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Motivation

2

‣ Simulations in Engineering and Life Sciences usually 
involve computationally intensive models (e.g. Molecular Dynamics)

‣ Bayesian inference => large numbers of model evaluations

‣ High Performance Computing (HPC) is a must!

‣ How to exploit HPC architectures for Bayesian UQ+P?
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Example 1: Red Blood Cell model (1/3)
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` = 30(pN), and ⌧⌧⌧1,⌧⌧⌧2,!!!1,!!!2 are the standard deviations of: the
axial ans transverse diameters obtained in the simulation, and
the axial ans transverse diameters obtained in the experiment,
respectively.
This correlation structure shows that 1) the axial and transverse
diameters for a given stretching force are correlated with a co-
e�cient to be inferred, 2) the axial (and transverse) diameters
are correlated between themselves within the correlation length
` computed on the experimental data and then used unchanged.

3.5. Sensitivity analysis

We performed a sensitivity analysis in order to figure out which
parameters are sensitive to the stretching. By sensitivity here
we mean taking partial derivatives of the parameters around the
default value. With this method we found that 2 parameters are
sensitive to the stretching: the maximum spring length l

m

and
the persistence length p. The corresponding pictures are given
in the Appendix.

3.6. Prior and posterior distributions

The information about the prior and the posterior values of the
parameters is given in Table 1, and the calibration results are
depicted in Fig. 4.
Table 1: Prior and posterior information of parameters of the RBC membrane.

Parameter Prior bounds Posterior mean Posterior COV
l

m

[1.05,1.35] 1.17 3.5%
p [1.5,5.5]⇥10-3 3.10⇥10-3 22.6%
�1 [0.1,2.0] 0.68 60.5%
�2 [0.1,2.0] 0.41 66.2%

3.7. Forward uncertainty propagation

We propagated the uncertainty into the diameters predictions us-
ing the posterior samples. The robust posterior predictions are
given on the Figure 5, while Figure 6 gives the 25-75 and 5-95
quantiles of the robust posterior PDFs.

4. High performance computing

1024 samples per generation, 128 GPU nodes on Piz Daint
(CSCS), 15 hours of wall-clock time. CUDA + TORC work-
ers.
The task stealing mechanism is essential for the e�cient man-
agement of the irregular task parallelism exhibited by TMCMC.
This irregularity is attributed to the variable numbers of chains
per generation and steps per chain. The complexity of dealing
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Figure 4: Results of parameter calibration of the RBC membrane parameters
using TMCMC. All samples are taken from the last stage. Diagonal: marginal
distribution of parameters estimated using kernel histograms accompanied by
the Tukey boxplot. Above the diagonal: projection of TMCMC samples of
the posterior distributions of all pairs of 2-d parameter space coloured by log-
likelihood. Below the diagonal: projected densities in 2-d parameter space con-
structed via a bivariate kernel estimate.
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Figure 5: Robust posterior PDFs of axial and transverse RBC diameters in the
stretching experiment.

with this irregularity becomes significantly higher if the execu-
tion time of model evaluations varies. In many cases the exe-
cution time cannot be estimated beforehand because it strongly
depends on the input parameters of the search space where TM-
CMC is applied. Moreover, the execution time depends on the
processing power of the underlying hardware, which can ex-
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Example 1: Red Blood Cell model (2/3)
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Data: stretching experiment (Suresh et al., 2005)

Credit: Suresh et al., 2005

Simulation: uDeviceX https://github.com/uDeviceX/uDeviceX 

Stochastic forward model:

Figure 1: RBC membrane model. Interactions of a single vertex.

Here, the Equation (6) accounts for the bending energy of the
RBC membrane introduced by the triangles (0, n, n + 1) and
(0, n+1, n+2), the Equation (7) accounts for the bending energy
of the RBC membrane introduced by the triangles (0, n, n + 1)
and (n, n+N, n+1), the Equation (8) represents the area conser-
vation constraint, the Equation (9) represents the volume con-
servation constraint, the Equation (10) contains the spring force,
and Equation (11) contains the membrane viscous energy.

3. Uncertainty quantification

3.1. General description and algorithm

In our work we use TMCMC algorithm [1] for sampling from
the posterior distribution.
A brief sketch of the TMCMC algorithm is depicted in Alg. 1.
At the initialization stage, the algorithm selects randomly C1
points which will serve as starting points for the MCMC chains
for the first generation of the algorithm. The posterior evalu-
ation for each point can be performed in parallel, while each
evaluation can require a fixed number (N

r

) of simulations. If
N

r

> 1 then the initialization exhibits two levels of parallelism
that can be fully exploited. Each generation (TMCMC stage) G

involves the processing of C

G

MCMC chains of variable length,
according to the statistics for the set of accepted points produced
by the previous generation.

3.2. Parameters set

In this work we are aiming at calibrating the RBC model pa-
rameters: l

m

, p, �C , k

a

, k

b

, k

v

. The power q is fixed and the
dissipative constant �T is set to be 3�C in consistence with [3].

3.3. Experimental data

We took data on the stretching of a single RBC from [9]. Fig.
2 shows the stretching process for the experiment and the simu-
lation. Fig. 3 demonstrates the axial (AD) and transverse (TD)
diameters of RBCs under stretching.

3.4. Stochastic model

We used a Gaussian noise model to describe the relationship
between the data and simulations results:

D

D

D = M(✓✓✓) + ✏✏✏, ✏✏✏ ⇠ N(0,⌃), (12)

Algorithm 1 TMCMC
Algorithm TMCMC()
// Initialization
✓ = {}
for each randomly selected starting point c = 1, . . . ,C1 do

Compute function value F(c) = Posterior (c);
add c, F(c) to the set ✓

end for
compute statistics for the function values of the set ✓
//Main loop
for each generation g = 2, . . . ,G do

select C

g

starting points from the set ✓
✓ = {}
for each chain c = 1, . . . ,C

g

do
for each step s = 1, . . . , S

c

do
propose next point p

Compute function value F(c, s) = Posterior (p);
accept/reject p, if accepted add it to the set ✓

end for
end for
compute statistics for the function values of the set ✓

end for
return

Function Posterior (point p)
for t = 1, . . . ,N

r

do
perform model evaluation M(p, t)

end for
combine the results and compute F(p)
return F(p)

leased from mature parasites which have not invaded the
RBCs could increase the stiffness of exposed but unin-
fected RBCs [29,41]. Consistent with this expectation,
our experiments show that the average stiffness of Pf-
U-RBC is 8lNm!1 compared to the value of 5.3lNm!1

for H-RBC (see Fig. 8). In the schizont stage, the RBC
has very little deformability in both axial and transverse
directions.

Superimposed on experimental data are simulated
variations of axial and transverse diameters of the cell
using a three-dimensional hyperelastic constitutive mod-
el incorporated into a finite element code. Details of the
model along with descriptions of simulation methods are
presented in Refs. [34,17] in the context of optical tweez-
ers simulations of healthy RBCs. Further computational
simulations of large deformation of healthy RBCs at the
spectrin molecular level are considered in Ref. [36]. Sup-
plementary material S5 summarizes the key features of
computational analysis with additional references where
further details can be found. Videoimages of the three-
dimensional simulations of the deformation of a healthy
RBC and an infected RBC stretched by optical tweezers
are given in supplementary material S6.

3.2. Elastic modulus estimates for RBCs parasitized by P.
falciparum

From the matching of computational results, shown
by the dotted lines in Fig. 7(a) and (b) for the different

infestation stages, with experimental data, the average
shear modulus of the RBC was extracted. Fig. 8 shows
the median value (marked by a small vertical line) and
range of shear modulus values of the parasitized RBCs
and the two control conditions, from the optical tweez-
ers experiments and computational simulations. These
values are based on repeat experiments conducted on
7, 8, 5, 5, and 23 samples for the H-RBC, Pf-U-RBC,
Pf-R-pRBC, Pf-T-pRBC and Pf-S-pRBC conditions,
respectively. Also shown in this figure are the shear
modulus estimated from other independent experimen-
tal techniques involving micropipette aspiration [18]
and laminar shear flow [8] for RBCs parasitized by P.
falciparum. Several observations can be made from the
information shown in Fig. 8 for RBCs infected with P.
falciparum.

(1) The optical tweezers method is capable of providing
the elastic deformation characteristics of the RBCs
schizont stage infection, which prior methods
[8,18,29,30] based on micropipette aspiration and
laminar shear flow could not capture because of
enhanced cell rigidity and increased cell adhesion.

(2) Estimates extracted from the present optical tweez-
ers experiments point to substantially (by up to
three to four times) greater stiffening of the RBCs
from P. falciparum parasitization than previously
anticipated [18]. The elastic shear modulus values
for Pf-R-pRBC, Pf-T-pRBC, and Pf-S-pRBC are

Fig. 6. Optical images of H-RBC, Pf-U-RBC, Pf-R-pRBC, Pf-T-pRBC and Pf-S-pRBC in PBS solution at 25!C: prior to tensile stretching by
optical tweezers (left column), at a constant force of 68 ± 12pN (middle column) and at a constant force of 151 ± 20pN (right column). Note the
presence of the P. falciparum parasite inside the infected RBCs.
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anticipated [18]. The elastic shear modulus values
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leased from mature parasites which have not invaded the
RBCs could increase the stiffness of exposed but unin-
fected RBCs [29,41]. Consistent with this expectation,
our experiments show that the average stiffness of Pf-
U-RBC is 8lNm!1 compared to the value of 5.3lNm!1

for H-RBC (see Fig. 8). In the schizont stage, the RBC
has very little deformability in both axial and transverse
directions.

Superimposed on experimental data are simulated
variations of axial and transverse diameters of the cell
using a three-dimensional hyperelastic constitutive mod-
el incorporated into a finite element code. Details of the
model along with descriptions of simulation methods are
presented in Refs. [34,17] in the context of optical tweez-
ers simulations of healthy RBCs. Further computational
simulations of large deformation of healthy RBCs at the
spectrin molecular level are considered in Ref. [36]. Sup-
plementary material S5 summarizes the key features of
computational analysis with additional references where
further details can be found. Videoimages of the three-
dimensional simulations of the deformation of a healthy
RBC and an infected RBC stretched by optical tweezers
are given in supplementary material S6.

3.2. Elastic modulus estimates for RBCs parasitized by P.
falciparum

From the matching of computational results, shown
by the dotted lines in Fig. 7(a) and (b) for the different

infestation stages, with experimental data, the average
shear modulus of the RBC was extracted. Fig. 8 shows
the median value (marked by a small vertical line) and
range of shear modulus values of the parasitized RBCs
and the two control conditions, from the optical tweez-
ers experiments and computational simulations. These
values are based on repeat experiments conducted on
7, 8, 5, 5, and 23 samples for the H-RBC, Pf-U-RBC,
Pf-R-pRBC, Pf-T-pRBC and Pf-S-pRBC conditions,
respectively. Also shown in this figure are the shear
modulus estimated from other independent experimen-
tal techniques involving micropipette aspiration [18]
and laminar shear flow [8] for RBCs parasitized by P.
falciparum. Several observations can be made from the
information shown in Fig. 8 for RBCs infected with P.
falciparum.
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Figure 2: RBC stretching: Experimental data from [9] and simulation example.

