Adaptive Stochastic and Deterministic Simulations Using Particles

Petros Koumoutsakos

www.cse-lab.ethz.ch

Tuesday, July 5, 2011

MULTISCALING as CAUSALITY

adapted from Ulanowicz

OUTLINE

INTRODUCTION STOCHASTIC

• R-Leaping + AMR-S

DETERMINISTIC

- Particles + Wavelets
- BOUNDARIES OUTLOOK

MULTIPLE SCALES + PARTICLES

Transport in aquaporins Schulten Lab, UIUC Vortex Dynamics Koumoutsakos Lab, ETHZ Growth of Black Holes Springel, MPI - Hernquist, Harvard

PARTICLES: Lagrangian, Conservation and Other Laws

SPH, Vortex Methods

$$\rho_p \frac{D \mathbf{u_p}}{D t} = (\nabla \cdot \sigma)_p$$

 $\frac{d\mathbf{x}_{\mathbf{p}}}{dt} = \mathbf{u}_p$

$$m\frac{d\mathbf{u_p}}{dt} = F_p$$

MD, DPD, CGMD

Particles and Grids

Marker and Cell (MAC) - F.H. Harlow and E.J. Welch

Numerical Calculation of Time-Dependent Viscous Incompressible Flow of Fluid with Free Surface,, Harlow, Francis H. and Welch, J. Eddie, Physics of Fluids, 1965

STOCHASTIC

DETERMINISTIC

Chemical kinetics : Set-up

- Well stirred reaction volume V
- Experiment length T
- N different species S₁, S₂,..., S_N in numbers X₁, X₂,..., X_N
- random collisions and reactions through M channels R₁, R₂,..., R_M

Kinetics + Space

Diffusion in 1-D

Deterministic

 $\frac{\partial u}{\partial t} = D \frac{\partial^2 u}{\partial x^2}$

Stochastic

D. Bernstein,. Phys. Rev. E, 2005.

A species U, with elements labeled by an index *i* **Diffusion as reactions of the form:**

$$U_{i} \xrightarrow{k_{i,i+1}} U_{i+1} \qquad \qquad U_{i+1} \xrightarrow{k_{i+1,i}} U_{i}$$
$$U_{i} \xrightarrow{k_{i,i-1}} U_{i-1} \qquad \qquad U_{i-1} \xrightarrow{k_{i-1,i}} U_{i}$$

Uniform Cells: $k_{i,j} = \frac{D}{h^2}$

SPACE: 10⁶ - 10⁹ "Reactions"

Molecules per grid cell for a 300 x 300 grid

500 1000 5000 10000

Microscopic scale

Macroscopic scale

 $egin{array}{ccc} U+2V &
ightarrow 3V, \ V &
ightarrow P \end{array}$

$$\frac{\partial u}{\partial t} = d_u \Delta u - uv^2 + F(1 - u),$$
$$\frac{\partial v}{\partial t} = d_v \Delta v + uv^2 - (F + \kappa)v.$$
$$F = 0.04, \kappa = 0.06, t = 1000$$

Stochastic Simulation Algorithm

Gillespie, J. Comp. Phys. 1977

• For M reactions, time until any reaction

$$\tau \sim \mathcal{E}(1/a_0)$$

$$a_0 = \sum_{j=1}^M a_j$$

T I

• Reaction index : point-wise distribution $p(j = l) = \frac{a_l}{a_0}$

ONE STEP

- Sample τ
- Sample the index j
- Update the X_i, t=t+τ

The SSA simulates every reaction event ! Exact but SLOW

ACCELERATING SSA : T leaping

Gillespie, J. Chem. Phys. 2001

τ leaping : several reaction events over one time step

ASSUMPTION : reaction propensities a_i remain essentially constant over τ , in spite of several firings

 Over this given τ, the number of reaction firings K^P_j is governed by a Poisson distribution

$$K_j^{\mathcal{P}} \sim \mathcal{P}(a_j \tau) \qquad \qquad M \\ \mathbf{X}(t+\tau) = \mathbf{X}(t) + \sum_{j=1}^M K_j^{\mathcal{P}} \boldsymbol{\nu}_j.$$

Cost ~ M Poisson samplings

SPEEDUP ~ 100 X SSA

Tuesday, July 5, 2011

τ-leaping : Consequences

τ leaping can generate negative populations

Binomial τ leaping : Approximate the unbounded
 Poisson distributions with Binomial ones

