CFD in Manufacturing and Medical Applications

Petros Koumoutsakos
Chair of Computational Science

Modeling and Technology

- No aircraft is flown without having been designed with complex, mechanistic simulations

Modeling and Medicine

- Heuristics and Data - Models ?

Dreamstime.com

[2] S. T. THORODDSEN, T. G. ETOH, AND K. TAKEHARA. CROWN BREAKUP BY MARANGONI INSTABILITY. J. FLUID MECH., 557(-1):63-72, 2006.

T $\alpha \pi \alpha \nu T \alpha \rho \varepsilon \iota$

16384 Cores - 10 Billion Particles - 60\% efficiency

Tumor Induced Angiogenesis

CFD: Then and Now

$\operatorname{Re}=9500 \sim 10^{6}$ particles

199520 Days on CRAY YMP

Outline

- COMPLEX DEFORMING GEOMETRIES
- Meshing or Meshless ?
- FAST AND ACCURATE SIMULATIONS
- Multiresolution and GPUs
- APPLICATIONS
- Fish Hydrodynamics
- Tumor induced Angiogenesis

PARTICLES: Lagrangian, Conservation and other Laws

SPH, Vortex Methods

$$
\begin{aligned}
& \rho_{p} \frac{D \mathbf{u}_{\mathbf{p}}}{D t}=(\nabla \cdot \sigma)_{p} \\
& \frac{d \mathbf{x}_{\mathbf{p}}}{d t}=\mathbf{u}_{p} \\
& m \frac{d \mathbf{u}_{\mathbf{p}}}{d t}=F_{p} \\
& \text { MD, DPD, CGMD }
\end{aligned}
$$

PARTICLE APPROXIMATIONS

Function Mollification
$\Phi_{\epsilon}(x)=\int \Phi(y) \zeta_{\epsilon}(x-y) d y$

Smooth Particle Quadrature $\Phi_{\epsilon}^{h}(x, t)=\sum_{p=1}^{N_{p}} h_{p}^{d} \Phi_{p}(t) \zeta_{\epsilon}\left(x-x_{p}(t)\right)$

are Particles MESH Free?

SURFACES -> LEVEL SETS

$\Gamma(t)=\{\mathbf{x} \in \Omega \mid \phi(\mathbf{x}, t)=0\}$
$|\nabla \phi|=1$

EVOLVING LEVEL SETS
$\frac{\partial \Phi}{\partial t}+u \cdot \nabla \Phi=0$

PARTICLES

$\Phi_{c}^{h}(x, t)=\sum_{p=1}^{N_{p}} h_{p}^{d} \Phi_{p}(t) \zeta_{\epsilon}\left(x-x_{p}(t)\right)$
Lagrangian Surface Transport

$$
\frac{d x_{p}}{d t}=\mathbf{u}_{\mathbf{p}} \quad \frac{D \Phi_{p}}{D t}=0
$$

Lagrangian vs Eulerian Descriptions

- PARTICLE LEVEL SETS exact for rigid body motion $\Phi(\mathbf{x}, t)=\Phi_{0}(\mathbf{x}-\mathbf{u} t)$

Particle methods PERFECT for linear advection

Hubrid Particle-Grid Level Sets
(Enright and Fedkiw, 2002)

Lagrangian Particle Level Sets (Hieber and Koumoutsakos, 2005)

LAGRANGIAN DISTORTION

- loss of overlap -> loss of convergence

Particles follow flow trajectories - Location distortion

EXAMPLE :

Incompressible 2D Euler Equations

$$
\omega=\nabla \times \mathbf{u} \quad \nabla \cdot \mathbf{u}=0
$$

$$
\frac{D \omega}{D t}=0
$$

There is an exact axisymmetric solution

Solution of the Euler equation with particle methods.

Are Particle Methods Grid Free?

How to fix it?

- Modify the smoothing kernels (SPH - Monaghan)
- Re-distribute particles with Voronoi Meshes (ALE - Russo)
- Re-initialise particle strengths (WRKPM - Liu, Belytchko)

DOES NOT WORK
EXPENSIVE - UNSTABLE
EXPENSIVE

REMESHING: Re-project particles on a mesh

- NO MESH-FREE particle methods
- Can use all the "tricks" of mesh based methods
- High CFL
- Multiresolution \& Multiscaling

Particle Remeshing

Koumoutsakos, J. Comp. Phys., 1997

$$
\text { Moment Conserving Interpolation : } Q_{p}^{\text {new }}=\sum_{p^{\prime}} Q_{p^{\prime}} M\left(j h-x_{p^{\prime}}\right)
$$

remeshed PARTICLE METHODS (rPM)

