39,40]. Even for very
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FIG. 2. Shapes and dynamics of RBCs in shear flow as a
function of _γ" and λ. Different areas, representing rolling
discocyte, rolling stomatocyte, TB stomatocyte, TT, and multi-
lobes, are based on simulation results, where dashed lines serve as
a guide to the eyes. Two sets of simulations are denoted by
triangles (SDPD) and circles (YALES2BIO). The colors indicate
RBC shape or dynamics. All simulation data are for Föppl-von
Kármán number α ¼ μD2=κ ¼ 680. The two sets of circles at
λ ≈ 5.3 and λ ≈ 8.3 correspond to simulations at λ ¼ 5 and λ ¼ 8,
respectively, and are just shifted up in the diagram for visual
clarity. The square symbols (λ ≈ 8) correspond to experiments
from Ref. [22], the plus symbols (λ ≤ 1) to data from Ref. [10],
and the crosses (λ < 1) to data from Ref. [38]. Diamond symbols
(λ ≈ 1 and λ ≈ 5—shifted down to 4.7) represent most probable
states from our microfluidic experiments, since no unique state,
but a distribution of different states is obtained for fixed flow
conditions, see distributions in Fig. S1. All experimental shear
rates are normalized by τ based on average RBC properties (i.e.,
D ¼ 6.5 × 10−6 m and μ ¼ 4.8 × 10−6 N=m).

FIG. 3. Transition between different shapes and dynamics at
λ ¼ 5. (a) Change in RBC total energy, including shear and
bending elasticity, from YALES2BIO simulations as a function of
shear rate. (b) Change in shear elasticity and bending energies
of a RBC compressed between two plates in SDPD simulations.
The cell buckles from a discocyte to a stomatocyte shape, when
the distance between plates becomes approximately 6.3 μm (see
movie S5).

PHYSICAL REVIEW LETTERS 121, 118103 (2018)

118103-3

Mauer et al., "Flow-Induced Transitions of Red Blood Cell Shapes under 
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Model Parameters: Different experiments - different model 

In this study, we integrate RBC models and DPD flow simulations with experimental data under a Bayesian UQ
framework. We infer the posterior distributions for the RBC model parameters given multiple experimental data
sets for cells under stretching and in shear flow. We construct single-level and hierarchical Bayesian models, and
compare their posterior distributions to assess the transferability of the model parameters between different types of
experiments. Following the Bayesian framework, we propagate the parameter uncertainty in the model output and
compare the single-level and hierarchical Bayesian model predictions. Finally, we test the predictive capabilities
of the Bayesian models on unseen data, for the prediction of the equilibrium shape thickness and the inclination
angle of RBCs in shear flow. The paper is structured as follows: Section 2 introduces the computational methods
related to the RBC and fluid modeling, the UQ framework, the Surrogate models used to alleviate the computational
cost, and the computational setups. Sections 3 and 4 present the results of the single-level and hierarchical Bayesian
inference respectively. Section 4.2 discusses the transferability of the model between experiments, and Section 5
gives a summary and concluding remarks.

Table 1. Summary of RBC mechanical properties used in the literature. T is the temperature, µ0 is the shear
modulus, kb is the bending rigidity, hm/hHb is the ratio of membrane-to-hemoglobin viscosities. Parameters that
were not included in the employed models are denoted with a dash (�). If no information was provided, we label the
corresponding entry with n.a., i.e. not available.

Application T (�C) µ0 (µN/m) kb (10�19 J) hm/hHb
single RBC

Stretching20 23 6.30 2.40 �
TTC and shear flow19 23 6.30 4.80 4.4
Cylindrical µ-channel flow24 37 4.83 3.00 n.a.
Equilibrium70 23 2.42 1.43 22.2
DLD device34 37 4.83 3.00 n.a.
Dynamic morphologies in shear44 37 4.83 3.00 n.a.
Flow-induced shape transitions49 37 4.80 3.00 0

multiple RBCs
Cell-free layer21 23 4.59 2.40 18.3
Pf-malaria biophysics22 37 6.30 2.40 n.a.
Blood viscosity prediction23 37 4.82 3.00 12.0
Platelet transport76 27 4.50 2.98 n.a.