Modified τ leaping

- Critical reactions, i.e. those likely to drive some populations negative, handled by SSA
- Other reactions advanced by τ leaping

J. Chem. Phys. 2005

Tian & Burrage, J. Chem. Phys. 2004

R-leaping : Accelerate SSA by reaction leaps

Leaps : number of firings Lacross all reaction channels

- Time increment \mathbf{T}_{L} is Gamma-distributed $\tau_{L} \sim \Gamma(L, 1/a_{0}(\mathbf{x}))$
- In this interval we will have K_m firings of channel R_m
- with :

$$\sum_{m=1}^{M} K_m = L$$

NI

In R-leaping, as in SSA, the index j of every firing obeys a point-wise distribution

$$P(j = l) = \frac{a_l(\mathbf{x})}{a_0(\mathbf{x})}$$
 for $l = 1, ..., M$.

Auger et al.,, J. Chem. Phys. 2006

R-leaping : One step

Define L

 $\tau_L \sim \Gamma(L, 1/a_0(\mathbf{x}))$

Sample the index j

$$P(j = l) = \frac{a_l(\mathbf{x})}{a_0(\mathbf{x})}$$
 for $l = 1, ..., L$.

• Number of reactions for channel m $K_{m} = \sum_{i=1}^{L} \delta_{i} m$

$$K_m = \sum_{l=1} \delta_{l,m}$$

• Update species and time : $\mathbf{X}(t + \tau_L) = \mathbf{X}(t) + \sum_{j=1}^{M} K_j \boldsymbol{\nu}_j$

Auger et al.,

Chem. Phys. 2006

R-Leaping Theorem

The distribution of K_1 is a binomial distribution : $\mathcal{B}(L, a_1(\mathbf{x})/a_0(\mathbf{x}))$

and for every $m \in \{2, \ldots, M\}$ the conditional distribution of K_m

given the event $\{(K_1, ..., K_{m-1}) = (k_1, ..., k_{m-1})\}$ is

$$K_m \sim \mathcal{B}\left(L - \sum_{i=1}^{m-1} k_i, \frac{a_m(\mathbf{x})}{a_0(\mathbf{x}) - \sum_{i=1}^{m-1} a_i(\mathbf{x})}\right)$$

This result is invariant under any permutation of the indices

R-leaping : Sorting Reactions

indices, such that propensities are decreasing

Results

•LacZ/LacY genes expression and enzymatic/transport activities of LacZ/ LacY proteins in E. Coli

- Moderately large system (M = 22)
- Disparate rates
- Scarce reactants and negative species

	Reaction Channel	Reaction rate
R_1	$PLac + RNAP \rightarrow PLacRNAP$	0.17
R_2	$PLacRNAP \rightarrow PLac + RNAP$	10
R	PLacRNAP \rightarrow TrLacZ1	1
R_4	$\mathrm{TrLacZ1} \rightarrow \mathrm{RbsLacZ} + \mathrm{PLac} + \mathrm{TrLacZ2}$	1
$R_{\rm f}$	$TrLacZ2 \rightarrow TrLacY2$	0.015
R_{0}	$_{5}$ TrLacY1 \rightarrow RbsLacY + TrLacY2	1
R	$TrLacY2 \rightarrow RNAP$	0.36
R_8	Ribosome + RbsLacZ \rightarrow RbsRibosomeLacZ	0.17
R	Ribosome + RbsLacY \rightarrow RbsRibosomeLacY	0.17
R_1	$_0$ RbsRibosomeLacZ \rightarrow Ribosome + RbsLacZ	0.45
R_1	$_1$ RbsRibosomeLacY \rightarrow Ribosome + RbsLacY	0.45
R_1	$_2$ RbsRibosomeLacZ \rightarrow TrRbsLacZ + RbsLacZ	0.4
R_1	$_3 \text{ RbsRibosomeLacY} \rightarrow \text{TrRbsLacY} + \text{RbsLacY}$	0.4
R_1	$_{4}$ TrRbsLacZ \rightarrow LacZ	0.015
R_1	$_{5}$ TrRbsLacY \rightarrow LacY	0.036
R_1	$_{6}$ LacZ \rightarrow dgrLacZ	$6.42 \text{x} 10^{-5}$
R_1	$_{7}$ LacY \rightarrow dgrLacY	$6.42 \text{x} 10^{-5}$
R_1	$_{8}$ RbsLacZ \rightarrow dgrRbsLacZ	0.3
R_1	$_{9}$ RbsLacY \rightarrow dgrRbsLacY	0.3
R_2	$_{0}$ LacZ + lactose \rightarrow LacZlactose	$9.52 \text{x} 10^{-5}$
R_2	$_{1}$ LacZlactose \rightarrow product + LacZ	431
R_2	$_2$ LacY \rightarrow lactose + LacY	14

