Data-Driven, Bayesian Uncertainty Quantification for Large-Scale Simulations

Lina Kulakova

WITH: P. Angelikopoulos, P. Chatzidoukas, C. Papadimitriou, P. Koumoutsakos

SIAM UQ, Lausanne

5-8 April, 2016

CSElab

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Motivation

- Simulations in Engineering and Life Sciences usually involve computationally intensive models (e.g. Molecular Dynamics)
 - Bayesian inference => large numbers of model evaluations
 - High Performance Computing (HPC) is a must!
 - How to exploit HPC architectures for Bayesian UQ+P?

Examples of Models

Example 1: Red Blood Cell model (1/3)

$$\mathbf{F}^{\text{cell}} = \sum_{n=1}^{N} \boldsymbol{F}_{0,n-1,n,n+1}^{\text{dihedral},1} + \boldsymbol{F}_{0,n,N+n,n+1}^{\text{dihedral},2} + \boldsymbol{F}_{0,n,n+1}^{\text{triangle}} + \boldsymbol{F}_{0,n}^{\text{bond}}$$

J. Li et al., 2005

Calibrate for:

maximum spring extension x_0 persistence length p

$$\boldsymbol{F}_{0,n}^{\mathrm{bond}} = -\frac{k_BT}{p} \left(\frac{1}{4(1-x_n)^2} - \frac{1}{4} + x_n \right) + \frac{k_p}{x_0 l_0}$$
 [spring-like force]
$$+2\sqrt{k_BT\gamma^T}d\boldsymbol{W}_{ij}^S$$
 [dissipative force]

$$d\overline{\boldsymbol{W}_{ij}^{S}} = d\boldsymbol{W}_{ij}^{S} - tr[d\boldsymbol{W}_{ij}^{S}]\mathbf{1}/3$$

Example 1: Red Blood Cell model (2/3)

Data: stretching experiment (Suresh et al., 2005)

Credit: Suresh et al., 2005

Simulation: uDeviceX https://github.com/uDeviceX/uDeviceX

Stochastic forward model:

$$D = M(\theta) + \epsilon, \epsilon \sim \mathcal{N}(0, \Sigma),$$

$$\Sigma = \operatorname{diag}(\underbrace{\sigma_1^2 + \tau_1^2 + \omega_1^2, \dots, \sigma_2^2 + \tau_1^2 + \omega_1^2}_{N}, \underbrace{\sigma_2^2 + \tau_2^2 + \omega_2^2, \dots, \sigma_2^2 + \tau_2^2 + \omega_2^2}_{N})$$

Example 2: Subcellular Element Model (1/3)

T. J. Newman, 2005

Cell with N subcellular elements

Parameters of F_i :

Shape of the Morse-like potential:

$$V(r,\varphi) = u_0 \left(e^{2\rho \left(1 - r^2/(\varphi^2 r_0^2)\right)} - \alpha e^{\rho \left(1 - r^2/(\varphi^2 r_0^2)\right)} \right) \varphi^3$$

Stiffness
$$\kappa = \kappa_0 N^{-1/3} \left(1 - \lambda N^{-1/3} \right)$$

Viscosity
$$\eta = \eta_0/N$$

Example 2: Subcellular Element Model (2/3)

Data: strain vs time (Desprat et al., 2005)

Desprat et al., 2005

Stochastic forward model:

$$\boldsymbol{D} = M(\boldsymbol{\theta})$$

discrepancy: $SSE = \sum_{i=1}^{N_D} (\varepsilon_S(t_i) - \varepsilon_D(t_i))^2$

Example 3: Lennard-Jones for Helium (1/3)

Lennard-Jones potential:

Data:

Boltzmann factor:

$$f_B = \left\langle \exp\left(-\frac{H}{Tk_B}\right) \right\rangle$$
 relative probability of a particular arrangement with a given energy

PDF of the Boltzmann factor for a system with 1000 atoms

Example 3: Lennard-Jones for Helium (2/3)

Discrepancies:

Gaussian Setting

Quantile Setting

Kullback-Leibler Setting

simulation outcome
$$\rho(x,y) = \sqrt{\left(\frac{\mu_x - \mu_y}{\mu_x}\right)^2 + \left(\frac{\sigma_x - \sigma_y}{\sigma_x}\right)^2}$$
 mean and standard deviation

simulation outcome
$$\rho(x,y) = \left(\sum_{k=1}^{4} \left(\frac{q_k(x) - q_k(y)}{q_k(x)}\right)^2\right)^{1/2}$$

$$q = (0.2, 0.4, 0.6, 0.8)$$
 quantiles

simulation outcome
$$\rho(x,y) = D_{KL}(P||Q) = \int_{-\infty}^{\infty} p(x) \log \frac{p(x)}{q(x)} \mathrm{d}x$$
 data

shows how much information was lost when approximating P with Q

Bayesian Inference Algorithms

TMCMC

Ching and Chen, J. Eng. Mech., 133 (7), 2007

ABC-SubSim

Chiachio et al., SIAM J. Sci. Comput., 36 (3), 2014

HPC Tools

HPC Approach: TORC

P. Hadjidoukas et al., 20th Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP), 2012

- Runs on various architectures ranging from laptops to clusters
- Automatic load-balancing
- Integrable with external software used for model evaluation (e.g. LAMMPS)
- Task-based parallelism
- Easy to write parallel code

TORC: code example

serial code

```
void task(double *x, double *y)
  *y = x[0] + x[1];
int main(int argc, char *argv[])
  double result[100];
for (int i=0; i<100; i++)
   double d[2] = \{drand48(), drand48()\};
   task(d, &result[i]);
 return 0;
```

TORC code

```
void task(double *x, double *y)
  *y = x[0] + x[1];
int main(int argc, char *argv[])
 double result[100];
 torc register task(task);
 torc_init(argc, argv, MODE_MW);
 for (int i=0; i<100; i++)
   double d[2] = \{drand48(), drand48()\};
   torc_task(-1, task, 2,
      2, MPI DOUBLE, CALL BY COP,
      1, MPI_DOUBLE, CALL_BY_RES,
      &d, &result[i]);
torc waitall();
return 0;
```

Pi4U: UQ Library on top of TORC

- Open-source library distributed under LGPL licence
- Available at http://www.cse-lab.ethz.ch/software/Pi4U
- Algorithms:
 - TMCMC (for exact Bayesian inference)
 - ABC-SubSim (for approximate Bayesian inference)
 - *CMA-ES* (for optimisation)
 - Subset Simulation (for rare events sampling)
 - A-PNDL (for adaptive parallel numerical differentiation)

Results

Example 1: Red Blood Cell model (3/3)

Algorithm: TMCMC

Done in collaboration with S. Litvinov, D. Alexeev

1024 samples per stage, 128 GPU nodes on Piz Daint (CSCS), 5 hours of wall-clock time per stage. CUDA + TORC workers.

posterior distribution of the parameters

Example 2: Subcellular Element Model (3/3)

Algorithm: ABC-SubSim

Credit: A. Economides, G. Tauriello, 2015

2000 samples per stage, 384 CPUs on Brutus cluster (ETHZ), 2.5 hours of wall-clock time per stage. TORC workers.

posterior distribution of the parameters

robust prediction

Example 3: Lennard-Jones for Helium (3/3)

Gaussian Setting

Quantile Setting

Kullback-Leibler Setting

"true" parameters:

$$\sigma = 0.2556$$

$$\epsilon = 0.141$$

Model	$[\sigma_l,\sigma_r]$	$\bar{\sigma}$	u_{σ}	$[\epsilon_l,\epsilon_r]$	Ē	u_{ϵ}	N_{gen}	δ
M_G	[0.1, 0.8]	0.2437	12.7%	[0.01, 1.0]	0.443	60.5 %	4	0.02
M_Q	[0.1,0.8]	0.2591	2.1 %	[0.01, 1.0]	0.136	6.3 %	7	2e-5
M_{KL}	[0.1, 0.8]	0.2737	6.2%	[0.01, 1.0]	0.128	18.4 %	6	0.09

15360 samples per stage, 4096 CPUs on Piz Daint (CSCS), 0.4 hours of wall-clock time per stage. MPI (LAMMPS)+TORC workers.

Summary

- Pi4U allows to exploit efficiently HPC architectures for Bayesian inference in large-scale models
- We must re-examine the validation of many classical simulation models in Science and Engineering
- Bayesian inference offers a way to do this systematically

Thank you!