Figure 3: Axial and transverse RBC diameters in the stretching experiments,
data from [9].
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The random forces FR
i are defined as a vector of random variables FR,m

i (m = 1, 2 for 2D, m = 1, 2, 3 for 3D)
with mean zero and correlation

D
FR,m
i (t), FR,n

j (t0)
E
= 2D⌘2�i,j�m,n�(t� t0), (10)

where D is the diffusion coefficient of the SCE, m and n are the vector components and � denotes the Kronecker
or Dirac delta function.

The parameters for the model are computed given the radius Rcell of a reference cell, the number of SCE per cell
N , the stiffness 0 and the viscosity ⌘0 as

req = 2Rcell(pd/N)

1/3, ⌘ = ⌘0/N,  = 0N
�1/3

⇣
1� �N�1/3

⌘
. (11)

where pd = ⇡/(3
p
2) ⇡ 0.74 is the sphere close packing density and � = 0.75 is a tuning coefficient for varying

N [15]. We usually choose the stiffness 0 in the order of 0.001–0.02 N m

�1 and the viscosity ⌘0 such that
⌘0/0 ⇡ 1 s [15, 13].

2.2.1 SEM++ with HI

In its original formulation, SEM++ did not consider fluid-mediated forces. This leads to the simplified Brownian
dynamics equations in Eq. (8) and allows for a computationally efficient update of the particle positions yi. Given
that the pairwise forces in Eq. (9) are only non-zero for r < rc, the computational complexity to update all particle
positions in a single time step scales as O(N), where N is the number of SCE in the simulation.

Here, we consider an extension of the SEM++ which considers hydrodynamic interactions (HI) [7]. HI define how
the motion of an SCE within the fluid influences other SCE through passive fluid-mediated forces. We consider a
single cell with N SCE at positions yi and collect all positions within a vector y with 3N entries yi. As in Eq. (8),
we consider Brownian dynamics, but we introduce a friction tensor ⇣ and acquire the Langevin’s equations of
motion: X

j

⇣ij ẏj = F+ FR, (12)

where ẏj are the particle velocities, F are the forces acting on the SCE due to its interactions with other SCE
according to Eq. (9) and FR are random forces due to thermal fluctuations.

To avoid the need of inverting ⇣, we introduce the diffusion tensor D = kBT⇣
�1 where kB is the Boltz-

mann constant and T is the temperature. We then update the positions yi(t) within a time step of length �t as
yi(t+ �t) = yi(t) +�yi (�t). �yi (�t) is a random variable with mean and correlations given by

h�yi (�t)i =
X

j

✓
@Dij

@yj
+

DijFj

kBT

◆
�t,

h�yi (�t)�yj (�t)i = 2Dij�t.

(13)

In this work, we use the Rotne–Prager–Yamakawa hydrodynamic tensor D for equal-sized particles of radius rH
[17]. The tensor D consists of N ⇥N submatrices Dij of size 3⇥ 3 (i, j 2 [1, N ]):

Dii =
kBT

6⇡⌘HrH
I,

Dij =
kBT

8⇡⌘Hrij

"
(I+ ˆrij ⌦ ˆrij) +
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(I� 3

ˆrij ⌦ ˆrij)

#
for i 6= j and rij � 2rH ,

Dij =
kBT

6⇡⌘HrH

✓
1� 9rij

32rH

◆
+

3rij
32rH

ˆrij ⌦ ˆrij

�
for i 6= j and rij < 2rH ,

(14)

where ⌘H is the viscosity of the fluid, rij = yi � yj is the distance vector between particles i and j, rij = krijk
is the distance and ˆrij = rij/rij the direction.

To speed up the computation of the random forces, we use the truncated expansion approximation to HI (TEA-HI)
which reduces the computational cost for N particles from O(N3

) to O(N2
) by removing the need of a Cholesky

factorization [8]. To speed up the O(N2
) computations required by TEA-HI, we implemented it such that it runs

on a graphical processing unit (GPU).

Viscosity 

Parameters of     : 

length l, it is enough to equally distribute NP0 seeds among all available workers to get a perfect load balance.

As in all MCMC method, the choice of the proposal distribution is of critical interest in order to lead to good quality
uncorrelated samples. Following [5] we are using Gaussian proposal PDF to have an acceptance rate between 0.2
and 0.4 [5]. In the ABC-SubSim the sample (✓0, x0

) produced from the sample (✓(n�1), x(n�1)
) is accepted at the

level k with probability

r = min

⇢
1, I{⇢(⌘(x0

), ⌘(D))  �k}
p(✓0)q(✓(n�1)|✓0)

p(✓(n�1)
)q(✓0|✓(n�1)

)

�
, (6)

where q( · | · ) is a proposal PDF (see [12]) and I is the indicator function. The acceptance probability here is
defined by prior and the indicator function which shows whether the candidate sample lies inside the set Fk.

There is no rigid convergence criterion for the termination of ABC-SubSim, thus leaving us with empirical and
computational insights. In [5] the authors propose to stop the algorithm when the change of the quantity of interest
is below some specified threshold. We stop the algorithm when the acceptance rate is below some predefined
value and report the corresponding tolerance �. The approximate model evidence can be thus approximated as
Pr(M |D) = PL

0 , where L is the level reached when the stopping conditions are met. For 2 competing model
classes, in this work for a model including hydrodynamics vs one that is not , the plausibility of each model is
defined as follows:

Pr (Mi|D) =

Pr (D|Mi)Pr (Mi)P
i (Pr (D|Mi)Pr (Mi))

. (7)

2.2 The SEM++ model

Our cell model (SEM++) [13] is an extension of the the subcellular element method (SEM) [15]. The SEM models
a cell as a collection of particles, the subcellular elements (SCE), connected by soft breakable bonds embedded in
a viscous fluid. Each SCE is meant to represent a coarse-grained portion of the cytoskeleton which is a dynamic
and highly connected network of actin filaments, microtubules and intermediate filaments.The cytoskeleton is
embedded in the cytoplasm which we model as a highly viscous fluid.

The dynamics of the model are defined by Brownian dynamics which is an approximation to Langevin dynamics
for over-damped motion in a highly viscous medium. An SEM cell contains a number of SCE i with a position yi.
The evolution of yi is governed by Brownian dynamics as follows:

⌘ẏi = Fi + FR
i . (8)

where ⌘ is the viscous drag coefficient, Fi are the forces acting on the SCE due to its interactions with other SCE
and FR

i are random forces due to thermal fluctuations within the cytoplasm and due to random cross-linking events
within the cytoskeleton. In this form, the interactions of SCE with the cytoplasm are modeled as a constant drag
without fluid-mediated forces.

The forces Fi are derived from a variant of the Morse potential [13]. The force Fi acting on the SCE i is computed
as

Fi =

X

j 6=i

F(yi � yj ,min('i,'j)), F(r,') = F (||r||,') r/||r||, F (r,') = �@rV (r,'),

V (r,') = u0

⇣
e2⇢(1�r2/('2r20)) � ↵ e⇢(1�r2/('2r20))

⌘
'3,

u0 =

r2eq

2↵2
(⇢+ log(2/↵))

2 , r0 =

reqp
1 + log(2/↵)/⇢

.

(9)

where  defines a spring-like stiffness, ⇢ and ↵ define the shape of the potential function, req is the equilibrium
distance between two SCE and 'i 2 [0, 1] is a factor used to add SCE when modeling cell growth. The potential
is repulsive for r < req to avoid overlap of SCE and attractive for r > req . We add new elements with �i = 0 and
slowly ramp this up to �i = 1. The potential well depth u0 is chosen such that the interaction between particles
with r close to req resembles a spring with stiffness  (i.e. @rF (req, 1) = ). The pairwise forces between two
particles drop to 0 at larger distances and to speed up the computation we define a cutoff rc and set F (r,') = 0

for r > rc. In this work, we consider single cells, but the model can be readily extended to multiple cells with
distinct parameters for the intra- and inter-cellular potentials. We furthermore fix ⇢ = 2, but allow ↵ to vary in the
range [2, 2.75].

Cell with N subcellular elements
The random forces FR

i are defined as a vector of random variables FR,m
i (m = 1, 2 for 2D, m = 1, 2, 3 for 3D)

with mean zero and correlation
D
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where D is the diffusion coefficient of the SCE, m and n are the vector components and � denotes the Kronecker
or Dirac delta function.

The parameters for the model are computed given the radius Rcell of a reference cell, the number of SCE per cell
N , the stiffness 0 and the viscosity ⌘0 as
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N [15]. We usually choose the stiffness 0 in the order of 0.001–0.02 N m

�1 and the viscosity ⌘0 such that
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In its original formulation, SEM++ did not consider fluid-mediated forces. This leads to the simplified Brownian
dynamics equations in Eq. (8) and allows for a computationally efficient update of the particle positions yi. Given
that the pairwise forces in Eq. (9) are only non-zero for r < rc, the computational complexity to update all particle
positions in a single time step scales as O(N), where N is the number of SCE in the simulation.

Here, we consider an extension of the SEM++ which considers hydrodynamic interactions (HI) [7]. HI define how
the motion of an SCE within the fluid influences other SCE through passive fluid-mediated forces. We consider a
single cell with N SCE at positions yi and collect all positions within a vector y with 3N entries yi. As in Eq. (8),
we consider Brownian dynamics, but we introduce a friction tensor ⇣ and acquire the Langevin’s equations of
motion: X
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⇣ij ẏj = F+ FR, (12)

where ẏj are the particle velocities, F are the forces acting on the SCE due to its interactions with other SCE
according to Eq. (9) and FR are random forces due to thermal fluctuations.

To avoid the need of inverting ⇣, we introduce the diffusion tensor D = kBT⇣
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mann constant and T is the temperature. We then update the positions yi(t) within a time step of length �t as
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[17]. The tensor D consists of N ⇥N submatrices Dij of size 3⇥ 3 (i, j 2 [1, N ]):
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where ⌘H is the viscosity of the fluid, rij = yi � yj is the distance vector between particles i and j, rij = krijk
is the distance and ˆrij = rij/rij the direction.

To speed up the computation of the random forces, we use the truncated expansion approximation to HI (TEA-HI)
which reduces the computational cost for N particles from O(N3

) to O(N2
) by removing the need of a Cholesky

factorization [8]. To speed up the O(N2
) computations required by TEA-HI, we implemented it such that it runs

on a graphical processing unit (GPU).
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length l, it is enough to equally distribute NP0 seeds among all available workers to get a perfect load balance.