R-leaping : Sampling the M K_j efficiently

- **M** can be large (~10²) for bio-chemical systems!
- M can be very large (~10⁶) for diffusion
- Efficient sampling effectively loops over a fraction of **M**.

The more disparate the reaction rates are, the smaller the fraction.

Price to pay: carry out re-ordering often enough

Number of binomial samples per time step LacYLacZ activities in E. Coli., M=22

Histogram errors vs CPU time

• LacZ/LacY genes expression and enzymatic/transport activities of LacZ/LacY proteins in E. Coli

• M = 22: R-leaping **2X** faster than modified τ -leaping!

Reaction-Diffusion : SSA + AMR

•Collisions and reactions within each element

•For homogeneity :

Kuramato, Prog. Theor. Phys. 1974

- au_R mean free time for reactive collisions in a cell
- au_D mean time during which a molecule will remain in element.

For a bimolecular reaction with rate k and diffusion coefficient D

h must be small for the discretization to be valid

AMR + STOCHASTIC

B. Bayati, et.al., Phys. Chem. Chem. Phys., 2008

Bayati B., et.al., J. of Computational Physics, 2011

I. Propensities from FV schemes

$$\mathbf{J}\left(x,y+rac{2}{3}\delta y
ight)$$
 approximated by three Taylor series:

around the point
$$\left(x, y + \frac{2}{3}\delta y\right)$$

$$\mathbf{J}\left(x, y + \frac{2}{3}\delta y\right) = -\frac{D}{2\delta y}\left(\bar{u}_{j}^{(s)} + \bar{u}_{k}^{(s)} - 2\bar{u}_{i}^{(s)}\right) + \mathcal{O}(h)$$

$$\frac{\mathrm{d}U_i^{(s)}}{\mathrm{d}t} = \frac{4D}{3h^2} \left(2(U_j^{(s)} + U_k^{(s)}) - U_i^{(s)} \right) + \mathcal{O}(h).$$

propensities for transitions between j & i

$$a_{i,j}^{D} = \frac{4D}{3h^{2}} (U_{j}^{(s)} + U_{k}^{(s)}),$$

$$a_{j,i}^{D} = \frac{2D}{3h^{2}} U_{i}^{(s)}$$

D. Bernstein. Simulating mesoscopic reaction-diffusion systems using the Gillespie algorithm. *Phys. Rev. E*, 2005.

II. Refinement Criteria

Bell et al., J. Comp. Phys., 2007

Refine volume element i if :

$$|U_{i+1}^{(s)} - U_{i-1}^{(s)}| > 2C\sqrt{\Omega}$$

III. Stochastic Interpolation

Fisher-Kolmogorov Reaction-Diffusion System in 2-D

 $U + V \xrightarrow{k} 2U$

Tuesday, July 5, 2011

Wavespeed & Efficiency

STOCHASTIC

DETERMINISTIC

16384 Cores - 10 Billion Particles - 60% efficiency

Runs at IBM Watson Center - BLue Gene/L

Chatelain P., Curioni A., Bergdorf M., Rossinelli D., Andreoni W., Koumoutsakos P., Billion Vortex Particle Direct Numerical Simulations of Aircraft Wakes, Computer Methods in Applied Mech. and Eng. 197/13-16, 1296-1304, 2008

Eidgenössische Technische Hochschule Züric

PARTICLES ARE ADAPTIVE

FUNCTIONS and PARTICLES

Integral Function Representation

$$\Phi(x) = \int \Phi(y) \,\delta(x-y) \,dy$$

Function Mollification

$$\Phi_{\epsilon}(x) = \int \Phi(y) \zeta_{\epsilon}(x-y) \, dy$$

Point Particle Quadrature

$$\Phi^{h}(x,t) = \sum_{p=1}^{N_{p}} h_{p}^{d} \Phi_{p}(t) \,\delta(x - x_{p}(t))$$

