

Computation Science and Engineering Laboratory www.cse-lab.ch

Uncertainty Quantification in Cloud Cavitation Collapse using Multi-Level Monte Carlo

Computational Science and Engineering Laboratory ETH Zurich, Switzerland

SIAM Conference on Uncertainty Quantification Lausanne, Switzerland

Jonas Šukys

April 7, 2016

Work in progress in collaboration with

Petros Koumoutsakos Ursula Rasthofer Panagiotis Hadjidoukas Diego Rossinelli

Fabian Wermelinger

Cavitation phenomenon

Image courtesy: C. Koumoutsakos

 $p + \frac{1}{2}\rho u^2 = \text{const.}$

Image courtesy: C. Brennen

Single cavity bubble collapse

Image courtesy: DynaFlow Inc.

Destructive power of cavitation

AVOID to maintain performance

- turbines (hydroelectricity, pumps)
- high pressure fuel injectors
- high pressure pipes
- propellers

Image courtesy: Brennen, "Hydrodynamics of Pumps". Oxford University Press, 1994.

HARNESS for medical treatments

- ultrasonic drug delivery
- kidney shockwave lithotripsy
 - collapse of cavities near stone surface

Image courtesy:

Bazan-Peregrino et al., Cavitation-enhanced delivery of a replicating oncolytic adenovirus to tumors using focused ultrasound.

Journal of Controlled Release Volume 169, Issues 1–2, 2013, pp. 40 - 47.

Governing equations [Kappila] [Masoni] [Allaire]

Multiphase flow equations

$$(\alpha_1 \rho_1)_t + \nabla \cdot (\alpha_1 \rho_1 \mathbf{u}) = 0,$$

$$(\alpha_2 \rho_2)_t + \nabla \cdot (\alpha_2 \rho_2 \mathbf{u}) = 0,$$

$$(\rho \mathbf{u})_t + \nabla \cdot (\rho \mathbf{u} \otimes \mathbf{u} + p \mathbf{I}) = 0,$$

$$E_t + \nabla \cdot ((E + p) \mathbf{u}) = 0.$$

Advection of phase volume fractions $(\alpha_2)_t + \mathbf{u} \cdot \nabla \alpha_2 = K(\alpha_{1,2}, \rho_{1,2}, c_{1,2}) \nabla \cdot \mathbf{u}.$

Equation of state (water phase: stiffened) $E = \frac{1}{2}\rho \mathbf{u}^2 + \Gamma p + \Pi, \quad \Gamma = \frac{1}{\gamma - 1}, \quad \Pi = \frac{\gamma p_c}{\gamma - 1}.$

$$p = \frac{(E - \rho \mathbf{u}^2) - (\alpha_1 \Pi_1 + \alpha_2 \Pi_2)}{\alpha_1 \Gamma_1 + \alpha_2 \Gamma_2}, \quad \frac{1}{\rho c^2} = \frac{\alpha_1}{\rho_1 c_1^2} + \frac{\alpha_2}{\rho_2 c_2^2}.$$

Finite Volume Solver

 $\partial_t \mathbf{U}(\mathbf{x},t)$

 $\mathbf{U}_j(t) \approx \frac{1}{2}$

WENC [Harten

 $\mathbf{F}_{j+rac{1}{2}} pprox \mathbf{F}$

- Cell averages
- Semi-discrete formulation (ODE)
- High order reconstruction
- Approximate Riemann solver HLLC
- RK3 time stepping [Gottlieb, Shu, Tadmor]

$$+ \operatorname{div} \mathbf{F}(\mathbf{U}, \mathbf{x}) = 0$$

$$\frac{1}{C_j} \int_{C_j} \mathbf{U}(x, t) dx$$

$$\frac{1}{T_j} \left(\mathbf{F}_{j+\frac{1}{2}} - \mathbf{F}_{j-\frac{1}{2}} \right) = 0$$

$$\frac{1}{T_j} \left(\mathbf{U} + \mathbf{U} \right)$$

$$\frac{1}{T_j} \left(\mathbf{U} + \mathbf{U} \right)$$

$$\frac{1}{T_j} \left(\mathbf{U} + \mathbf{U} \right)$$

 $\mathbf{U}_{j}^{n}
ightarrow \mathbf{U}_{j}^{n+1}$

CUBISM-MPCF

Peta-scale Multi-Phase Compressible Flow approximate Riemann solver [Rossinelli, Hejazialhosseini, Hadjidoukas, Conti, Bergdorf, Wermelinger, Rasthofer, Šukys]