As in all MCMC method, the choice of the proposal distribution is of critical interest in order to lead to good quality
uncorrelated samples. Following [5] we are using Gaussian proposal PDF to have an acceptance rate between 0.2
and 0.4 [5]. In the ABC-SubSim the sample (✓0, x0

) produced from the sample (✓(n�1), x(n�1)
) is accepted at the

level k with probability
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where q( · | · ) is a proposal PDF (see [12]) and I is the indicator function. The acceptance probability here is
defined by prior and the indicator function which shows whether the candidate sample lies inside the set Fk.

There is no rigid convergence criterion for the termination of ABC-SubSim, thus leaving us with empirical and
computational insights. In [5] the authors propose to stop the algorithm when the change of the quantity of interest
is below some specified threshold. We stop the algorithm when the acceptance rate is below some predefined
value and report the corresponding tolerance �. The approximate model evidence can be thus approximated as
Pr(M |D) = PL

0 , where L is the level reached when the stopping conditions are met. For 2 competing model
classes, in this work for a model including hydrodynamics vs one that is not , the plausibility of each model is
defined as follows:

Pr (Mi|D) =

Pr (D|Mi)Pr (Mi)P
i (Pr (D|Mi)Pr (Mi))

. (7)

2.2 The SEM++ model

Our cell model (SEM++) [13] is an extension of the the subcellular element method (SEM) [15]. The SEM models
a cell as a collection of particles, the subcellular elements (SCE), connected by soft breakable bonds embedded in
a viscous fluid. Each SCE is meant to represent a coarse-grained portion of the cytoskeleton which is a dynamic
and highly connected network of actin filaments, microtubules and intermediate filaments.The cytoskeleton is
embedded in the cytoplasm which we model as a highly viscous fluid.

The dynamics of the model are defined by Brownian dynamics which is an approximation to Langevin dynamics
for over-damped motion in a highly viscous medium. An SEM cell contains a number of SCE i with a position yi.
The evolution of yi is governed by Brownian dynamics as follows:

⌘ẏi = Fi + FR
i . (8)

where ⌘ is the viscous drag coefficient, Fi are the forces acting on the SCE due to its interactions with other SCE
and FR

i are random forces due to thermal fluctuations within the cytoplasm and due to random cross-linking events
within the cytoskeleton. In this form, the interactions of SCE with the cytoplasm are modeled as a constant drag
without fluid-mediated forces.

The forces Fi are derived from a variant of the Morse potential [13]. The force Fi acting on the SCE i is computed
as

Fi =
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where  defines a spring-like stiffness, ⇢ and ↵ define the shape of the potential function, req is the equilibrium
distance between two SCE and 'i 2 [0, 1] is a factor used to add SCE when modeling cell growth. The potential
is repulsive for r < req to avoid overlap of SCE and attractive for r > req . We add new elements with �i = 0 and
slowly ramp this up to �i = 1. The potential well depth u0 is chosen such that the interaction between particles
with r close to req resembles a spring with stiffness  (i.e. @rF (req, 1) = ). The pairwise forces between two
particles drop to 0 at larger distances and to speed up the computation we define a cutoff rc and set F (r,') = 0

for r > rc. In this work, we consider single cells, but the model can be readily extended to multiple cells with
distinct parameters for the intra- and inter-cellular potentials. We furthermore fix ⇢ = 2, but allow ↵ to vary in the
range [2, 2.75].
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Data: strain vs time (Desprat et al., 2005)

instead of e(t) itself. Thus, the experimental results were fitted
by the function J(t) ¼ e(t)/s0 ¼ Ata, where A ¼ c/s0.

The exponent a

The distribution of a-values for N ¼ 43 C2-7 cells (Fig. 8,
inset) was characterized by a mean value Æaæ ¼ 0.24,
a standard deviation S ¼ 0.08, and a standard error Da ¼
0.01. This distribution could be well approximated by a
Gaussian law as shown on Fig. 8. Indeed, the cumulative dis-
tribution function (CDF) of the experimental data was very
close to that of aGaussian probability density (error function),
with a mean value ÆaGæ ¼ Æaæ and a standard deviation
SG ¼ S.

The prefactor A

The A-values were more dispersed than those of a. It
appeared that the distribution of A could be well described
by a log-normal law. Actually, the CDF of Ln(A) was very
close to that of a Gaussian probability density with char-
acteristic parameters ÆLn(A)Gæ ¼ ÆLn(A)æ ¼ "6.04 and
SG ¼ S ¼ 0.82 (Fig. 9). The standard error DLn(A) settled to
0.13 and the most probable value of A was (2.4 6 0.3) 10"3

Pa"1 s"a.
It is noteworthy that the log-normal distribution observed

for A has already been reported for the magnetic bead
displacement amplitude measured in MTC experiments
(Fabry et al., 2001). The authors speculated that this might
be due to variability of geometrical factors (mainly, that of
the bead-cell contact area). In principle, this argument cannot
be retained for our experiments where geometrical variability
is mostly absent.

However, having a well-defined cell-microplate contact
area gives no indication about the number of adhesion
proteins or stress fibers over which force is applied. Thus,
two cells with different densities of adhesion proteins or
stress fibers would show different stiffness even though

FIGURE 6 In the short time regime, strain data are well fitted by a power-

law e(t) ¼ kta over three time-decades (r2 ¼ 0.9997). The first measured
strain values ranged from ,1% to ;30%, with one-third of these values

,7%. Remarkably, power-law behavior was thus observed over a strain

range going from ,1% to values as high as 100%.

FIGURE 7 Shapes of a stretched cell at e ; 1 and e ; 6. Whereas
apparent contact diameters (dots) decrease slightly at high strains, the mean

cell diameter parallel to the microplates (arrows) is nearly divided by a factor
of 2.

FIGURE 8 CDF of the exponent a. For a given value a0, the CDF gives

the percentage of a-values ,a0. Measured data (solid steps) are well

described by an error function (solid line), CDF of a Gaussian density of
probability (dashed bell-curve). Classical histogram representation of the

data (inset) leads to the same conclusion, but with an unavoidable

arbitrariness in data binning.
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Figure 2: Reconstructed marginal uncertainties (diagonal panels), posterior samples (upper right panel) and contour
plots (lower left panel) of the posterior PDF using the SEM++ model for cell stretching, without HI (A) and with
HI (B).

In Fig. 1, we show images of in silico cell stretching with and without HI. The same initial configuration for the
the cell at t = 0 s is used for both SEM runs with and without HI. We observe that, without HI the cell ruptures at a
strain of " ⇡ 1.3. With HI, on the other hand, we are able to get strains up to " ⇡ 5 before the cell ruptures with the
resulting cell shapes closely resembling the ones from living cells [6]. We note that active biochemical processes
have also been proposed to allow for large strains by rearranging SCE in response to slow stretching [16]. HI is a
complimentary approach as it is a purely passive mechanism aimed to improve the model of the cytoplasm used in
the SEM.

3.3 Bayesian inference for creep response

We use ABC-SubSim to find the most likely SEM++ model for cells with respect to the experimentally measured
creep response [6]. In the previous section, we had not considered a large range of parameter variations, while here
we wish to carefully assess a range of possible model parameters. We extract experimental data values of "(t) at
ND discrete time points ti up to t = 21 s for an applied stress of � = 100 Pa (extracted from a log-log plot of
Desprat et al. [6]). The SEM++ simulations with and without HI are run as described previously. The discrepancy
between the experimental data "D(ti) and the simulation output "S(ti) was computed as the sum of squared errors
SSE =

PND

i=1("S(ti)� "D(ti))
2.

We perform simulations for the two different cell stretching models using the ABC-SubSim through the ⇧4U
framework. In both cases, we generate N = 2000 samples per level of ABC-SubSim. The initial probability P0

is set to 0.5, and the minimum acceptance rate is set to 0.05. The stopping criterion of the method is based on the
value of the acceptance rate.

The model parameters to calibrate are not the same for the two models. In the SEM++ without HI model, we
calibrate the parameters 0, ⌘F0 and ↵, where we set ⌘0 = ⌘F0 0. The values of these parameters are in the range
0.001–0.02 N m

�1 for 0, 0.3–3.0 for ⌘F0 and 2.0–2.5 for ↵. In the SEM++ with HI model, we calibrate the
parameters 0, ⌘FH , ↵ and aH , where we set rH = aHreq , and ⌘H = ⌘FH0. The values of these parameters
range from 0.001–0.02 N m

�1 for 0, 100–1000 s m

�1 for ⌘FH , 2.0–2.5 for ↵ and 0.1–0.5 for aH . In all cases, we
prescribe uniform priors in the given range.

Fig. 2 shows the final distribution of the accepted samples for the models of SEM++ with (A) and without HI (B).
In Fig. 2A, we observe that final parameter range of 0 and ↵ is restricted compared to the specified prior. The
parameter ⌘F0 still spans the full parameter range, but we observe a strong correlation between ⌘F0 and 0. In the
contour plot of ⌘F0 against ↵, we also observe that the algorithm gives a relatively high posterior PDF to the entire

Stochastic forward model:

discrepancy:

Figure 1: RBC membrane model. Interactions of a single vertex.

Here, the Equation (6) accounts for the bending energy of the
RBC membrane introduced by the triangles (0, n, n + 1) and
(0, n+1, n+2), the Equation (7) accounts for the bending energy
of the RBC membrane introduced by the triangles (0, n, n + 1)
and (n, n+N, n+1), the Equation (8) represents the area conser-
vation constraint, the Equation (9) represents the volume con-
servation constraint, the Equation (10) contains the spring force,
and Equation (11) contains the membrane viscous energy.

3. Uncertainty quantification

3.1. General description and algorithm

In our work we use TMCMC algorithm [1] for sampling from
the posterior distribution.
A brief sketch of the TMCMC algorithm is depicted in Alg. 1.
At the initialization stage, the algorithm selects randomly C1
points which will serve as starting points for the MCMC chains
for the first generation of the algorithm. The posterior evalu-
ation for each point can be performed in parallel, while each
evaluation can require a fixed number (N

r

) of simulations. If
N

r

> 1 then the initialization exhibits two levels of parallelism
that can be fully exploited. Each generation (TMCMC stage) G

involves the processing of C

G

MCMC chains of variable length,
according to the statistics for the set of accepted points produced
by the previous generation.

3.2. Parameters set

In this work we are aiming at calibrating the RBC model pa-
rameters: l

m

, p, �C , k

a

, k

b

, k

v

. The power q is fixed and the
dissipative constant �T is set to be 3�C in consistence with [3].

3.3. Experimental data

We took data on the stretching of a single RBC from [9]. Fig.
2 shows the stretching process for the experiment and the simu-
lation. Fig. 3 demonstrates the axial (AD) and transverse (TD)
diameters of RBCs under stretching.