Smooth Particle Quadrature

$$\Phi_{\epsilon}^{h}(x,t) = \sum_{p=1}^{N_{p}} h_{p}^{d} \Phi_{p}(t) \zeta_{\epsilon}(x-x_{p}(t))$$

Particles are "mesh" free

SURFACES AS LEVEL SETS

 $\Gamma(t) = \{ \mathbf{x} \in \Omega \mid \phi(\mathbf{x}, t) = 0 \}$ $|\nabla \phi| = 1$

EVOLVING THE LEVEL SETS $\frac{\partial \Phi}{\partial t} + u \cdot \nabla \Phi = 0$

PARTICLE APPROXIMATION $\Phi_{\epsilon}^{h}(x,t) = \sum_{p=1}^{N_{p}} h_{p}^{d} \Phi_{p}(t) \zeta_{\epsilon}(x - x_{p}(t))$

Lagrangian Surface Transport

$$\frac{dx_p}{dt} = \mathbf{u_p}$$

$$\frac{D\Phi_p}{Dt} = 0$$

S. E. Hieber and P. Koumoutsakos. A Lagrangian particle level set method. J. Computational Physics, 210:342-367, 2005

Lagrangian vs Eulerian Descriptions

Tuesday, July 5, 2011

LAGRANGIAN DISTORTION

loss of overlap -> loss of convergence

Particles follow flow trajectories - Location distortion

EXAMPLE : Incompressible 2D Euler Equations

$$\omega = \nabla \times \mathbf{u} \quad \nabla \cdot \mathbf{u} = 0$$

 $\frac{D\omega}{Dt} = 0$

There is an exact axisymmetric solution

SMOOTH PARTICLES MUST OVERLAP

Integral Function Representation

$$\Phi(x) = \int \Phi(y) \,\delta(x-y) \,dy$$

Function Mollification

$$\Phi_{\epsilon}(x) = \int \Phi(y) \zeta_{\epsilon}(x-y) \, dy$$

$$\int \zeta \, x^{\alpha} \, dx = 0^{\alpha} \qquad 0 \le \alpha < r$$

TOTAL ERROR

$$\begin{aligned} ||\Phi - \Phi_{\epsilon}^{h}|| &\leq ||\Phi - \Phi_{\epsilon}|| + ||\Phi_{\epsilon} - \Phi_{\epsilon}^{h}|| \\ &\leq (C_{1}(\epsilon^{r}) + C_{2}((\frac{h}{\epsilon})^{m}))||\Phi||_{\infty} \end{aligned}$$

Point Particle Quadrature

$$\Phi^{h}(x,t) = \sum_{p=1}^{N_{p}} h_{p}^{d} \Phi_{p}(t) \delta(x - x_{p}(t))$$

Smooth Particle Quadrature

$$\Phi^h_{\epsilon}(x,t) = \sum_{p=1}^{N_p} h^d_p \Phi_p(t) \zeta_{\epsilon}(x - x_p(t))$$

Need h/ε < 1 for accuracy

PARTICLES MUST OVERLAP

Hald, Beale and Majda, (80's) Anderson, Cottet (90's)

Are Particle Methods Grid Free ?

How to fix it?

- Modify the smoothing kernels (SPH Monaghan)
- Re-distribute particles with Voronoi Meshes (ALE Russo) EXPENSIVE UNSTABLE
- Re-initialise particle strengths (WRKPM Liu, Belytchko)

REMESHING : Re-project particles on a mesh

- NO MESH-FREE particle methods
- Can use all the "tricks" of mesh based methods
- High CFL
- Multiresolution & Multiscaling

DOES NOT WORK

EXPENSIVE

Moment Conserving Interpolation : $Q_p^{\text{new}} = \sum_{p'} Q_{p'} M(jh - x_{p'})$