1.ADVECT : Particles ->Large CFL
2.REMESH: Particles to Mesh \rightarrow Gather/scatter
3.SOLVE:Poisson/Derivatives on Mesh_->FFTw/Ghosts

4:RESAMPLE: Mesh Nodes BECOME Particles

VORTEX RING COLLISION, Re=1800

Experiments : P. Schatzle \& D. Coles (1986)

VORTEX DYNAMICS at High Re

van Rees W.M., Leonard A., Pullin D.I., Koumoutsakos P., A comparison of vortex and pseudo-spectral methods for the simulation of periodic vortical flows at high Reynolds numbers, J. of Comp.Physics, 2011

rPM : ADAPTIVE

yet inefficient !

Adaptive Mesh Refinement

- Support of unstructured grids
- Different mesh orientations
- Low compression rate (Gradient, curvature)
- No explicit control on the compression error

Wavelet Compression

50:1

Wavelet particle method

While particles are on grid locations mollification kernel \longleftrightarrow basis/scaling function

Multiresolution analysis (MRA) $\left\{\mathcal{V}^{l}\right\}_{l=0}^{L}$ of particle quantities

Refineable kernels as basis functions of \mathcal{V}^{l}

Wavelets as basis functions of the complements \mathcal{W}^{l}

PARTICLETS : REMESHED PARTICLES + WAVELETS

$$
\begin{aligned}
& q^{L}=\sum_{k} c_{k}^{0} \zeta_{k}^{0}+\sum_{l<L} \sum_{k} \sum_{k} d_{k}^{l} l_{k}^{l} \psi_{k}^{l} \\
& \text { Wavelet Active Points } \\
& \text { Active Grid Points } \\
& q^{L}=\sum_{k} c_{k}^{0} \zeta_{k}^{0}+\sum_{\substack{l<L \\
\text { "ground" level } \\
\text { detail } \\
\text { coefficients }}} \sum_{k} d_{k}^{l} \psi_{k}^{l}
\end{aligned}
$$

wavelets
0 00000 00000
00000
00000
0000
O
00000
00
000000000

Wavelet-adapted grids

PDE:

$$
\frac{\partial \phi}{\partial t}+\boldsymbol{u} \cdot \nabla \phi=0
$$

Spatial Differences = filtering operations:

$$
F\left(c_{k}^{l}\right)=\sum_{j=s_{f}}^{e_{f}-1} c_{k+j}^{l} \beta_{j}^{l}, \quad \beta_{j}^{l} \text { function of }\left\{c_{m}^{l}\right\}
$$

GHOSTS : easy to compute - (locally, uniform filtering of the grid

MULTIRESOLUTION LEVEL SETS

Enright, Fedkiw et al, 2002
dof = \# grid points + aux. particles at $\mathrm{t}=0.0$

T

Shock Bubble Interaction

($\mathrm{M}=3, \mathrm{At}=0.8$)

FINEST RESOLUTION EQUIVALENT 8000×8000 uniform grid

 ~ 40 times smaller adaptive

Block Grid for Multi/Many-core:

Neighbors look-up: less memory indirections
Less \# ghosts
Within a block: random access

Mulitresoluilon + Multicore +

- MULTIPLE TASKS
1.task parallel,ghost computing -> multi-core
2.fine-grained data parallelism for RHS -> GPUs
3.Integration step -> multi-core

$$
\mathbf{q}^{\text {new }}=\mathbf{q}^{\text {old }}+\delta t \mathbf{F}_{\text {CUDA/OpenCL }}\left(\mathbf{q}^{\text {old }}, \nabla \mathbf{q}^{\text {old }}\right)
$$

How much faster than CPU-only execution?
How much different are CPU / GPU and CPU-only solutions?

Wavelet Blocks on GPUs

Rossinelli D., Hejazialhosseini B., Spampinato D., Koumoutsakos P., Multicore/Multi-GPU Accelerated Simulations of Multiphase Compressible Flows Using Wavelet Adapted Grids, SIAM J. Sci.
Comput., 33, pp. 512-540, 2011

Multiple kernels for the GPU

Performance I : Strong Scaling

Strong scaling (effective 8000^{\wedge} ュ - actual $40 \times$ less) vs. \#GPUs, \#CPU cores

Speedup over 1 core/0 GPU

No Local Time Stepping

1 core

Performance II: Time to Solution

Compared to a space adaptive, single-threaded solver:

- Algorithms : Local Time Stepping: 24X
- Ghost Reconstruction : CPU optimization (vectorization): 1.8 X
- Ghost Reconstruction : Task-based parallelism (via TBB): 8X (over 12)
- GPUs as accelerators: 3X