3.4. Stochastic model

We used a Gaussian noise model to describe the relationship
between the data and simulations results:

D

D

D = M(✓✓✓) + ✏✏✏, ✏✏✏ ⇠ N(0,⌃), (12)

Algorithm 1 TMCMC
Algorithm TMCMC()
// Initialization
✓ = {}
for each randomly selected starting point c = 1, . . . ,C1 do

Compute function value F(c) = Posterior (c);
add c, F(c) to the set ✓

end for
compute statistics for the function values of the set ✓
//Main loop
for each generation g = 2, . . . ,G do

select C

g

starting points from the set ✓
✓ = {}
for each chain c = 1, . . . ,C

g

do
for each step s = 1, . . . , S

c

do
propose next point p

Compute function value F(c, s) = Posterior (p);
accept/reject p, if accepted add it to the set ✓

end for
end for
compute statistics for the function values of the set ✓

end for
return

Function Posterior (point p)
for t = 1, . . . ,N

r

do
perform model evaluation M(p, t)

end for
combine the results and compute F(p)
return F(p)

leased from mature parasites which have not invaded the
RBCs could increase the stiffness of exposed but unin-
fected RBCs [29,41]. Consistent with this expectation,
our experiments show that the average stiffness of Pf-
U-RBC is 8lNm!1 compared to the value of 5.3lNm!1

for H-RBC (see Fig. 8). In the schizont stage, the RBC
has very little deformability in both axial and transverse
directions.

Superimposed on experimental data are simulated
variations of axial and transverse diameters of the cell
using a three-dimensional hyperelastic constitutive mod-
el incorporated into a finite element code. Details of the
model along with descriptions of simulation methods are
presented in Refs. [34,17] in the context of optical tweez-
ers simulations of healthy RBCs. Further computational
simulations of large deformation of healthy RBCs at the
spectrin molecular level are considered in Ref. [36]. Sup-
plementary material S5 summarizes the key features of
computational analysis with additional references where
further details can be found. Videoimages of the three-
dimensional simulations of the deformation of a healthy
RBC and an infected RBC stretched by optical tweezers
are given in supplementary material S6.

3.2. Elastic modulus estimates for RBCs parasitized by P.
falciparum

From the matching of computational results, shown
by the dotted lines in Fig. 7(a) and (b) for the different

infestation stages, with experimental data, the average
shear modulus of the RBC was extracted. Fig. 8 shows
the median value (marked by a small vertical line) and
range of shear modulus values of the parasitized RBCs
and the two control conditions, from the optical tweez-
ers experiments and computational simulations. These
values are based on repeat experiments conducted on
7, 8, 5, 5, and 23 samples for the H-RBC, Pf-U-RBC,
Pf-R-pRBC, Pf-T-pRBC and Pf-S-pRBC conditions,
respectively. Also shown in this figure are the shear
modulus estimated from other independent experimen-
tal techniques involving micropipette aspiration [18]
and laminar shear flow [8] for RBCs parasitized by P.
falciparum. Several observations can be made from the
information shown in Fig. 8 for RBCs infected with P.
falciparum.

(1) The optical tweezers method is capable of providing
the elastic deformation characteristics of the RBCs
schizont stage infection, which prior methods
[8,18,29,30] based on micropipette aspiration and
laminar shear flow could not capture because of
enhanced cell rigidity and increased cell adhesion.

(2) Estimates extracted from the present optical tweez-
ers experiments point to substantially (by up to
three to four times) greater stiffening of the RBCs
from P. falciparum parasitization than previously
anticipated [18]. The elastic shear modulus values
for Pf-R-pRBC, Pf-T-pRBC, and Pf-S-pRBC are

Fig. 6. Optical images of H-RBC, Pf-U-RBC, Pf-R-pRBC, Pf-T-pRBC and Pf-S-pRBC in PBS solution at 25!C: prior to tensile stretching by
optical tweezers (left column), at a constant force of 68 ± 12pN (middle column) and at a constant force of 151 ± 20pN (right column). Note the
presence of the P. falciparum parasite inside the infected RBCs.
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range of shear modulus values of the parasitized RBCs
and the two control conditions, from the optical tweez-
ers experiments and computational simulations. These
values are based on repeat experiments conducted on
7, 8, 5, 5, and 23 samples for the H-RBC, Pf-U-RBC,
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modulus estimated from other independent experimen-
tal techniques involving micropipette aspiration [18]
and laminar shear flow [8] for RBCs parasitized by P.
falciparum. Several observations can be made from the
information shown in Fig. 8 for RBCs infected with P.
falciparum.

(1) The optical tweezers method is capable of providing
the elastic deformation characteristics of the RBCs
schizont stage infection, which prior methods
[8,18,29,30] based on micropipette aspiration and
laminar shear flow could not capture because of
enhanced cell rigidity and increased cell adhesion.

(2) Estimates extracted from the present optical tweez-
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from P. falciparum parasitization than previously
anticipated [18]. The elastic shear modulus values
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Fig. 6. Optical images of H-RBC, Pf-U-RBC, Pf-R-pRBC, Pf-T-pRBC and Pf-S-pRBC in PBS solution at 25!C: prior to tensile stretching by
optical tweezers (left column), at a constant force of 68 ± 12pN (middle column) and at a constant force of 151 ± 20pN (right column). Note the
presence of the P. falciparum parasite inside the infected RBCs.

S. Suresh et al. / Acta Biomaterialia 1 (2005) 15–30 25

leased from mature parasites which have not invaded the
RBCs could increase the stiffness of exposed but unin-
fected RBCs [29,41]. Consistent with this expectation,
our experiments show that the average stiffness of Pf-
U-RBC is 8lNm!1 compared to the value of 5.3lNm!1

for H-RBC (see Fig. 8). In the schizont stage, the RBC
has very little deformability in both axial and transverse
directions.

Superimposed on experimental data are simulated
variations of axial and transverse diameters of the cell
using a three-dimensional hyperelastic constitutive mod-
el incorporated into a finite element code. Details of the
model along with descriptions of simulation methods are
presented in Refs. [34,17] in the context of optical tweez-
ers simulations of healthy RBCs. Further computational
simulations of large deformation of healthy RBCs at the
spectrin molecular level are considered in Ref. [36]. Sup-
plementary material S5 summarizes the key features of
computational analysis with additional references where
further details can be found. Videoimages of the three-
dimensional simulations of the deformation of a healthy
RBC and an infected RBC stretched by optical tweezers
are given in supplementary material S6.
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for H-RBC (see Fig. 8). In the schizont stage, the RBC
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el incorporated into a finite element code. Details of the
model along with descriptions of simulation methods are
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ers simulations of healthy RBCs. Further computational
simulations of large deformation of healthy RBCs at the
spectrin molecular level are considered in Ref. [36]. Sup-
plementary material S5 summarizes the key features of
computational analysis with additional references where
further details can be found. Videoimages of the three-
dimensional simulations of the deformation of a healthy
RBC and an infected RBC stretched by optical tweezers
are given in supplementary material S6.
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ers experiments and computational simulations. These
values are based on repeat experiments conducted on
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falciparum. Several observations can be made from the
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fected RBCs [29,41]. Consistent with this expectation,
our experiments show that the average stiffness of Pf-
U-RBC is 8lNm!1 compared to the value of 5.3lNm!1

for H-RBC (see Fig. 8). In the schizont stage, the RBC
has very little deformability in both axial and transverse
directions.

Superimposed on experimental data are simulated
variations of axial and transverse diameters of the cell
using a three-dimensional hyperelastic constitutive mod-
el incorporated into a finite element code. Details of the
model along with descriptions of simulation methods are
presented in Refs. [34,17] in the context of optical tweez-
ers simulations of healthy RBCs. Further computational
simulations of large deformation of healthy RBCs at the
spectrin molecular level are considered in Ref. [36]. Sup-
plementary material S5 summarizes the key features of
computational analysis with additional references where
further details can be found. Videoimages of the three-
dimensional simulations of the deformation of a healthy
RBC and an infected RBC stretched by optical tweezers
are given in supplementary material S6.
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From the matching of computational results, shown
by the dotted lines in Fig. 7(a) and (b) for the different

infestation stages, with experimental data, the average
shear modulus of the RBC was extracted. Fig. 8 shows
the median value (marked by a small vertical line) and
range of shear modulus values of the parasitized RBCs
and the two control conditions, from the optical tweez-
ers experiments and computational simulations. These
values are based on repeat experiments conducted on
7, 8, 5, 5, and 23 samples for the H-RBC, Pf-U-RBC,
Pf-R-pRBC, Pf-T-pRBC and Pf-S-pRBC conditions,
respectively. Also shown in this figure are the shear
modulus estimated from other independent experimen-
tal techniques involving micropipette aspiration [18]
and laminar shear flow [8] for RBCs parasitized by P.
falciparum. Several observations can be made from the
information shown in Fig. 8 for RBCs infected with P.
falciparum.

(1) The optical tweezers method is capable of providing
the elastic deformation characteristics of the RBCs
schizont stage infection, which prior methods
[8,18,29,30] based on micropipette aspiration and
laminar shear flow could not capture because of
enhanced cell rigidity and increased cell adhesion.
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three to four times) greater stiffening of the RBCs
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leased from mature parasites which have not invaded the
RBCs could increase the stiffness of exposed but unin-
fected RBCs [29,41]. Consistent with this expectation,
our experiments show that the average stiffness of Pf-
U-RBC is 8lNm!1 compared to the value of 5.3lNm!1

for H-RBC (see Fig. 8). In the schizont stage, the RBC
has very little deformability in both axial and transverse
directions.

Superimposed on experimental data are simulated
variations of axial and transverse diameters of the cell
using a three-dimensional hyperelastic constitutive mod-
el incorporated into a finite element code. Details of the
model along with descriptions of simulation methods are
presented in Refs. [34,17] in the context of optical tweez-
ers simulations of healthy RBCs. Further computational
simulations of large deformation of healthy RBCs at the
spectrin molecular level are considered in Ref. [36]. Sup-
plementary material S5 summarizes the key features of
computational analysis with additional references where
further details can be found. Videoimages of the three-
dimensional simulations of the deformation of a healthy
RBC and an infected RBC stretched by optical tweezers
are given in supplementary material S6.
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by the dotted lines in Fig. 7(a) and (b) for the different

infestation stages, with experimental data, the average
shear modulus of the RBC was extracted. Fig. 8 shows
the median value (marked by a small vertical line) and
range of shear modulus values of the parasitized RBCs
and the two control conditions, from the optical tweez-
ers experiments and computational simulations. These
values are based on repeat experiments conducted on
7, 8, 5, 5, and 23 samples for the H-RBC, Pf-U-RBC,
Pf-R-pRBC, Pf-T-pRBC and Pf-S-pRBC conditions,
respectively. Also shown in this figure are the shear
modulus estimated from other independent experimen-
tal techniques involving micropipette aspiration [18]
and laminar shear flow [8] for RBCs parasitized by P.
falciparum. Several observations can be made from the
information shown in Fig. 8 for RBCs infected with P.
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laminar shear flow could not capture because of
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U-RBC is 8lNm!1 compared to the value of 5.3lNm!1

for H-RBC (see Fig. 8). In the schizont stage, the RBC
has very little deformability in both axial and transverse
directions.