2 Methods

We consider the coarse-grained RBC model described in Section 2.1.1. This model has seven parameters, of which
two are related to global area and volume constraints. Their values are set to be large enough such that these
constrains are met24. The effect of the local area constraint is not studied in order to reduce the computational cost
associated with the introduction of an additional parameter in the UQ, and we assume local area incompressibility as
well. The remaining four parameters are the equilibrium-to-maximum spring length (l0 j/lm j ), the spring constant
(ks), the bending energy coefficient (kb) and the membrane viscosity (hm). These parameters can be grouped into
four dimensionless quantities, which we specify in Section 2.4. The posterior distribution for these quantities is
inferred through the Bayesian UQ framework as described in Section 2.2. The inference is performed using sampling
methods, involving a large number of model evaluations. Due to the high computational cost associated with each
model evaluation, we construct an offline surrogate for the RBC model using Gaussian Processes (GP) (Section 2.3).
The experimental data sets and details regarding the simulation setups are described in Section 2.4.
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Gaussian Processes

Discretize the parameter space ϑ(i), i = 1,…, M

tM = (t1, …, tM)Run the computational model on            with input          and get the output   ϑ(i) x(i)

DM = {t1, …, tM, ζ1, …, ζM}Set where ζi = (x(i), ϑ(i))

The prediction               of the GP model for a new             given the data            is a random variabletM+1 ζM+1 DM

p(tM+1, DM) = 𝒩 ( tM+1 | m(DM), σ2(DM) )

m(DM) = k⊤
M+1 C−1

M tm

σ2(DM) = cM+1 − k⊤
M+1 C−1

M kM+1

[ k⊤
M+1 ]i

= κ(ζi, ζM+1), i = 1,…, M

[ C ]i,j
= κ(ζi, ζj), i, j = 1,…, M

cM+1 = κ(ζM+1, ζM=1)
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korali
Design Principles
• Modularity. Korali is designed as a completely modular software.
• Scalability. We have designed Korali's problem definition interface to remain agnostic about its execution platform.
• High-Throughput. Complete utilisation of the given computational resources.
• High-Performance. Supports the execution of parallel (MPI, UPC++) and GPU-based (CUDA) computational models.

coming soon in https://github.com/cselab/G. Arampatzis, S. Martin, D. Wälchli

an HPC framework for optimization, sampling and Bayesian UQ 
of large-scale computational models

Sampling (TMCMC) Optimization (CMA-ES)

https://www.cse-lab.ethz.ch/skorali-jws815jpgw/usage/introduction/
https://www.cse-lab.ethz.ch/skorali-jws815jpgw/usage/conduits/sequential/
https://www.cse-lab.ethz.ch/skorali-jws815jpgw/usage/conduits/upcxx/
https://www.cse-lab.ethz.ch/skorali-jws815jpgw/usage/conduits/upcxx/
https://github.com/cselab/


Stretching experiment
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Figure 6 : Images of the red cell being stretched from 0 pN to 193 pN. The images in the left column are obtained
from experimental video photography whereas the images in the center column (top view) and in the right column
(half model 3D view) correspond to large deformation computational simulation of the biconcave red cell (with µ 0

= 7.3 µ N/m, µ f = 19.2 µ N/m). The middle column shows a plan view of the stretched biconcave cell undergoing
large deformation at the forces indicated on the left. The predicted shape changes are in reasonable agreement with
observations. The color contours in the middle column represent spatial variation of constant maximum principal
strain. The right column shows one half of the full three-dimensional shape of the cell at different imposed forces;
here, the membrane was assumed to contain a fluid, which preserved the internal volume.