Block-based memory layout Instruction/data-level parallelism (spatial locality) (Structure of Arrays for SSE/QPX vectorization)

ACM Gordon Bell Prize: 14.4 Pflops (72% peak) on Sequoia (IBM BlueGene/Q, 1.6M cores) Wavelet-based I/O compression | ~100x reduction | 1% overhead **Fault-tolerance with restart** mechanism | lossless compression ~10x reduction

Domain decomposition MPI/OpenMP

(dynamic loop scheduling) (non-blocking P2P communication)

(asynchronous progress for C/T overlap)

Petascale simulations of cloud cavitation collapse

50 thousand cavities at 100 bar 0.5 billion mesh elements 25 thousand time steps 25x pressure amplification

1 / 500 000 X

pressure velocity

Uncertainty quantification in cloud cavitation collapse

Collapse of two random clouds 2 clouds: different statistical realizations (RNG seeds) of the initial configuration

Spherical clouds of 100 equally sized (75µm) cavities **Uniformly** distributed (random) cavity **positions**

Collapse of two random clouds

2 clouds: different statistical realizations (RNG seeds) of the initial configuration

Previous work and goals

PREVIOUS WORK

- Congedo, Goncalves, Rodio "About the uncertainty quantification of turbulence and cavitation" European Journal of Mechanics B/Fluids 53 (2015) 190–204 2D, sDEM [Abgrall, 2015], forward UQ propagation

GOALS

- **Confidence interval** estimation for local integral quantities of interest
 - multiple sensors for pressure, density, speed of sound, etc.
- Investigation of observed transition from random to focused micro-collapses for spherical clouds
- **Fault tolerance**

.6.2010 11:02:04 -4493.9866[ms] 00000000 MotionBLITZ EoSens mini1 Mikrotron GmbH 320x80 @ 15000fps 61µs

Multi-Level Monte Carlo [Heinrich, 1999] [Giles, 2008] Variance reduction technique using sampling on a hierarchy of mesh resolutions

Mesh

Multi-Level Monte Carlo method

- 1. Generate i.i.d. samples of random input quantities for each resolution level 0...L 2. For each level and sample, solve for approximate solutions using Cubism-MPCF 3. Assemble MLMC estimator for statistics of quantities of interest:

$$\mathbb{E}[q_L] = \mathbb{E}[q_0] + \sum_{\ell=1}^{L} \left(\mathbb{E}[q_\ell] - \mathbb{E}[q_{\ell-1}] \right) \approx \frac{1}{M_0} \sum_{i=1}^{M_0} q_0^i + \sum_{\ell=1}^{L} \frac{1}{M_\ell} \sum_{i=1}^{M_\ell} (q_\ell^i - q_\ell^i - q_\ell^i)$$

$$\varepsilon^2 = \frac{\mathbb{V}[q_0]}{M_0} + \sum_{\ell=1}^L \frac{\mathbb{V}[q_\ell - q_{\ell-1}]}{M_\ell}$$

Variance reduction technique using sampling on a hierarchy of mesh resolutions

Sampling error of the MLMC estimator is given in terms of level correlations:

$$\approx \mathbb{V}[q] \left(\frac{1}{M_0} + 2\sum_{\ell=1}^{L} \frac{1 - \operatorname{Cor}[q_\ell, q_{\ell-1}]}{M_\ell} \right)$$

Insight to inner workings of MLMC Multiple samples for each resolution level

Insight to inner workings of MLMC

Monte Carlo variance estimates for differences between resolution levels decrease