Superimposed on experimental data are simulated
variations of axial and transverse diameters of the cell
using a three-dimensional hyperelastic constitutive mod-
el incorporated into a finite element code. Details of the
model along with descriptions of simulation methods are
presented in Refs. [34,17] in the context of optical tweez-
ers simulations of healthy RBCs. Further computational
simulations of large deformation of healthy RBCs at the
spectrin molecular level are considered in Ref. [36]. Sup-
plementary material S5 summarizes the key features of
computational analysis with additional references where
further details can be found. Videoimages of the three-
dimensional simulations of the deformation of a healthy
RBC and an infected RBC stretched by optical tweezers
are given in supplementary material S6.
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falciparum. Several observations can be made from the
information shown in Fig. 8 for RBCs infected with P.
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Figure 2: RBC stretching: Experimental data from [9] and simulation example.

Figure 3: Axial and transverse RBC diameters in the stretching experiments,
data from [9].
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Figure 2: Results of parameter calibration with the ABC-SubSim using 50000
samples with the acceptance rate being above 5%. All samples are taken
from the last generation. The corresponding tolerance is � = 0.16. Diagonal:
marginal distribution of parameters estimated using kernel histograms. Above
the diagonal: projection of the ABC-SubSim samples of the posterior distri-
butions of all pairs of 2-d parameter space colored by discrepancy. Below the
diagonal: projected densities in 2-d parameter space constructed via a bivariate
kernel estimate.

Figure 3: Results of parameter calibration with the TMCMC using 50000 sam-
ples. All samples are taken from the last generation. Diagonal: marginal dis-
tribution of parameters estimated using kernel histograms. Above the diagonal:
projection of the TMCMC samples of the posterior distributions of all pairs of
2-d parameter space colored by discrepancy. Below the diagonal: projected
densities in 2-d parameter space constructed via a bivariate kernel estimate.

Mean values ✓̄ and coefficients of variation u✓ of the param-
eters obtained by formulae (14), (15) from [26] are given in

Table 4.

Table 4: Mean values ✓̄ and coefficients of variation u✓ of the parameters.

TMCMC

✓ ✓̄ u✓

µ 0.105 4.8%
↵n 0.46 15.9%
�n 7.33⇥104 53.5%
kt 1.03 27.0%
�2 5.36⇥10�5 -

ABC-SubSim

✓ ✓̄ u✓

µ 0.106 8.8%
↵n 0.47 17.5%
�n 7.45⇥104 55.0%
kt 0.99 31.2%
�2 4.40⇥10�5 -

4.3. Lennard-Jones parameters of helium using ABC-SubSim

As a stochastic model we took the calibration of the Lennard-
Jones potential parameters for helium. The Lennard-Jones po-
tential is given by

VLJ(r;�, ✏) = 4✏
"✓�

r

◆12
�

✓�
r

◆6
#
, (9)

where where ✏ is the depth of the potential well, � is the finite
distance at which the inter-particle potential is zero, r is the dis-
tance between the particles. The parameters ✏,� are uncertain
and should be calibrated given the data.

To perform the calibration we used the data on the Boltzmann
factor (10)

fB =

*
exp

 
� H

TkB

!+
(10)

where H is the enthalpy of the system of helium atoms, T is the
temperature of the system, kB is the Boltzmann constant and h·i
denotes the ensemble average. The data was generated using
the software LAMMPS [28] for a system of 1000 atoms for 20
ns in the NPT ensemble [29] with a timestep of 2fs. The system
used for calibration consists of 1000 atoms and is equilibrated
for 2ns, following an production run in the NPT ensemble for
another 2ns with a 2fs timestep.

The distribution of the Boltzmann factor is known to be non-
Gaussian (see Figure 4), which is a case when ABC should give
more accurate prediction as compared with the exact Bayesian
formulation.

We performed calibration with 3 different settings. 1) In the
first setting we followed the classical Bayesian way and as-
sumed the distribution of the Boltzmann factor to be Gaussian.
The discrepancy function in this case is

⇢(x, y) =

s 
µx � µy

µx

!2

+

 
�x � �y

�x

!2

. (11)

2) In the second setting we took 4 quantiles of the Boltzmann
factor distribution: q = (0.2, 0.4, 0.6, 0.8) and set the discrep-
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3) The third setting was a setting with

⇢(x, y) = DKL(P||Q), (13)

where DKL is a Kullback-Leibler divergence, P is the data dis-
tribution, Q is the simulation outcome distribution of the Boltz-
mann factor.

In all the cases the population size was set to be 1920 and
the Markov chain length was equal to 5. The algorithm was
stopped when the acceptance rate went below 5%.

The algorithm runs a full molecular dynamic simulation for
every parameter set and hence requires a significant amount of
computational work. The algorithm exhibits two levels of par-
allelism, as the Markov chains with different seeds can be pro-
cessed in parallel while each single LAMMPS simulation can
also run in parallel using the Message Passing Interface (MPI).
The implementation of ABC-SubSim on multicore clusters was
based on the TORC task-parallel library [30]. The time to solu-
tion for each function evaluation varies with the given param-
eters, introducing load imbalance in the algorithm. We deal
with this issue by submitting tasks with higher execution time
first: we sort the samples according to the value of the � pa-
rameter before distributing the corresponding function evalua-
tion or Markov chain tasks to the workers. In addition, the pro-
posed task distribution scheme is combined with the inherent
task stealing mechanism supported by TORC.

We performed our simulations on 64 compute nodes of the
Piz Daint Cray XC30 cluster at the Swiss National SuperCom-
puting Center CSCS. Each node is equipped with an 8-core
Intel Xeon E5-2670 processor, resulting in 512 cores in total.

TORC is initialized with two MPI workers per node and each
LAMMPS simulation utilizes 4 cores in turn.

Table 5 summarizes the parallel performance of ABC-
SubSim. Despite the high variance of the time for a single sim-
ulation run, we observed that the efficiency of the initialization
phase (level 0) reaches 82% as 1920 function evaluations are
distributed among the 128 workers. The lower efficiency (72%)
of Level 1 is attributed to the existence of chains with high accu-
mulated running times and the small number of available chains
that correspond to each worker (384 chains in total, 3 chains
per worker). As the algorithm evolves, the efficiency increases
and reaches 92% for the last level, which exhibits a load imbal-
ance of approximately 8% as computed by Tmax�Tavg

Tavg
= 1078�994

1078 ,
where Tmax and Tavg are the maximum and average time work-
ers were busy during the processing of the specific level.

Table 5: Detailed per-level performance results of ABC-SubSim on 64 compute
nodes of the Piz Daint cluster. T f shows the mean and standard deviation of the
simulation times, Ttot is the aggregate execution time of all simulations and Tw
is the wall-clock time per generation, respectively. All the times are reported in
seconds.

Level T f Ttotal Tw Speedup Efficiency

0 82 ± 83 156808 1497 104.7 82%
1 87 ± 57 166297 1843 90.2 71%
2 68 ± 10 129601 1237 104.8 82%
3 65 ± 6 125532 1110 113.1 88%
4 66 ± 5 127256 1078 118.0 92%

The information about the prior and the posterior values of
the parameters is given in the Table 6.

The results of the calibration are given on the Figures 5, 6, 7.
We observe that the results for the three discrepancy func-

tions are different. In the Gaussian case (Fig. 5) ✏ is unidenti-
fiable. The reason for this is that the standard deviation of the
Boltzmann factor fB appears to be insensitive to changes of ✏
and the standard deviation contributes more in the discrepancy
(a typical contribution of the mean is around 3%, standard de-
viation – around 97%). The difference between the Quantile
setting and the Kullback-Leibler setting is not so dramatic. The
main difference is that the Quantile-based discrepancy seems
more robust with respect to the changes of the parameters.

5. Conclusions

In this paper we compared two algorithms for performing
Bayesian model updating: the ABC-SubSim and the TMCMC.
The algorithms have similar methodoligy: they are population-
based sampling methods which use an annealing scheme to ap-
proach the target posterior distribution and MCMC to produce
next generation of samples. Although the ABC-SubSim and the
TMCMC have different annealing schemes and use different
MCMC parameters including different Markov chain length.
The ABC-SubSim algorithm is more generic and can be applied
to both deterministic and stochastic problems. The TMCMC,
on the other hand, is only suitable for deterministic problems,
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3) The third setting was a setting with

⇢(x, y) = DKL(P||Q), (13)

where DKL is a Kullback-Leibler divergence, P is the data dis-
tribution, Q is the simulation outcome distribution of the Boltz-
mann factor.

In all the cases the population size was set to be 1920 and
the Markov chain length was equal to 5. The algorithm was
stopped when the acceptance rate went below 5%.

The algorithm runs a full molecular dynamic simulation for
every parameter set and hence requires a significant amount of
computational work. The algorithm exhibits two levels of par-
allelism, as the Markov chains with different seeds can be pro-
cessed in parallel while each single LAMMPS simulation can
also run in parallel using the Message Passing Interface (MPI).
The implementation of ABC-SubSim on multicore clusters was
based on the TORC task-parallel library [30]. The time to solu-
tion for each function evaluation varies with the given param-
eters, introducing load imbalance in the algorithm. We deal
with this issue by submitting tasks with higher execution time
first: we sort the samples according to the value of the � pa-
rameter before distributing the corresponding function evalua-
tion or Markov chain tasks to the workers. In addition, the pro-
posed task distribution scheme is combined with the inherent
task stealing mechanism supported by TORC.

We performed our simulations on 64 compute nodes of the
Piz Daint Cray XC30 cluster at the Swiss National SuperCom-
puting Center CSCS. Each node is equipped with an 8-core
Intel Xeon E5-2670 processor, resulting in 512 cores in total.

TORC is initialized with two MPI workers per node and each
LAMMPS simulation utilizes 4 cores in turn.

Table 5 summarizes the parallel performance of ABC-
SubSim. Despite the high variance of the time for a single sim-
ulation run, we observed that the efficiency of the initialization
phase (level 0) reaches 82% as 1920 function evaluations are
distributed among the 128 workers. The lower efficiency (72%)
of Level 1 is attributed to the existence of chains with high accu-
mulated running times and the small number of available chains
that correspond to each worker (384 chains in total, 3 chains
per worker). As the algorithm evolves, the efficiency increases
and reaches 92% for the last level, which exhibits a load imbal-
ance of approximately 8% as computed by Tmax�Tavg

Tavg
= 1078�994

1078 ,
where Tmax and Tavg are the maximum and average time work-
ers were busy during the processing of the specific level.