REMESHED PARTICLE METHODS

1.ADVECT : <u>Particles</u> ->Large CFL

2.REMESH : <u>Particles</u> to <u>Mesh</u> -> Gather/Scatter

3. SOLVE: Poisson/Derivatives on <u>Mesh</u>->FFTw/Ghosts

A:RESAMPLE: <u>Mesh</u> Nodes BECOME <u>Particles</u>

Remeshing Stencils

Bergdorf et. al., MMS,2005 Cottet et.al., CRAS, 2008

$$u_{p}^{n+1} = -\frac{\lambda(\lambda-1)}{2}u_{p-2}^{n} + \frac{\lambda(2-\lambda)}{2}u_{p-1}^{n} + (1-\frac{3}{2}\lambda+\frac{1}{2}\lambda^{2})u_{p}^{n}$$

$$t^{n+1}$$

$$\lambda = x_{p} - x_{g} = \frac{a\delta t}{h}$$

$$x_{p}^{n+1} = x_{p}^{n} + a\,\delta t = (p+\lambda)h$$

$$p-2$$

$$p-1$$

$$p$$

$$p+1$$

$$p+2$$

$$\frac{\partial u}{\partial t} + a \frac{\partial u}{\partial x} = 0$$

$$u_p = u(x_p)h$$

$$\frac{du_p}{dt} = 0$$

$$\frac{du_p}{dt} = a$$
+ REMESH

$$u_p^{n+1} = u_p^n - \frac{\lambda}{2}(3u_p^n - 4u_{p-1}^n + 4u_{p-2}^n) + \frac{\lambda^2}{2}(u_p^n - 2u_{p-1}^n + u_{p-2}^n)$$

Euler Advect + One-sided Remesh = Beam-Warming FD

Euler Advect + Central Remesh = Lax - Wendroff FD

Tuesday, July 5, 2011

VORTEX RING COLLISION, Re = 1800

Experiments : P. Schatzle & D. Coles (1986)

VORTEX DYNAMICS at High Re

Evolution of error in effective viscosity

Adaptive Mesh Refinement

- Support of unstructured gridsDifferent mesh orientations
- Low compression rate (Gradient, curvature)
- No explicit control on the compression error

Berger, Colella, J. Comp. Phys., 1989

M. Bergdorf, P. Koumoutsakos. A Lagrangian Particle-Wavelet Method. **Multiscale** Modeling and Simulation: A SIAM Interdisciplinary Journal, 5(3), 980-995, 2006

PARTICLETS : Particles and Wavelets

Tuesday, July 5, 2011

WAVELET PARTICLE METHOD

While particles are on grid locations

mollification kernel *basis/scaling function*

Multiresolution analysis (MRA) $\{\mathcal{V}^l\}_{l=0}^L$ of particle quantities

Refineable kernels as basis functions of \mathcal{V}^l

Wavelets as basis functions of the complements \mathcal{W}^l

$$\zeta_{k}^{l} = \sum_{j} h_{j,k}^{l} \zeta_{j}^{l+1}$$

$$= \sum_{j} \tilde{h}_{j,k}^{l} \zeta_{j}^{l} + \sum_{j} \tilde{g}_{j,k}^{l} \psi_{j}^{l}$$

$$= +$$

Multiresolution function representation:

Each wavelet is associated with a specific grid point/particle (2D)

Compression / Adaptation: Discard insignificant detail coefficients: $|d_{k}^{l,m}| < \varepsilon$

Compressed function representation: $\|q^L - q^L_{\geq}\| < \varepsilon \quad \rightarrow \text{Adapted grid}$

PARTICLETS : REMESHED PARTICLES + WAVELETS

 $q^{L} = \sum_{k} c_{k}^{0} \zeta_{k}^{0} + \sum_{l < L} \sum_{k} d_{k}^{l} \psi_{k}^{l}$ "ground" level detail

coefficients ,

wavelets

1.Remesh
2.Wavelets- Compress/Adapt
3.Convect
4.Wavelets Reconstruct
5.GOTO 1

M. Bergdorf, P. Koumoutsakos. A Lagrangian Particle-Wavelet Method, Multiscale Modeling and Simulation: A SIAM Interdisciplinary Journal, 5(3), 980-995, 2006

Wavelet-adapted grids

 $GHOSTS: \ easy \ to \ compute \ _(\ locally) \ uniform \ filtering \ of \ the \ grid$

MULTIRESOLUTION LEVEL SETS

M. Bergdorf, P. Koumoutsakos. A Lagrangian Particle-Wavelet Method, Multiscale Modeling and Simulation: A SIAM Interdisciplinary Journal, 5(3), 980-995, 2006

Multi-core: Blocked Grid

Neighbors look-up: less memory indirectionsLess #ghostsWithin a block: random access