Insight to inner workings of MLMC

Variance estimates for differences between resolution levels decrease

Results of MLMC

Uncertainty quantification (i.e. mean, confidence intervals) for Qols

vapor volume

pressure sensor

Optimized number of samples

Using empirical estimators for variances and measurements of computations work

$$\varepsilon^{2} = \frac{\mathbb{V}[q_{0}]}{M_{0}} + \sum_{\ell=1}^{L} \frac{\mathbb{V}[q_{\ell} - q_{\ell-1}]}{M_{\ell}} \approx \frac{\sigma_{0}^{2}}{M_{0}} + \sum_{\ell=1}^{L} \frac{\sigma_{\ell}^{2}}{M_{\ell}}.$$

Optimization problem

Given a required tolerance τ and variances σ_{ℓ}^2 each level, minimize computational work and find optimal number of samples such that tolerance is attained: $\varepsilon \leq \tau$.

Remark: an analogous result is available for a prescribed computational budget (instead of tolerance).

Sampling **error** of the MLMC estimator is given in terms of **level variances**:

Optimized number of samples

Using Lagrange multipliers for derivations, optimized number of samples are given by

$$M_{\ell} = \left[\frac{1}{\tau^2} \sqrt{\frac{\sigma_{\ell}^2}{\operatorname{Work}_{\ell}}} \sum_{k=0}^{L} \sqrt{\sigma_k^2 \operatorname{Work}_k}\right]$$

Insight to inner workings of MLMC

adaptive number of warmup samples

Majority of samples computed on lowest levels of resolution - reduced budget

Uncertainty quantification in observed transition from random to focused & synchronous micro-collapses

Uncertainty Quantification

Multi-Level Monte Carlo estimation of mean values and 90% confidence intervals distance from the cloud center interface

uncertain positions of initial collapses

pre-collapse: wide confidence interval collapse: **narrow** confidence interval

Uncertainty Quantification

Multi-Level Monte Carlo estimation of mean values and 90% confidence intervals distance from the cloud center interface

pre-collapse: wide confidence interval collapse: **narrow** confidence interval final collapse **certainly** at the cloud center

Observed **limitations** of MLMC in cloud cavitation collapse

Observed limitations of MLMC

Accuracy requirements limit the number of coarsening levels

semi-transparent lines correspond to the same sample (realization) but on a coarser resolution

Summary and outlook

- **Confidence intervals** estimation for local integral quantities of interest
 - multiple sensors for pressure, density, speed of sound, etc.
 - instead of a single value, full empirical **distribution of peak pressures** could be provided
- Uncertainty quantification on the transition from random to focused micro-collapses
- **Fault tolerance:** in case some samples fail, the rest can still be used to assemble estimators

Outlook

- use more levels of resolution to increase the efficiency of MLMC (achieve better speedup)
- Investigate the effect of uncertain and inhomogeneous vapor pressures inside cavities

Investigate the effect of uncertain cloud geometry (e.g. small surface perturbations in a sphere)

HPC resources

CSCS allocation Project s500 **Piz Daint** Cray XC30 42 176 cores 5 272 GPUs 7.8 PFlops Switzerland

PRACE allocation Jülich Research Center Project 091 JUQUEEN BlueGene/Q 458 752 cores 5.9 PFlops Germany

INCITE allocation Argonne National Labs Project "CloudPredict" **MIRA** BlueGene/Q 786 432 cores 10 PFlops United States

PRACE allocation CINECA Project 09_2376 FERMI BlueGene/Q 163 840 cores 2.1 PFlops Italy

Thanks to

ETHzürich

FONDS NATIONAL SUISSE SCHWEIZERISCHER NATIONALFONDS FONDO NAZIONALE SVIZZERO **SWISS NATIONAL SCIENCE FOUNDATION**

CSCS

Centro Svizzero di Calcolo Scientifico Swiss National Supercomputing Centre

THANK YOU

Index

Acceleration of UQ simulations using MLMC

Using empirical estimators for variances and measurements of computational work

Speedup of the MLMC agains plain MC can be estimated as follows

speedup =
$$\left(\frac{\mathbb{V}[q_L]}{\varepsilon^2} \operatorname{Work}_L\right) / \left($$

computational work for MC

 $\left(M_0 \text{Work}_0 + \sum_{\ell=1}^L M_\ell \left(\text{Work}_\ell + \text{Work}_{\ell-1} \right) \right).$

computational work for MLMC