Overall Reduction in time to solution: ~ 1000

A comparison of CHOMBO vs MRAG

shock-bubble interaction

Boundary Conditions = Coupling

$$
\rho \frac{D \mathbf{u}}{D t}=\nabla \cdot \boldsymbol{\sigma}+f(\text { enforces b.c. })
$$

Boundary Conditions = Coupling

$\rho \frac{D \mathbf{u}}{D t}=\nabla \cdot \boldsymbol{\sigma}+f($ enforces b.c. $)$
Penalization Method: $f(\mathbf{x})=\lambda \chi_{S}\left(\mathbf{u}_{S}-\mathbf{u}\right)$

Boundary Conditions = Coupling

$\rho \frac{D \mathbf{u}}{D t}=\nabla \cdot \boldsymbol{\sigma}+f($ enforces b.c. $)$
Penalization Method: $f(\mathbf{x})=\lambda \chi_{S}\left(\mathbf{u}_{S}-\mathbf{u}\right)$
Immersed Boundary Method: $f(\mathbf{x})=\kappa \delta_{S}\left(\mathbf{x}_{S}-\mathbf{x}\right)$

Boundary Conditions = Coupling

Penalization Method: $f(\mathbf{x})=\lambda \chi_{S}\left(\mathbf{u}_{S}-\mathbf{u}\right)$
Immersed Boundary Method: $f(\mathbf{x})=\kappa \delta_{S}\left(\mathbf{x}_{S}-\mathbf{x}\right)$

Boundary Conditions = Coupling

$\rho \frac{D \mathbf{u}}{D t}=\nabla \cdot \boldsymbol{\sigma}+f($ enforces b.c. $)$
Multiphysics/Multiscale
$f(\mathbf{x})=($ result from Molecular Simulations $)$

SPHERE @ Re = 1000 with Effective Resolution 1024 /3

TIMINGS : 4 days on 3 cores, 2.4 GHz - OpenN and MPI and TBB

Multi-body Simulations

Fish Schooling

Gazzola M., Chatelain P., van Rees W.M., Koumoutsakos P., Simulations of single and multiple swimmers with non-divergence free deforming geometries, J. of Comput. Physics, 2011

Fast Swimmers

Shape Optimization

Mean Shape During Evolution

How to escape fast?

Best Result of an Optimization for escape speed

COMPRESSIBLE FLOWS

 Compressible Flow
Moving Boundaries

Shock - Ballut Interactions

Biological and medical simulations

A key transition in the development of tumors is the recruitment of a vasculature

A Model of Sprouting Angiogenesis

Mechanism:

endothelial cells migrate towards source of growth factors

- form cords
- proliferate
- branch / fuse

Growth factor: VEGF

exists in two forms:

- soluble
- bound to the matrix (bVEGF)

Release of bVEGF

endothelial cells secrete proteinases proteinases cleave bVEGF \rightarrow soluble

Multi-scale Modeling of Angiogenesis

Vasculature

Growth Factors

[I] H. GERHARDT, M. GOLDING, M.FRUTTIGER, C. RUHRBERG,A. LUNDKVIST A.ABRAMSSON, M.JELTSCH C. MICHELL, ALITALO, D. SHIMA AND C. BETSHOLTZ,VEGF GUIDES ANGIOGENIC SPROUTING UTILIZING ENDOTHELIAL TIP CELL FILOPODIA,J. CELL. BIOL., 2003

Modeling the Matrix

Fibers:

- straight
- random direction
- distribution of lengths

$$
\begin{aligned}
& l=l_{0} 2^{m z} \\
& \alpha \in \mathcal{U}([0, \pi]) \\
& z \in \mathcal{N}(0,1)
\end{aligned}
$$

Randomly oriented collagen fibrif an
cartilage ECM imaged by TEM.

Indicator field : e

- unity where fibers present
- smoothed (implicit filopodia)

PO

Angiogenesis: in silico

Effect of Matrix structure on branching

FIBER LENGTH
statistics over $\mathrm{n}=50$ different matrices junctions identified with AngioQuant

Spatially Adaptive Stochastic Simulations of Gliomas

Time: 0.00 years

Last Words

CHALLENGES

- Fast and/or Green Multi-scale Algorithms
- SIMULATIONS ARE DATA : UQ+P

APPLICATIONS

- Biology, Nanotechnology and Fluids : Bridge Gaps and Disciplines

THANKS

- ETHZ + CSCS
- Swiss National Science Foundation
- EU
- NVIDIA (ETHZ a CUDA Research Center)