respectively). Again the contact size dc was taken to be
2 µ m. Simulations capture experimental trends over the
range of 0–88 pN load well, while they deviate towards
the softer side gradually after 88 pN load. Alternatively,
if we invoke the constitutive response given in eq. (3)
with constant area for the cell membrane in our three-
dimensional computational simulation, a fixed value of
the membrane shear modulus, µ 0 = µ l = µ f =5.5 µ N/m
appears to match the average values of our experimental
observations of variations in axial and transverse diame-
ter of the cell with the applied force within the 0-88 pN
range (see Fig. 7). In the computational images, the exis-
tence of the cytosol inside the membrane prevents contact
between the upper and lower surfaces. From the exper-
imental evidence and computational results, significant
membrane folding was often observed similar to those
shown in Fig. 6 (left column and right column).

Comparisons of predicted and measured changes in axial

and transverse diameters of the cell using the higher or-
der Yeoh model in eq. (4b) are plotted in Fig. 8 for µ 0

= 5.3, 7.3 and 11.3 µ N/m (with µ f = 13.9, 19.2 and 29.6
µ N/m, respectively). Again the contact size dc was taken
to be 2 µ m. Simulations capture experimental trends over
the entire range of experimental data well, including the
small deformation range and the error bars. Comparing
Figs. 7 and 8, it is seen that the higher order model ap-
parently provides a much better match with experiments
at high stretching ratios than the first order hyperelastic
model.

The in-plane shear modulus µ 0 = 5.3–11.3 µ N/m, and µ l

= 2.4–5.0 µ N/m estimated from the experimental results
and simulations reported in this paper are lower than the
earlier values predicated upon higher optical force as-
sumptions. The present corrected values are compara-
ble to the range of 4.0–10 µ N/m reported in the litera-
ture where the estimates have been principally based on
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Figure 3 : Illustration of an optical trap method for cell stretching. Two silica microbeads, each 4.12 µm in diameter,
are non-specifically attached to the red cell at diametrically opposite points. (a) The left bead is anchored to the
surface of the glass slide. The optical image corresponds to the unstrained configuration. (b) The right bead is
trapped using the optical tweezers. While the trapped bead remains stationary, moving the slide and attached left
bead stretches the cell. The optical image shows an example of large deformation of a cell at 193 pN of force.

between the beads (Fig. 4). With the trapped bead height
known, the actual axial cell diameter is calculated. Also,
time dependent properties can be measured from the re-
laxation of the cell after the trapped bead escapes the
trap. By measuring changes in axial and transverse di-
ameters over time as the cell recovers its original shape,
viscoelastic properties can be experimentally probed.

Figure 4 : Optical images of stretch tests show the pro-
jected axial diameter because of a height difference be-
tween trapped and attached beads. With the trapped bead
height known, the actual axial cell diameter can be cal-
culated.

3 Modeling of Deformation

The spectrin network which underlies the phospholipid
bilayer of the human red blood cell is generally consid-
ered to impart shear resistance to the cell membrane al-
though the bilayer itself has little resistance to shear de-
formation. As reviewed by Dao et al. (2003), the ef-
fective cell membrane which comprises the phospholipid
bilayer and the spectrin network is usually modelled as
an incompressible solid (Evans, 1973; Evans and Skalak,
1980) where the membrane shear stress Ts (expressed in
units of force per unit length) is related to the principal
stretch ratios, λ1 and λ2, as

Ts = 2µγs =
µ
2

(
λ2

1 −λ2
2
)
, (3a)

Ts =
1
2

(T1−T2) and γs ≡
1
2

(ε1 −ε2) =
1
4

(
λ2

1 −λ2
2
)

(3b)

λ1λ2 = 1 (3c)

where T1 and T2 are the in-plane principal membrane
stresses, ε1 and ε2 are the in-plane principal Green’s
strains of the membrane, µ is the membrane shear mod-
ulus (assumed to be constant and expressed in units of
force per unit length) and γs is the shear strain. The as-
sumption of a constant area for the cell membrane is usu-
ally invoked, as indicated by equation (3c).