Table 5: Detailed per-level performance results of ABC-SubSim on 64 compute
nodes of the Piz Daint cluster. T f shows the mean and standard deviation of the
simulation times, Ttot is the aggregate execution time of all simulations and Tw
is the wall-clock time per generation, respectively. All the times are reported in
seconds.

Level T f Ttotal Tw Speedup Efficiency

0 82 ± 83 156808 1497 104.7 82%
1 87 ± 57 166297 1843 90.2 71%
2 68 ± 10 129601 1237 104.8 82%
3 65 ± 6 125532 1110 113.1 88%
4 66 ± 5 127256 1078 118.0 92%

The information about the prior and the posterior values of
the parameters is given in the Table 6.

The results of the calibration are given on the Figures 5, 6, 7.
We observe that the results for the three discrepancy func-

tions are different. In the Gaussian case (Fig. 5) ✏ is unidenti-
fiable. The reason for this is that the standard deviation of the
Boltzmann factor fB appears to be insensitive to changes of ✏
and the standard deviation contributes more in the discrepancy
(a typical contribution of the mean is around 3%, standard de-
viation – around 97%). The difference between the Quantile
setting and the Kullback-Leibler setting is not so dramatic. The
main difference is that the Quantile-based discrepancy seems
more robust with respect to the changes of the parameters.

5. Conclusions

In this paper we compared two algorithms for performing
Bayesian model updating: the ABC-SubSim and the TMCMC.
The algorithms have similar methodoligy: they are population-
based sampling methods which use an annealing scheme to ap-
proach the target posterior distribution and MCMC to produce
next generation of samples. Although the ABC-SubSim and the
TMCMC have different annealing schemes and use different
MCMC parameters including different Markov chain length.
The ABC-SubSim algorithm is more generic and can be applied
to both deterministic and stochastic problems. The TMCMC,
on the other hand, is only suitable for deterministic problems,
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3) The third setting was a setting with

⇢(x, y) = DKL(P||Q), (13)

where DKL is a Kullback-Leibler divergence, P is the data dis-
tribution, Q is the simulation outcome distribution of the Boltz-
mann factor.

In all the cases the population size was set to be 1920 and
the Markov chain length was equal to 5. The algorithm was
stopped when the acceptance rate went below 5%.

The algorithm runs a full molecular dynamic simulation for
every parameter set and hence requires a significant amount of
computational work. The algorithm exhibits two levels of par-
allelism, as the Markov chains with different seeds can be pro-
cessed in parallel while each single LAMMPS simulation can
also run in parallel using the Message Passing Interface (MPI).
The implementation of ABC-SubSim on multicore clusters was
based on the TORC task-parallel library [30]. The time to solu-
tion for each function evaluation varies with the given param-
eters, introducing load imbalance in the algorithm. We deal
with this issue by submitting tasks with higher execution time
first: we sort the samples according to the value of the � pa-
rameter before distributing the corresponding function evalua-
tion or Markov chain tasks to the workers. In addition, the pro-
posed task distribution scheme is combined with the inherent
task stealing mechanism supported by TORC.

We performed our simulations on 64 compute nodes of the
Piz Daint Cray XC30 cluster at the Swiss National SuperCom-
puting Center CSCS. Each node is equipped with an 8-core
Intel Xeon E5-2670 processor, resulting in 512 cores in total.

TORC is initialized with two MPI workers per node and each
LAMMPS simulation utilizes 4 cores in turn.

Table 5 summarizes the parallel performance of ABC-
SubSim. Despite the high variance of the time for a single sim-
ulation run, we observed that the efficiency of the initialization
phase (level 0) reaches 82% as 1920 function evaluations are
distributed among the 128 workers. The lower efficiency (72%)
of Level 1 is attributed to the existence of chains with high accu-
mulated running times and the small number of available chains
that correspond to each worker (384 chains in total, 3 chains
per worker). As the algorithm evolves, the efficiency increases
and reaches 92% for the last level, which exhibits a load imbal-
ance of approximately 8% as computed by Tmax�Tavg

Tavg
= 1078�994

1078 ,
where Tmax and Tavg are the maximum and average time work-
ers were busy during the processing of the specific level.

Table 5: Detailed per-level performance results of ABC-SubSim on 64 compute
nodes of the Piz Daint cluster. T f shows the mean and standard deviation of the
simulation times, Ttot is the aggregate execution time of all simulations and Tw
is the wall-clock time per generation, respectively. All the times are reported in
seconds.

Level T f Ttotal Tw Speedup Efficiency

0 82 ± 83 156808 1497 104.7 82%
1 87 ± 57 166297 1843 90.2 71%
2 68 ± 10 129601 1237 104.8 82%
3 65 ± 6 125532 1110 113.1 88%
4 66 ± 5 127256 1078 118.0 92%

The information about the prior and the posterior values of
the parameters is given in the Table 6.

The results of the calibration are given on the Figures 5, 6, 7.
We observe that the results for the three discrepancy func-

tions are different. In the Gaussian case (Fig. 5) ✏ is unidenti-
fiable. The reason for this is that the standard deviation of the
Boltzmann factor fB appears to be insensitive to changes of ✏
and the standard deviation contributes more in the discrepancy
(a typical contribution of the mean is around 3%, standard de-
viation – around 97%). The difference between the Quantile
setting and the Kullback-Leibler setting is not so dramatic. The
main difference is that the Quantile-based discrepancy seems
more robust with respect to the changes of the parameters.

5. Conclusions

In this paper we compared two algorithms for performing
Bayesian model updating: the ABC-SubSim and the TMCMC.
The algorithms have similar methodoligy: they are population-
based sampling methods which use an annealing scheme to ap-
proach the target posterior distribution and MCMC to produce
next generation of samples. Although the ABC-SubSim and the
TMCMC have different annealing schemes and use different
MCMC parameters including different Markov chain length.
The ABC-SubSim algorithm is more generic and can be applied
to both deterministic and stochastic problems. The TMCMC,
on the other hand, is only suitable for deterministic problems,
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3) The third setting was a setting with

⇢(x, y) = DKL(P||Q), (13)

where DKL is a Kullback-Leibler divergence, P is the data dis-
tribution, Q is the simulation outcome distribution of the Boltz-
mann factor.

In all the cases the population size was set to be 1920 and
the Markov chain length was equal to 5. The algorithm was
stopped when the acceptance rate went below 5%.

The algorithm runs a full molecular dynamic simulation for
every parameter set and hence requires a significant amount of
computational work. The algorithm exhibits two levels of par-
allelism, as the Markov chains with different seeds can be pro-
cessed in parallel while each single LAMMPS simulation can
also run in parallel using the Message Passing Interface (MPI).
The implementation of ABC-SubSim on multicore clusters was
based on the TORC task-parallel library [30]. The time to solu-
tion for each function evaluation varies with the given param-
eters, introducing load imbalance in the algorithm. We deal
with this issue by submitting tasks with higher execution time
first: we sort the samples according to the value of the � pa-
rameter before distributing the corresponding function evalua-
tion or Markov chain tasks to the workers. In addition, the pro-
posed task distribution scheme is combined with the inherent
task stealing mechanism supported by TORC.

We performed our simulations on 64 compute nodes of the
Piz Daint Cray XC30 cluster at the Swiss National SuperCom-
puting Center CSCS. Each node is equipped with an 8-core
Intel Xeon E5-2670 processor, resulting in 512 cores in total.

TORC is initialized with two MPI workers per node and each
LAMMPS simulation utilizes 4 cores in turn.

Table 5 summarizes the parallel performance of ABC-
SubSim. Despite the high variance of the time for a single sim-
ulation run, we observed that the efficiency of the initialization
phase (level 0) reaches 82% as 1920 function evaluations are
distributed among the 128 workers. The lower efficiency (72%)
of Level 1 is attributed to the existence of chains with high accu-
mulated running times and the small number of available chains
that correspond to each worker (384 chains in total, 3 chains
per worker). As the algorithm evolves, the efficiency increases
and reaches 92% for the last level, which exhibits a load imbal-
ance of approximately 8% as computed by Tmax�Tavg

Tavg
= 1078�994

1078 ,
where Tmax and Tavg are the maximum and average time work-
ers were busy during the processing of the specific level.

Table 5: Detailed per-level performance results of ABC-SubSim on 64 compute
nodes of the Piz Daint cluster. T f shows the mean and standard deviation of the
simulation times, Ttot is the aggregate execution time of all simulations and Tw
is the wall-clock time per generation, respectively. All the times are reported in
seconds.

Level T f Ttotal Tw Speedup Efficiency

0 82 ± 83 156808 1497 104.7 82%
1 87 ± 57 166297 1843 90.2 71%
2 68 ± 10 129601 1237 104.8 82%
3 65 ± 6 125532 1110 113.1 88%
4 66 ± 5 127256 1078 118.0 92%

The information about the prior and the posterior values of
the parameters is given in the Table 6.

The results of the calibration are given on the Figures 5, 6, 7.
We observe that the results for the three discrepancy func-

tions are different. In the Gaussian case (Fig. 5) ✏ is unidenti-
fiable. The reason for this is that the standard deviation of the
Boltzmann factor fB appears to be insensitive to changes of ✏
and the standard deviation contributes more in the discrepancy
(a typical contribution of the mean is around 3%, standard de-
viation – around 97%). The difference between the Quantile
setting and the Kullback-Leibler setting is not so dramatic. The
main difference is that the Quantile-based discrepancy seems
more robust with respect to the changes of the parameters.

5. Conclusions

In this paper we compared two algorithms for performing
Bayesian model updating: the ABC-SubSim and the TMCMC.
The algorithms have similar methodoligy: they are population-
based sampling methods which use an annealing scheme to ap-
proach the target posterior distribution and MCMC to produce
next generation of samples. Although the ABC-SubSim and the
TMCMC have different annealing schemes and use different
MCMC parameters including different Markov chain length.
The ABC-SubSim algorithm is more generic and can be applied
to both deterministic and stochastic problems. The TMCMC,
on the other hand, is only suitable for deterministic problems,
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Figure 2: Results of parameter calibration with the ABC-SubSim using 50000
samples with the acceptance rate being above 5%. All samples are taken
from the last generation. The corresponding tolerance is � = 0.16. Diagonal:
marginal distribution of parameters estimated using kernel histograms. Above
the diagonal: projection of the ABC-SubSim samples of the posterior distri-
butions of all pairs of 2-d parameter space colored by discrepancy. Below the
diagonal: projected densities in 2-d parameter space constructed via a bivariate
kernel estimate.

Figure 3: Results of parameter calibration with the TMCMC using 50000 sam-
ples. All samples are taken from the last generation. Diagonal: marginal dis-
tribution of parameters estimated using kernel histograms. Above the diagonal:
projection of the TMCMC samples of the posterior distributions of all pairs of
2-d parameter space colored by discrepancy. Below the diagonal: projected
densities in 2-d parameter space constructed via a bivariate kernel estimate.

