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Cavitation phenomenon
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Destructive power of cavitation

AVOID to maintain performance
‣ turbines (hydroelectricity, pumps) 
‣ high pressure fuel injectors 
‣ high pressure pipes 
‣ propellers

HARNESS for medical treatments
‣ ultrasonic drug delivery 
‣ kidney shockwave lithotripsy 
‣ collapse of cavities near stone surface

Image courtesy: 
Bazan-Peregrino et al., Cavitation-enhanced delivery of a replicating oncolytic 
adenovirus to tumors using focused ultrasound. 
Journal of Controlled Release Volume 169, Issues 1–2, 2013, pp. 40 - 47.

Image courtesy: 
Brennen, “Hydrodynamics of Pumps”. Oxford University Press, 1994.
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Governing equations [Kappila] [Masoni] [Allaire]

Equation of state (water phase: stiffened)
E =

1

2
⇢u2 + �p+⇧, � =

1

� � 1
, ⇧ =

�pc
� � 1

.

p =
(E � ⇢u2)� (↵1⇧1 + ↵2⇧2)

↵1�1 + ↵2�2
,

1

⇢c2
=

↵1

⇢1c21
+

↵2

⇢2c22
.

Advection of phase volume fractions
(↵2)t + u ·r↵2 = K(↵1,2, ⇢1,2, c1,2)r · u.

Multiphase flow equations
8
>>><

>>>:

(↵1⇢1)t +r · (↵1⇢1u) = 0,

(↵2⇢2)t +r · (↵2⇢2u) = 0,

(⇢u)t +r · (⇢u⌦ u+ pI) = 0,

Et +r · ((E + p)u) = 0.

water vapor cavities

density ⇢, velocity vector u, pressure p ↵1 + ↵2 = 1

(↵1 = 1, ↵2 = 0) (↵1 = 0, ↵2 = 1)

2D slice of a 3D domain cavity sizes of 50-200 µm (log-Gaussian)
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Finite Volume Solver

Cj
xj+1/2xj-1/2Cj-1

Uj

Uj-1
Fj-1/2

Fj+1/2

∆x‣ Cell averages Uj(t) ⇡
1

|Cj |

Z

Cj

U(x, t)dx

‣ Semi-discrete 
formulation (ODE)

d

dt
Uj(t) +

1

�x

⇣
Fj+ 1

2
� Fj� 1

2

⌘
= 0

‣ High order 
reconstruction

WENO3 / WENO5 
[Harten, Shu, Osher]

xj+1/2xj-1/2

Uj

Uj-1 Uj-1/2

Uj-1/2
_

+

‣ RK3 time stepping 
[Gottlieb, Shu, Tadmor]

Un
j ! Un+1

j

‣ Approximate Riemann 
solver HLLC Fj+ 1

2
⇡ FHLLC

j+ 1
2

(U+,U�)

@tU(x, t) + divF(U,x) = 0
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CUBISM-MPCF

Block-based memory layout
(spatial locality)

Instruction/data-level parallelism
(Structure of Arrays for SSE/QPX vectorization)

Domain decomposition MPI/OpenMP
(dynamic loop scheduling) (non-blocking P2P communication)

(asynchronous progress for C/T overlap)

Peta-scale Multi-Phase Compressible Flow approximate Riemann solver
[Rossinelli, Hejazialhosseini, Hadjidoukas, Conti, Bergdorf, Wermelinger, Rasthofer, Šukys]

‣ ACM Gordon Bell Prize: 14.4 Pflops (72% peak) on Sequoia (IBM BlueGene/Q, 1.6M cores) 
‣ Wavelet-based I/O compression | ~100x reduction | 1% overhead 
‣ Fault-tolerance with restart mechanism | lossless compression ~10x reduction
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Petascale simulations of cloud cavitation collapse



10



1 / 500 000 X

pressure
velocity

interface



12

Uncertainty quantification
in cloud cavitation collapse
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Collapse of two random clouds
2 clouds: different statistical realizations (RNG seeds) of the initial configuration

Uniformly distributed (random) cavity positions
Spherical clouds of 100 equally sized (75µm) cavities
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Collapse of two random clouds
2 clouds: different statistical realizations (RNG seeds) of the initial configuration

maximum pressure

significant variations 
800 - 1500 bar

Uniformly distributed (random) cavity positions
Spherical clouds of 100 equally sized (75µm) cavities
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Previous work and goals
PREVIOUS WORK 
‣ Congedo, Goncalves, Rodio  

“About the uncertainty quantification of turbulence and cavitation” 
European Journal of Mechanics B/Fluids 53 (2015) 190–204 

‣ 2D, sDEM [Abgrall, 2015], forward UQ propagation

GOALS 
‣ Confidence interval estimation for local integral quantities of interest 
‣ multiple sensors for pressure, density, speed of sound, etc. 