Mills et al., "Nonlinear Elastic and Viscoelastic Deformation of the Human Red Blood Cell 
with Optical Tweezers", MCB Tech Science Press, 2004.

Experimental Setup

(a) Stretching data sets used in the inference. (b) Shear flow data sets used in the inference.

(c) Shear flow data sets reporting TTF in the literature.

Figure 2. (a) Experimental data considered for UQ on stretching. (b) Experimental data considered for UQ on
shear flow. Error-bars are omitted for readability but can be found in the corresponding references. The markers
correspond to the data. The y-axis shows the the dimensionless TTF normalized by the TTF of a solid sphere at the
same shear rate, fT T = ( f /ġ)/(4p)�1. The box marked with the dashed line denotes the range of experimental data
used in the inference. (c) Additional shear flow data sets for the TTF found in the literature. Colored markers
correspond to the data sets used in the UQ. (Left) Older data sets reported between 1978-1984. (Right) Recent data
sets reported between 2007-2015. References and details for both stretching and shear data sets are given in Table 2.
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(c) Shear flow data sets reporting TTF in the literature.

Figure 2. (a) Experimental data considered for UQ on stretching. (b) Experimental data considered for UQ on
shear flow. Error-bars are omitted for readability but can be found in the corresponding references. The markers
correspond to the data. The y-axis shows the the dimensionless TTF normalized by the TTF of a solid sphere at the
same shear rate, fT T = ( f /ġ)/(4p)�1. The box marked with the dashed line denotes the range of experimental data
used in the inference. (c) Additional shear flow data sets for the TTF found in the literature. Colored markers
correspond to the data sets used in the UQ. (Left) Older data sets reported between 1978-1984. (Right) Recent data
sets reported between 2007-2015. References and details for both stretching and shear data sets are given in Table 2.
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Shear flow data sets considered in UQ

the TTF of a solid sphere in a simple shear flow, fT T = ( f /ġ)/(4p)�1. Based on evidence in the literature 8, 29, 35, 69,
we assume that the viscosity of the hemoglobin at room temperature is hHb = 10mPas (see SI for details). The ratio
of hemoglobin viscosity to the external solvent viscosity is denoted as l = hHb/h0.

Fig. 2(c) compares experimental data taken from multiple references, including the ones used in the UQ inference (see
Table 2). Data sets from earlier studies performed between 1978-198425, 30, 68, 69 are presented on the left of Fig. 2(c).
These data do not show a clear trend of the TTF with respect to the x-axis, ġh0R0. Additionally, a contradiction
exists between the data of Fischer et al.30 and Tran-Son-Tay68. Fischer et al.30 shows no clear dependence of fT T on
the viscosity ratio l , whereas the data of Tran-Son-Tay68 show that fT T decreases as l increases (see Fig. 13 in 68).
Recent data of Fischer and Korzeniewski29 confirm the trend observed by Tran-Son-Tay68. These data, along with
data from Fischer27 are presented on the right of Fig. 2(c). Details for the extraction of the data from the respective
references are given in the SI.

Table 2. Experimental data considered for the UQ inference.
Reference Year symbol (Fig. 2) Viscosity ratio, l data set ID in UQ

stretching
Mills et al.50 2004 � – ddd1
Suresh et al.67 2005 ⇥ – ddd2

shear flow
Fischer et al.30 1978 ⇤ 0.91 –
Fischer et al.30 1978 � 0.56 ddd3
Fischer et al.30 1978 I 0.32 –
Fischer et al.30 1978 . 0.17 –
Fischer25 1980 4 0.43 ddd4
Tran-Son-Tay68 1983 9 0.50 ddd5
Tran-Son-Tay et al.69 1984 ⌃ 0.29 –
Fischer27 2007 3 0.35 ddd6
Fischer and Korzeniewski29 2015 D 0.78 –
Fischer and Korzeniewski29 2015 7 0.35 ddd7
Fischer and Korzeniewski29 2015 / 0.19 –
Fischer and Korzeniewski29 2015 O 0.09 –

2.4.2 RBC simulations

The simulations are performed with YMeRo⇤, a high-throughput open-source software with kernels thoroughly
optimized for GPUs, aimed at microrheology simulations using state-of-the-art DPD models62. Three different types
of simulations are performed: stretching, tank-treading and shape equilibration.