Multiresolution - MultiCore - GPU

• DISTRIBUTED TASKS

1.task parallel,ghost computing _> multi-core
2.fine-grained data parallelism for RHS _> GPUs

$$\mathbf{q^{new}} = \mathbf{q^{old}} + \delta t \mathbf{F} \left(\mathbf{q^{old}}, \nabla \mathbf{q^{old}} \right)$$
OpenCL/GPUs

Wavelet Blocks on GPUs

A comparison of CHOMBO vs MRAG

Chombo: 91 min, 230 MB

single-phase 2nd order PPM

MRAG (home grown, swiss quality stuff): 56 min, 244 MB (+ 1 GPU: 7 min)

multi-phase 3rd order WENO scheme

Rossinelli D., Hejazialhosseini B., Spampinato D., Koumoutsakos P., Multicore/Multi-GPU Accelerated Simulations of Multiphase Compressible Flows Using Wavelet Adapted Grids, **SIAM J. Sci. Comput.,** 33, pp. 512-540, 2011

BOUNDARIES + ALGORITHMS

TIME : FLow AVeraging integratOR

Tao, Owhadi, & Marsden, Multiscale Model. Simul., 2010.

Stiff ODEs:

$$\dot{\mathbf{u}} = \mathbf{G}(\mathbf{u}) + \frac{1}{\epsilon}\mathbf{F}(\mathbf{u})$$

 $\epsilon \ll 1$

with the *legacy* integration scheme:

$$\bar{\mathbf{u}}_{t+\tau} = \mathbf{\Phi}_{\tau}^{1/\epsilon}(\bar{\mathbf{u}}_t)$$

Small time-step: $\tau \ll \epsilon$

FLAVOR:
$$\bar{\mathbf{u}}_{t+h} = \left(\Phi^0_{\frac{h}{M} - \tau} \circ \Phi^{1/\epsilon}_{\tau} \right)^M (\bar{\mathbf{u}}_t)$$
 $\frac{1}{\epsilon}:$ OFFON

Large time-step: $\delta = \frac{h}{M}$

M regulates accuracy of large time-step

 $0<\tau\ll\epsilon\ll\delta\ll 1$

FLAVOR + Stiff Stochastics

SSA written as

$$(\mathbf{X}_n, t_n) = \left(\mathbf{\Phi}^{(1/\epsilon)}\right) (\mathbf{X}_{n-1}, t_{n-1})$$

Define FLAVOR-SSA: $(\mathbf{X}_n, t_n) = \left(\mathbf{\Phi}^{(\xi/\epsilon)} \circ \mathbf{\Phi}^{(1/\epsilon)} \right) (\mathbf{X}_{n-1}, t_{n-1})$

amounts to rescaling the total propensity every other iteration.

$$\hat{a}_{0}(t,\xi) := \underbrace{\xi}_{\epsilon} \sum_{i} \tilde{a}_{i}^{(fast)}(t) + \sum_{j} a_{j}^{(slow)}(t) \\ \xi \in [0,1]$$

$$0 \implies \text{Largest Speedup} \qquad \xi = 1 \implies \text{SSA} \qquad \begin{array}{c} \text{OPTIMAL} \\ \text{value?} \end{array}$$

FLAVOR -S: A Cutoff Phenomenon

Boundary Conditions = Coupling

COUPLING Different Physics in Space/Time

	I I	Π	III
No Slip	FLUID	Sharp Force	-
No Slip + PENALTY/IBM	Fluid	Smooth Force	-
Flow-Structure	Fluid	Smooth/Sharp Force	Solid
Multiscale I	Fluid	Fluid+MD	MD
Multiscale II	Fluid	Fluid+DPD	DPD+MD

COMPRESSIBLE FLOWS

Moving Boundaries

Brinkman Penalization for Compressible Flow

FISH SCHOOLING

1 FISH

2 FISH (OBVIOUSLY)

Simulations of Gliomas using MRAG

Time: 0.00 years

actual M = 10^7 effective M = 10^10

MD - Lattice-Boltzmann

COMPUTATIONAL Challenges

"Although **X** seem to be a small step from **Y** computation, in fact, they represent a huge step. They discard the most essential and appealing properties of **Y** computation:

understandability, predictability, and determinism.

X as a model of computation, are wildly nondeterministic, and the job of the programmer becomes one of pruning that nondeterminism."

-- 'The Problem with X, Edward A. Lee, UC Berkeley, 2006

X = threads Y = sequential

X = Multi-scale Y = single-scale

Hedjazialhosseini