‣ Investigation of observed transition from random to focused micro-collapses for spherical clouds 
‣ Fault tolerance

mean of vapor fraction variance of vapor fraction
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Level Number of samples

1

0

2

Mesh

Multi-Level Monte Carlo [Heinrich, 1999] [Giles, 2008]

Variance reduction technique using sampling on a hierarchy of mesh resolutions
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Multi-Level Monte Carlo method
Variance reduction technique using sampling on a hierarchy of mesh resolutions

1. Generate i.i.d. samples of random input quantities for each resolution level 0…L 
2. For each level and sample, solve for approximate solutions using Cubism-MPCF 
3. Assemble MLMC estimator for statistics of quantities of interest:

‣ Sampling error of the MLMC estimator is given in terms of level correlations:
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+
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Insight to inner workings of MLMC
Multiple samples for each resolution level

expensive to computecheap to compute

semi-transparent lines correspond to the same sample (realization) but on a coarser resolution
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Insight to inner workings of MLMC

expensive to compute
most of sampling 
is required here 

(cheap!)

Monte Carlo variance estimates for differences between resolution levels decrease
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Insight to inner workings of MLMC
Variance estimates for differences between resolution levels decrease
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Assembly of the MLMC estimator
Monte Carlo estimates from each resolution level are combined together

+ +
MLMC estimate=

E[qL] = E[q0] +
LX

`=1

�
E[q`]�E[q`�1]
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qi0 +
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Results of MLMC
Uncertainty quantification (i.e. mean, confidence intervals) for QoIs

vapor volume pressure sensor

no significant uncertainty wide 90% confidence interval 
2000 bar - 2500 bar
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Optimized number of samples
Using empirical estimators for variances and measurements of computations work

‣ Sampling error of the MLMC estimator is given in terms of level variances:

"2 =
V[q0]
M0

+
LX

`=1

V[q` � q`�1]

M`
⇡ �2

0
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+

LX

`=1

�2
`
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.

Optimization problem 
Given a required tolerance τ and 

variances      each level, 
minimize computational work and 
find optimal number of samples 

such that tolerance is attained:          .

�2
`

"  ⌧

Optimized number of samples 
Using Lagrange multipliers for derivations, 
optimized number of samples are given by 

M` =

2
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1

⌧2

s
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`
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q
�2
kWorkk
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777
.

Remark: an analogous result is available for a prescribed computational budget (instead of tolerance).
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PyMLMC

solver

MPCF wrapper

other solver

samples scheduler

statistics

indicators

errors

CubismMPCF

results

ultimate goal

native TORC

confidence mean ???

other wrapper

variances runtimes

optimization

?
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Insight to inner workings of MLMC
Majority of samples computed on lowest levels of resolution - reduced budget

adaptive number of warmup samples observed speedup: 5.8x
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Uncertainty quantification in observed transition 
from random to focused & synchronous micro-collapses



uncertain positions of initial collapses
27

Uncertainty Quantification
Multi-Level Monte Carlo estimation of mean values and 90% confidence intervals

distance from the cloud center

pre-collapse: wide confidence interval 
collapse: narrow confidence interval

pressure

velocity

interface



28

Uncertainty Quantification
Multi-Level Monte Carlo estimation of mean values and 90% confidence intervals

distance from the cloud center

pre-collapse: wide confidence interval 
collapse: narrow confidence interval

pressure

velocity

interface

final collapse certainly at the cloud center
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Observed limitations of MLMC
in cloud cavitation collapse
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Observed limitations of MLMC
Accuracy requirements limit the number of coarsening levels

semi-transparent lines correspond to the same sample (realization) but on a coarser resolution

NO proper convergence  
for increasing resolutions

coarse fine
difference!

Differences between 
two consecutive levels 

do NOT decrease 
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Summary and outlook

‣ Confidence intervals estimation for local integral quantities of interest 
‣ multiple sensors for pressure, density, speed of sound, etc. 
‣ instead of a single value, full empirical distribution of peak pressures could be provided  

‣ Uncertainty quantification on the transition from random to focused micro-collapses 

‣ Fault tolerance: in case some samples fail, the rest can still be used to assemble estimators  
  

‣Outlook 
‣ use more levels of resolution to increase the efficiency of MLMC (achieve better speedup) 
‣ investigate the effect of uncertain and inhomogeneous vapor pressures inside cavities 
‣ investigate the effect of uncertain cloud geometry (e.g. small surface perturbations in a sphere)
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HPC resources
CSCS allocation 
Project s500 
Piz Daint 
Cray XC30 
42 176 cores 
5 272 GPUs 
7.8 PFlops 
Switzerland

PRACE allocation 
Jülich Research Center 
Project 091 
JUQUEEN 
BlueGene/Q 
458 752 cores 
5.9 PFlops 
Germany

PRACE allocation 
CINECA 
Project 09_2376 
FERMI 
BlueGene/Q 
163 840 cores 
2.1 PFlops 
Italy

INCITE allocation 
Argonne National Labs 
Project “CloudPredict” 
MIRA 
BlueGene/Q 
786 432 cores 
10 PFlops 
United States
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Index
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Acceleration of UQ simulations using MLMC
Using empirical estimators for variances and measurements of computational work

‣ Speedup of the MLMC agains plain MC can be estimated as follows

computational work  
for MLMC

computational work  
for MC

speedup =

✓
V[qL]
"2

WorkL

◆ .  
M0Work0 +
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`=1

M`

⇣
Work` +Work`�1

⌘!
.