To describe the relation between different energy contributions present in the membrane model, we construct the
following four dimensionless quantities:

Q1 =
l0

lmax
, Q2 =

µ0R2
0

kb
, Q3 =

hm

hHb
, Q4 =

h2
Hb

µ0rR0
(25)

where Q1 is a length scale ratio, Q2 describes the ratio of the elastic to bending energy, Q3 is a viscosity ratio
between the membrane and the inner solvent viscosities and Q4 describes the relative importance between viscous
and elastic energy. The viscosities hm, hHb and h0 correspond to the membrane, inner (hemoglobin) and outer
solvent viscosities respectively.

⇤https://github.com/cselab/YMeRo
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Fischer and Schmid-Schönbein. "Tank tread motion of red cell membranes in 
viscometric flow: behavior of intracellular and extracellular markers (with film)." Red 
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Fig. 9. Photomontage from a motion picture of a single RBC in viscometric flow. Tank treading 
of the membrane is shown by the motion of a Latex marker. The motion is visualized by drawing 
a connecting line between markers in subsequent pictures. Shear rate = 140/s, viscosity of continuous 
phase = 18 cP, time interval =42 ms 

Fig. 10. Tank treading frequency v of RBC's suspended in continuous phases of different viscosities 
as a function of shear rate Yo 

cannot yet be determined. Furthermore, the photographs show that for any 
given continuous phase viscosity the angle of inclination is minimum at both 
very low and very high shear rates and maximum at intermediate shear rates 
and/or elongations; in other words in the strongly elongated cells the angle 
of inclination falls with increasing shear rate. This is at present under investiga-
tion. 

The fact that the angle of inclination decreases with increasing cell elongation 
resembles the established facts about fluid drop behavior [7]. As in fluid drops 
any elongation is only possible by an increase in total surface area, one can 
speculate that in the above mentioned range of elongations, area extensional 
stress within the membrane is no longer negligible. 

The membranes of these ellipsoidally deformed cells show tank tread motion 
[8] (Fig. 9). Figure 10 is a plot of tank treading frequency against shear rate; 
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Tank treading of the membrane is shown by the motion of a Latex marker. The motion is visualized by drawing a 
connecting line between markers in subsequent pictures. Shear rate=140/s. η0=18 mPa.s

top-view
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Hierarchical Bayesian Inference for the RBC model
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Model Transferability: Infer for quantity X - Propagate to quantity Y

4.2.1 Stretching prediction

We first present the predictions of the single level and Hierarchical models for the stretching response. We
demonstrate the results of two uncertainty propagation computations: (i) from shear-flow distributions of single-level
Bayesian models to stretching and (ii) from the new general parameter distribution of the HB model, JJJ new, to
stretching. The results are presented in Fig. 11. Fig. 11(a) shows the worst MAP fit, p(yyynew

st |ddd3,M3), and Fig. 11(b)
the best MAP fit, p(yyynew

st |ddd4,M4) of TTF data, from the respective single-level shear flow models. In both cases the
predictions of the MAP for the axial extension overestimate the experimental data. Additionally, these propagations
are characterized by large uncertainties. We note that the HB model exhibits smaller uncertainty than the classical
model as we have used the shear flow and the stretching data for its calibration. In turn, for the classical model either
one of the data sets has been used and the other is predicted. We find that the posterior prediction of the HB model
gives a better approximation of the data for both extensions and has smaller prediction uncertainty.
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Figure 11. Propagation from single-level model of shear flow (a),(b), and from hierarchical model (c) to stretching,
p(yyynew

sh |di,Mi), i = 1,2,HB. The black dotted line represents the MAP value. The colored areas denote the 99%
(blue), 90% (green), 75% (yellow) and 50% (red) quantiles. Circles correspond to the experimental data.