Mean values ✓̄ and coefficients of variation u✓ of the param-
eters obtained by formulae (14), (15) from [26] are given in

Table 4.

Table 4: Mean values ✓̄ and coefficients of variation u✓ of the parameters.

TMCMC

✓ ✓̄ u✓

µ 0.105 4.8%
↵n 0.46 15.9%
�n 7.33⇥104 53.5%
kt 1.03 27.0%
�2 5.36⇥10�5 -

ABC-SubSim

✓ ✓̄ u✓

µ 0.106 8.8%
↵n 0.47 17.5%
�n 7.45⇥104 55.0%
kt 0.99 31.2%
�2 4.40⇥10�5 -

4.3. Lennard-Jones parameters of helium using ABC-SubSim

As a stochastic model we took the calibration of the Lennard-
Jones potential parameters for helium. The Lennard-Jones po-
tential is given by

VLJ(r;�, ✏) = 4✏
"✓�

r

◆12
�

✓�
r

◆6
#
, (9)

where where ✏ is the depth of the potential well, � is the finite
distance at which the inter-particle potential is zero, r is the dis-
tance between the particles. The parameters ✏,� are uncertain
and should be calibrated given the data.

To perform the calibration we used the data on the Boltzmann
factor (10)

fB =

*
exp

 
� H

TkB

!+
(10)

where H is the enthalpy of the system of helium atoms, T is the
temperature of the system, kB is the Boltzmann constant and h·i
denotes the ensemble average. The data was generated using
the software LAMMPS [28] for a system of 1000 atoms for 20
ns in the NPT ensemble [29] with a timestep of 2fs. The system
used for calibration consists of 1000 atoms and is equilibrated
for 2ns, following an production run in the NPT ensemble for
another 2ns with a 2fs timestep.

The distribution of the Boltzmann factor is known to be non-
Gaussian (see Figure 4), which is a case when ABC should give
more accurate prediction as compared with the exact Bayesian
formulation.

We performed calibration with 3 different settings. 1) In the
first setting we followed the classical Bayesian way and as-
sumed the distribution of the Boltzmann factor to be Gaussian.
The discrepancy function in this case is

⇢(x, y) =

s 
µx � µy

µx

!2

+

 
�x � �y

�x

!2

. (11)

2) In the second setting we took 4 quantiles of the Boltzmann
factor distribution: q = (0.2, 0.4, 0.6, 0.8) and set the discrep-
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3) The third setting was a setting with

⇢(x, y) = DKL(P||Q), (13)

where DKL is a Kullback-Leibler divergence, P is the data dis-
tribution, Q is the simulation outcome distribution of the Boltz-
mann factor.

In all the cases the population size was set to be 1920 and
the Markov chain length was equal to 5. The algorithm was
stopped when the acceptance rate went below 5%.

The algorithm runs a full molecular dynamic simulation for
every parameter set and hence requires a significant amount of
computational work. The algorithm exhibits two levels of par-
allelism, as the Markov chains with different seeds can be pro-
cessed in parallel while each single LAMMPS simulation can
also run in parallel using the Message Passing Interface (MPI).
The implementation of ABC-SubSim on multicore clusters was
based on the TORC task-parallel library [30]. The time to solu-
tion for each function evaluation varies with the given param-
eters, introducing load imbalance in the algorithm. We deal
with this issue by submitting tasks with higher execution time
first: we sort the samples according to the value of the � pa-
rameter before distributing the corresponding function evalua-
tion or Markov chain tasks to the workers. In addition, the pro-
posed task distribution scheme is combined with the inherent
task stealing mechanism supported by TORC.

We performed our simulations on 64 compute nodes of the
Piz Daint Cray XC30 cluster at the Swiss National SuperCom-
puting Center CSCS. Each node is equipped with an 8-core
Intel Xeon E5-2670 processor, resulting in 512 cores in total.

TORC is initialized with two MPI workers per node and each
LAMMPS simulation utilizes 4 cores in turn.

Table 5 summarizes the parallel performance of ABC-
SubSim. Despite the high variance of the time for a single sim-
ulation run, we observed that the efficiency of the initialization
phase (level 0) reaches 82% as 1920 function evaluations are
distributed among the 128 workers. The lower efficiency (72%)
of Level 1 is attributed to the existence of chains with high accu-
mulated running times and the small number of available chains
that correspond to each worker (384 chains in total, 3 chains
per worker). As the algorithm evolves, the efficiency increases
and reaches 92% for the last level, which exhibits a load imbal-
ance of approximately 8% as computed by Tmax�Tavg

Tavg
= 1078�994

1078 ,
where Tmax and Tavg are the maximum and average time work-
ers were busy during the processing of the specific level.

Table 5: Detailed per-level performance results of ABC-SubSim on 64 compute
nodes of the Piz Daint cluster. T f shows the mean and standard deviation of the
simulation times, Ttot is the aggregate execution time of all simulations and Tw
is the wall-clock time per generation, respectively. All the times are reported in
seconds.

Level T f Ttotal Tw Speedup Efficiency

0 82 ± 83 156808 1497 104.7 82%
1 87 ± 57 166297 1843 90.2 71%
2 68 ± 10 129601 1237 104.8 82%
3 65 ± 6 125532 1110 113.1 88%
4 66 ± 5 127256 1078 118.0 92%

The information about the prior and the posterior values of
the parameters is given in the Table 6.

The results of the calibration are given on the Figures 5, 6, 7.
We observe that the results for the three discrepancy func-

tions are different. In the Gaussian case (Fig. 5) ✏ is unidenti-
fiable. The reason for this is that the standard deviation of the
Boltzmann factor fB appears to be insensitive to changes of ✏
and the standard deviation contributes more in the discrepancy
(a typical contribution of the mean is around 3%, standard de-
viation – around 97%). The difference between the Quantile
setting and the Kullback-Leibler setting is not so dramatic. The
main difference is that the Quantile-based discrepancy seems
more robust with respect to the changes of the parameters.

5. Conclusions

In this paper we compared two algorithms for performing
Bayesian model updating: the ABC-SubSim and the TMCMC.
The algorithms have similar methodoligy: they are population-
based sampling methods which use an annealing scheme to ap-
proach the target posterior distribution and MCMC to produce
next generation of samples. Although the ABC-SubSim and the
TMCMC have different annealing schemes and use different
MCMC parameters including different Markov chain length.
The ABC-SubSim algorithm is more generic and can be applied
to both deterministic and stochastic problems. The TMCMC,
on the other hand, is only suitable for deterministic problems,
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Figure 2: Results of parameter calibration with the ABC-SubSim using 50000
samples with the acceptance rate being above 5%. All samples are taken
from the last generation. The corresponding tolerance is � = 0.16. Diagonal:
marginal distribution of parameters estimated using kernel histograms. Above
the diagonal: projection of the ABC-SubSim samples of the posterior distri-
butions of all pairs of 2-d parameter space colored by discrepancy. Below the
diagonal: projected densities in 2-d parameter space constructed via a bivariate
kernel estimate.

Figure 3: Results of parameter calibration with the TMCMC using 50000 sam-
ples. All samples are taken from the last generation. Diagonal: marginal dis-
tribution of parameters estimated using kernel histograms. Above the diagonal:
projection of the TMCMC samples of the posterior distributions of all pairs of
2-d parameter space colored by discrepancy. Below the diagonal: projected
densities in 2-d parameter space constructed via a bivariate kernel estimate.

Mean values ✓̄ and coefficients of variation u✓ of the param-
eters obtained by formulae (14), (15) from [26] are given in

Table 4.

Table 4: Mean values ✓̄ and coefficients of variation u✓ of the parameters.

TMCMC

✓ ✓̄ u✓

µ 0.105 4.8%
↵n 0.46 15.9%
�n 7.33⇥104 53.5%
kt 1.03 27.0%
�2 5.36⇥10�5 -

ABC-SubSim

✓ ✓̄ u✓

µ 0.106 8.8%
↵n 0.47 17.5%
�n 7.45⇥104 55.0%
kt 0.99 31.2%
�2 4.40⇥10�5 -

4.3. Lennard-Jones parameters of helium using ABC-SubSim

As a stochastic model we took the calibration of the Lennard-
Jones potential parameters for helium. The Lennard-Jones po-
tential is given by

VLJ(r;�, ✏) = 4✏
"✓�

r

◆12
�

✓�
r

◆6
#
, (9)

where where ✏ is the depth of the potential well, � is the finite
distance at which the inter-particle potential is zero, r is the dis-
tance between the particles. The parameters ✏,� are uncertain
and should be calibrated given the data.

To perform the calibration we used the data on the Boltzmann
factor (10)

fB =

*
exp

 
� H

TkB

!+
(10)

where H is the enthalpy of the system of helium atoms, T is the
temperature of the system, kB is the Boltzmann constant and h·i
denotes the ensemble average. The data was generated using
the software LAMMPS [28] for a system of 1000 atoms for 20
ns in the NPT ensemble [29] with a timestep of 2fs. The system
used for calibration consists of 1000 atoms and is equilibrated
for 2ns, following an production run in the NPT ensemble for
another 2ns with a 2fs timestep.

The distribution of the Boltzmann factor is known to be non-
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We performed calibration with 3 different settings. 1) In the
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sumed the distribution of the Boltzmann factor to be Gaussian.
The discrepancy function in this case is

⇢(x, y) =

s 
µx � µy

µx

!2

+

 
�x � �y

�x

!2

. (11)

2) In the second setting we took 4 quantiles of the Boltzmann
factor distribution: q = (0.2, 0.4, 0.6, 0.8) and set the discrep-
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Figure 4: Distribution of the Boltzmann factor fB[pg�1] of a Helium system
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3) The third setting was a setting with

⇢(x, y) = DKL(P||Q), (13)

where DKL is a Kullback-Leibler divergence, P is the data dis-
tribution, Q is the simulation outcome distribution of the Boltz-
mann factor.

In all the cases the population size was set to be 1920 and
the Markov chain length was equal to 5. The algorithm was
stopped when the acceptance rate went below 5%.

The algorithm runs a full molecular dynamic simulation for
every parameter set and hence requires a significant amount of
computational work. The algorithm exhibits two levels of par-
allelism, as the Markov chains with different seeds can be pro-
cessed in parallel while each single LAMMPS simulation can
also run in parallel using the Message Passing Interface (MPI).
The implementation of ABC-SubSim on multicore clusters was
based on the TORC task-parallel library [30]. The time to solu-
tion for each function evaluation varies with the given param-
eters, introducing load imbalance in the algorithm. We deal
with this issue by submitting tasks with higher execution time
first: we sort the samples according to the value of the � pa-
rameter before distributing the corresponding function evalua-
tion or Markov chain tasks to the workers. In addition, the pro-
posed task distribution scheme is combined with the inherent
task stealing mechanism supported by TORC.