4.2.2 Tank-treading frequency prediction

The predictions of the single-level stretching models and the hierarchical model for the RBC TTF are shown in
Fig. 12. For the prediction of the TTF from the single level stretching models, we propagate the uncertainties from
all parameters inferred in stretching, namely Q1, Q2, µ0. In addition to these three parameters, the TTF surrogates
also require the values for Q3 and Q4. Since these quantities depend on the viscosity, they only affect the timescale
of the stretching response not the final diameter extensions, and thus were not included in the inference of the
stretching model. However, Q3 and Q4 have an effect on the TTF. When propagating from the stretching model to
the TTF, we set their values as reported in the literature: Q3 = 1223 and Q4 = 19.3634.

The MAP prediction of the single-level stretching models, has a similar trend as the data, however it overestimates
the values of the TTF (Fig. 12(a,b)). Additionally, the 99% quantiles do not include all experimental data points. In
contrast, the MAP prediction of the hierarchical model (Fig. 12(c)) lies within the range of the experimental data
and the 99% quantiles include all experimental data points.

4.2.3 Inclination angle prediction

When RBCs tank-tread, they acquire an inclination angle that was recently shown to vary with respect to the applied
shear rate and solvent viscosity29. We extract data points from the fit of all inclination angle samples provided by
Fischer et al.29 for h0 = 23.9mPas, and propagate the parameter uncertainties of the models to the prediction of the
inclination angle. The propagation of the single-level stretching, single-level TTF and of the hierarchical model for
the prediction of the inclination angle is shown in Fig. 13. All three models seem to under-predict the inclination
angle, with the stretching model having the largest deviation between the MAP prediction and the experimental data
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(Fig. 13(a)). The trend of the experimental data for the decrease of the inclination angle with increasing shear rate is
not captured by any of the three models.
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Figure 13. Propagation from single-level model of (a) stretching, (b) shear flow, and from (c) the hierarchical
model, to the cell inclination angle in shear flow, p(yyynew

f |di,Mi), i = 1,4,HB. The black dotted line represents the
MAP value. The colored areas denote the 99% (blue), 90% (green), 75% (yellow) and 50% (red) quantiles. Circles
correspond to the experimental data.

4.2.4 Equilibrium shape prediction

We present the predictions in terms of the average deviation of the membrane thickness with respect to the maximum
experimental thickness of the RBC at equilibrium, as given by Eq. (26). The results are summarized in Fig. 14. The
results shown for the single-level models are representative for all models trained on the same type of data set. The
deviation from the equilibrium shape can be explained by Q2. As shown in the SI, the smaller the Q2, the larger the
deviation from the equilibrium shape. The marginal distribution based on stretching has high probability at high
values of Q2. This is translated to small errors in the equilibrium shape, shown by the peak around 10% in Fig. 14(a).
The less probable unidentifiable region for lower Q2, generates shapes with larger error, shown by the extension
of the deviation distribution up to 27%. The marginal distribution based on shear is mostly unidentifiable in Q2,
leading to a broader deviation distribution in Fig. 14(b), with higher probability for larger deviations compared to
Fig. 14(a). The hierarchical model has the narrowest distribution due to the bounded posterior for Qnew

2 , and larger
deviation than the stretching data, as the peak in Q2 in the HB model is at a smaller value than in stretching.
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Figure 14. Propagation from single-level model of (a) stretching, (b) shear flow, and from (c) the hierarchical
model, to the average deviation of the RBC thickness at equilibrium from the experimental data,
p(yyynew

eq |di,Mi), i = 1,3,HB. The left and right edges of the boxes denote the limits of the first and third quantiles of
the data. The vertical line inside the box denotes the median. The box whiskers denote the 10th �90th percentiles of
the data.