We performed our simulations on 64 compute nodes of the
Piz Daint Cray XC30 cluster at the Swiss National SuperCom-
puting Center CSCS. Each node is equipped with an 8-core
Intel Xeon E5-2670 processor, resulting in 512 cores in total.

TORC is initialized with two MPI workers per node and each
LAMMPS simulation utilizes 4 cores in turn.

Table 5 summarizes the parallel performance of ABC-
SubSim. Despite the high variance of the time for a single sim-
ulation run, we observed that the efficiency of the initialization
phase (level 0) reaches 82% as 1920 function evaluations are
distributed among the 128 workers. The lower efficiency (72%)
of Level 1 is attributed to the existence of chains with high accu-
mulated running times and the small number of available chains
that correspond to each worker (384 chains in total, 3 chains
per worker). As the algorithm evolves, the efficiency increases
and reaches 92% for the last level, which exhibits a load imbal-
ance of approximately 8% as computed by Tmax�Tavg

Tavg
= 1078�994

1078 ,
where Tmax and Tavg are the maximum and average time work-
ers were busy during the processing of the specific level.

Table 5: Detailed per-level performance results of ABC-SubSim on 64 compute
nodes of the Piz Daint cluster. T f shows the mean and standard deviation of the
simulation times, Ttot is the aggregate execution time of all simulations and Tw
is the wall-clock time per generation, respectively. All the times are reported in
seconds.

Level T f Ttotal Tw Speedup Efficiency

0 82 ± 83 156808 1497 104.7 82%
1 87 ± 57 166297 1843 90.2 71%
2 68 ± 10 129601 1237 104.8 82%
3 65 ± 6 125532 1110 113.1 88%
4 66 ± 5 127256 1078 118.0 92%

The information about the prior and the posterior values of
the parameters is given in the Table 6.

The results of the calibration are given on the Figures 5, 6, 7.
We observe that the results for the three discrepancy func-

tions are different. In the Gaussian case (Fig. 5) ✏ is unidenti-
fiable. The reason for this is that the standard deviation of the
Boltzmann factor fB appears to be insensitive to changes of ✏
and the standard deviation contributes more in the discrepancy
(a typical contribution of the mean is around 3%, standard de-
viation – around 97%). The difference between the Quantile
setting and the Kullback-Leibler setting is not so dramatic. The
main difference is that the Quantile-based discrepancy seems
more robust with respect to the changes of the parameters.

5. Conclusions

In this paper we compared two algorithms for performing
Bayesian model updating: the ABC-SubSim and the TMCMC.
The algorithms have similar methodoligy: they are population-
based sampling methods which use an annealing scheme to ap-
proach the target posterior distribution and MCMC to produce
next generation of samples. Although the ABC-SubSim and the
TMCMC have different annealing schemes and use different
MCMC parameters including different Markov chain length.
The ABC-SubSim algorithm is more generic and can be applied
to both deterministic and stochastic problems. The TMCMC,
on the other hand, is only suitable for deterministic problems,
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Ching and Chen, J. Eng. Mech., 133 (7), 2007
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HPC Approach: TORC
P. Hadjidoukas et al., 20th Euromicro International Conference on Parallel, 
Distributed and Network-Based Processing (PDP), 2012 
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‣ Task-based parallelism

‣ Runs on various architectures ranging 
from laptops to clusters

‣ Automatic load-balancing

‣ Integrable with external software used 
for model evaluation (e.g. LAMMPS)

‣ Easy to write parallel code

log-likelihood evaluationMarkov chain

model run



TORC: code example
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TORC code

void task(double *x, double *y)
{
  *y = x[0] + x[1];
}

int main(int argc, char *argv[])
{
 double result[100];

 torc_register_task(task);
 torc_init(argc, argv, MODE_MW);

 for (int i=0; i<100; i++)
 {
 double d[2] = {drand48(), drand48()};
 torc_task(-1, task, 2, 

     2, MPI_DOUBLE, CALL_BY_COP,
     1, MPI_DOUBLE, CALL_BY_RES,
     &d, &result[i]);
}
torc_waitall();
return 0;
}

serial code

void task(double *x, double *y)
{
  *y = x[0] + x[1];
}

int main(int argc, char *argv[])
{
  double result[100];

 

for (int i=0; i<100; i++)
 {
 double d[2] = {drand48(), drand48()};
 task(d, &result[i]);

 }

 return 0;
}
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Pi4U: UQ Library on top of TORC

‣ Open-source library distributed under LGPL licence

‣ Available at http://www.cse-lab.ethz.ch/software/Pi4U

‣ Algorithms: 

• TMCMC (for exact Bayesian inference)

• ABC-SubSim (for approximate Bayesian inference)

• CMA-ES (for optimisation)

• Subset Simulation (for rare events sampling)

• A-PNDL (for adaptive parallel numerical differentiation)

http://www.cse-lab.ethz.ch/software/Pi4U
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Example 1: Red Blood Cell model (3/3)

18posterior distribution of the parameters

Algorithm: TMCMC Done in collaboration with S. Litvinov, D. Alexeev

1024 samples per stage, 128 GPU nodes on Piz Daint (CSCS), 
5 hours of wall-clock time per stage. CUDA + TORC workers.

MPV: (0.49, 4.86) (our calibration) vs 
(0.45, 1.99) (Fedosov, PhD thesis, 2010)
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Example 2: Subcellular Element Model (3/3)

19Figure 2: Reconstructed marginal uncertainties (diagonal panels), posterior samples (upper right panel) and contour
plots (lower left panel) of the posterior PDF using the SEM++ model for cell stretching, without HI (A) and with
HI (B).

In Fig. 1, we show images of in silico cell stretching with and without HI. The same initial configuration for the
the cell at t = 0 s is used for both SEM runs with and without HI. We observe that, without HI the cell ruptures at a
strain of " ⇡ 1.3. With HI, on the other hand, we are able to get strains up to " ⇡ 5 before the cell ruptures with the
resulting cell shapes closely resembling the ones from living cells [6]. We note that active biochemical processes
have also been proposed to allow for large strains by rearranging SCE in response to slow stretching [16]. HI is a
complimentary approach as it is a purely passive mechanism aimed to improve the model of the cytoplasm used in
the SEM.

3.3 Bayesian inference for creep response

We use ABC-SubSim to find the most likely SEM++ model for cells with respect to the experimentally measured
creep response [6]. In the previous section, we had not considered a large range of parameter variations, while here
we wish to carefully assess a range of possible model parameters. We extract experimental data values of "(t) at
ND discrete time points ti up to t = 21 s for an applied stress of � = 100 Pa (extracted from a log-log plot of
Desprat et al. [6]). The SEM++ simulations with and without HI are run as described previously. The discrepancy
between the experimental data "D(ti) and the simulation output "S(ti) was computed as the sum of squared errors
SSE =

PND

i=1("S(ti)� "D(ti))
2.

We perform simulations for the two different cell stretching models using the ABC-SubSim through the ⇧4U
framework. In both cases, we generate N = 2000 samples per level of ABC-SubSim. The initial probability P0

is set to 0.5, and the minimum acceptance rate is set to 0.05. The stopping criterion of the method is based on the
value of the acceptance rate.

The model parameters to calibrate are not the same for the two models. In the SEM++ without HI model, we
calibrate the parameters 0, ⌘F0 and ↵, where we set ⌘0 = ⌘F0 0. The values of these parameters are in the range
0.001–0.02 N m

�1 for 0, 0.3–3.0 for ⌘F0 and 2.0–2.5 for ↵. In the SEM++ with HI model, we calibrate the
parameters 0, ⌘FH , ↵ and aH , where we set rH = aHreq , and ⌘H = ⌘FH0. The values of these parameters
range from 0.001–0.02 N m

�1 for 0, 100–1000 s m

�1 for ⌘FH , 2.0–2.5 for ↵ and 0.1–0.5 for aH . In all cases, we
prescribe uniform priors in the given range.

Fig. 2 shows the final distribution of the accepted samples for the models of SEM++ with (A) and without HI (B).
In Fig. 2A, we observe that final parameter range of 0 and ↵ is restricted compared to the specified prior. The
parameter ⌘F0 still spans the full parameter range, but we observe a strong correlation between ⌘F0 and 0. In the
contour plot of ⌘F0 against ↵, we also observe that the algorithm gives a relatively high posterior PDF to the entire

2000 samples per stage, 384 CPUs on Brutus cluster (ETHZ), 
2.5 hours of wall-clock time per stage. TORC workers.

posterior distribution of the parameters

Algorithm: ABC-SubSim Credit: A. Economides, G. Tauriello, 2015
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Example 3: Lennard-Jones for Helium (3/3)
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Gaussian Setting Quantile Setting Kullback-Leibler Setting

Table 6: Prior and posterior information of parameters ✓ =
✓
�[nm], ✏


ag·nm2

ns2 ·K

�◆
of the Helium system. The number of generations Ngen computed before the

acceptance rate reached a threshold value of 5% and achieved tolerance levels � for three models: MG [Gaussian setting (11)], MQ [quantile setting (12)], MKL
[Kullback-Leibler setting (13)]. Prior bounds [✓l, ✓r], mean values ✓̄ and coefficients of variation u✓ of the Lennard-Jones parameters of Helium.

Model [�l,�r] �̄ u� [✏l, ✏r] ✏̄ u✏ Ngen �

MG [0.1,0.8] 0.2437 12.7% [0.01,1.0] 0.443 60.5 % 4 0.02
MQ [0.1,0.8] 0.2591 2.1 % [0.01,1.0] 0.136 6.3 % 7 2e-5
MKL [0.1,0.8] 0.2737 6.2% [0.01,1.0] 0.128 18.4 % 6 0.09

Figure 5: Results of parameter calibration in the Gaussian setting (11) with
the ABC-SubSim. All samples are taken from the last generation. Diagonal:
marginal distribution of parameters estimated using kernel histograms. Above
the diagonal: projection of the ABC-SubSIm samples of the posterior distri-
butions of all pairs of 2-d parameter space colored by discrepancy. Below the
diagonal: projected densities in 2-d parameter space constructed via a bivariate
kernel estimate. The green star indicates the parameters for which tha data were
created.

but on them it shows more accurate predictions. As was men-
tioned above the ABC-SubSim does not have a well-defined
stopping criterium while the TMCMC does, which is a big ad-
vantage of the latter.
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“true” parameters:

� = 0.2556, ✏ = 0.141

� = 0.2556, ✏ = 0.141

15360 samples per stage, 4096 CPUs on Piz Daint (CSCS), 
0.4 hours of wall-clock time per stage. MPI (LAMMPS)+TORC workers.

unidentifiable



Summary
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‣ Pi4U allows to exploit efficiently HPC architectures for 
Bayesian inference in large-scale models

‣ We must re-examine the validation of many classical 
simulation models in Science and Engineering

‣ Bayesian inference offers a way to do this 
systematically 
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