Figure 15. Marginal posterior probability distributions from the results of the single-level and hierarchical models,
for Q1, Q2 and µ0. Solid black: hierarchical model, p(JJJ new|ddd,MHB). Dashed blue: single-level models for
stretching, p(JJJ i|ddd,Mi), i = 1,2. Dotted red: single-level models for shear, p(JJJ i|ddd,Mi), i = 3 . . .7.

4.2.5 Posterior comparison

Fig. 15 compares the marginal posterior distributions for the dimensionless quantities Q1, Q2 and µ0 which are
common parameters in all models included in this study. We consider the posterior from the single-level models
of stretching, p(JJJ i|ddd,Mi), i = 1,2, of the TTF model, p(JJJ i|ddd,Mi), i = 3 . . .7 and of the hierarchical model,
p(JJJ new|ddd,MHB). For both Q1 and µ0 the posterior from the stretching model is qualitatively different from the
posterior of the TTF model. In the TTF model, the marginal distribution for Q1 is either of uniform shape, or has a
peak towards the lower bound. In contrary, the marginal distributions for the stretching model have two distinct
peaks closer to the higher bound. Qualitative differences in the marginal distribution between the two single-level
models are also observed for µ0. In this case, the stretching and TTF models have a peak closer to the upper and
lower bounds respectively. The marginal distributions for Q2 have a peak towards the lower bound in the TTF model
and no clear peaks in the stretching model. These results suggest that the model is not transferable with respect
to quantities Q1 and µ0 if calibrated only from the data of a single experiment type. If both types of experimental
data are considered under the hierarchical model, then the posterior is broad enough to cover the posteriors of the
single-level inference models.
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model, to the average deviation of the RBC thickness at equilibrium from the experimental data,
p(yyynew

eq |di,Mi), i = 1,3,HB. The left and right edges of the boxes denote the limits of the first and third quantiles of
the data. The vertical line inside the box denotes the median. The box whiskers denote the 10th �90th percentiles of
the data.

Figure 15. Marginal posterior probability distributions from the results of the single-level and hierarchical models,
for Q1, Q2 and µ0. Solid black: hierarchical model, p(JJJ new|ddd,MHB). Dashed blue: single-level models for
stretching, p(JJJ i|ddd,Mi), i = 1,2. Dotted red: single-level models for shear, p(JJJ i|ddd,Mi), i = 3 . . .7.

4.2.5 Posterior comparison

Fig. 15 compares the marginal posterior distributions for the dimensionless quantities Q1, Q2 and µ0 which are
common parameters in all models included in this study. We consider the posterior from the single-level models
of stretching, p(JJJ i|ddd,Mi), i = 1,2, of the TTF model, p(JJJ i|ddd,Mi), i = 3 . . .7 and of the hierarchical model,
p(JJJ new|ddd,MHB). For both Q1 and µ0 the posterior from the stretching model is qualitatively different from the
posterior of the TTF model. In the TTF model, the marginal distribution for Q1 is either of uniform shape, or has a
peak towards the lower bound. In contrary, the marginal distributions for the stretching model have two distinct
peaks closer to the higher bound. Qualitative differences in the marginal distribution between the two single-level
models are also observed for µ0. In this case, the stretching and TTF models have a peak closer to the upper and
lower bounds respectively. The marginal distributions for Q2 have a peak towards the lower bound in the TTF model
and no clear peaks in the stretching model. These results suggest that the model is not transferable with respect
to quantities Q1 and µ0 if calibrated only from the data of a single experiment type. If both types of experimental
data are considered under the hierarchical model, then the posterior is broad enough to cover the posteriors of the
single-level inference models.
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