Adaptive
 Stochastic and Deterministic Simulations Using Particles

Petros Koumoutsakos

MULTISCALING as CAUSALITY

OUTLINE

INTRODUCTION
STOCHASTIC

- R-Leaping + AMR_S

DETERMINISTIC

- Particles + Wavelets

BOUNDARIES
OUTLOOK

MULJJPLE SCALES + PARJICLES

Molecular
Dynamics

Vortex
Methods
Methods

Smoothed Particle
Hydrodynamics

Transport in aquaporins
Schulten Lab, UIUC

Vortex Dynamics
Koumoutsakos Lab, ETHZ

Growth of Black Holes
Springel, MPI - Hernquist, Harvard

PARIJICLES: Lagrangian, Conservation and otier Laws

SPH, Vortex Methods

$$
\begin{aligned}
& \rho_{p} \frac{D \mathbf{u}_{\mathbf{p}}}{D t}=(\nabla \cdot \sigma)_{p} \\
& \frac{d \mathbf{x}_{\mathbf{p}}}{d t}=\mathbf{u}_{p} \\
& m \frac{d \mathbf{u}_{\mathbf{p}}}{d t}=F_{p} \\
& \text { MD, DPD, CGMD }
\end{aligned}
$$

Particles and Grids

Marker and Cell (MAC) - F.H. Harlow and E.J. Welch

Numerical Calculation of Time-Dependent Viscous Incompressible Flow of Fluid with Free Surface,, Harlow, Francis H. and Welch, J. Eddie, Physics of Fluids, 1965

STOCHASTIC

Chemical kinetics : Set-up

- Well stirred reaction volume V
- Experiment length T
- N different species $\mathrm{S}_{1}, \mathrm{~S}_{2}, \ldots, \mathrm{~S}_{\mathrm{N}}$ in numbers $X_{1}, X_{2}, \ldots, X_{N}$
- random collisions and reactions through M channels $R_{1}, R_{2}, \ldots, R_{M}$

Kinetics + Space

Diffusion in 1-D

Deterministic

Stochastic

A species U, with elements labeled by an index i

Diffusion as reactions of the form:

$$
\frac{\partial u}{\partial t}=D \frac{\partial^{2} u}{\partial x^{2}}
$$

Uniform Cells: $\quad k_{i, j}=\frac{D}{h^{2}}$

SPACE: 106-109"Reactions"

Molecules per grid cell for a 300×300 grid

500 1000 5000 10000

Microscopic scale
Macroscopic scale

$$
\begin{array}{rll}
U+2 V & \rightarrow 3 V, & \frac{\partial u}{\partial t}=d_{u} \Delta u-u v^{2}+F(1-u) \\
V & \rightarrow P & \begin{array}{l}
\frac{\partial v}{\partial t}=d_{v} \Delta v+u v^{2}-(F+\kappa) v \\
F=0.04, \kappa=0.06, t=1000
\end{array}
\end{array}
$$

Stochastic Simulation Algorithm

- For M reactions, time until any reaction

$$
\tau \sim \mathcal{E}\left(1 / a_{0}\right) \quad a_{0}=\sum_{j=1}^{M} a_{j}
$$

- Reaction index : point-wise distribution

$$
p(j=l)=\frac{a_{l}}{a_{0}}
$$

ONE STEP

- Sample 兀
- Sample the index j
- Update the $\mathrm{X}_{\mathrm{i}}, \mathrm{t}=\mathrm{t}+\tau$

The SSA simulates every reaction event!

Exact but SLOW

ACCELERATING SSA : т leaping

T leaping : several reaction events over one time step

ASSUMPTION : reaction propensities a_{i} remain essentially constant over τ, in spite of several firings

- Over this given τ, the number of reaction firings $\mathrm{K}_{\mathrm{j}}{ }_{\mathrm{j}}$ is governed by a Poisson distribution

$$
\begin{aligned}
& K_{j}^{\mathcal{P}} \sim \mathcal{P}\left(a_{j} \tau\right) \\
& \mathbf{X}(t+\tau)=\mathbf{X}(t)+\sum_{j=1}^{M} K_{j}^{\mathcal{P}} \boldsymbol{\nu}_{j}
\end{aligned}
$$

Cost ~ M Poisson samplings
SPEEDUP ~ 100 X SSA

τ-leaping: Consequences

τ leaping can generate negative populations

- Binomial τ leaping : Approximate the unbounded Poisson distributions with Binomial ones

```
Chatterjee et al.
J. Chem. Phys. }200
```

- Modified τ leaping

```
Tian \& Burrage,
J. Chem. Phys. 2004
```

- Critical reactions, i.e. those likely to drive some populations negative, handled by SSA
- Other reactions advanced by τ leaping

```
Cao et al.
J. Chem. Phys. }200
```


R-leaping : Accelerate SSA by reaction leaps

Leaps: number of firings L across all reaction channels

- Time increment T_{L} is Gamma-distributed $\tau_{L} \sim \Gamma\left(L, 1 / a_{0}(\mathbf{x})\right)$
- In this interval we will have K_{m} firings of channel R_{m}
- with: $\sum_{m=1}^{M} K_{m}=L$

In R-leaping, as in SSA, the index j of every firing obeys a point-wise distribution

$$
P(j=l)=\frac{a_{l}(\mathbf{x})}{a_{0}(\mathbf{x})} \text { for } l=1, \ldots, M
$$

R-leaping: One step

Define L

$$
\tau_{L} \sim \Gamma\left(L, 1 / a_{0}(\mathbf{x})\right)
$$

Sample the index j

$$
P(j=l)=\frac{a_{l}(\mathbf{x})}{a_{0}(\mathbf{x})} \text { for } l=1, \ldots, L
$$

Number of reactions for channel m

$$
K_{m}=\sum_{l=1}^{L} \delta_{l, m}
$$

Update species and time :

$$
\mathbf{X}\left(t+\tau_{L}\right)=\mathbf{X}(t)+\sum_{j=1}^{M} K_{j} \boldsymbol{\nu}_{j}
$$

R-Leaping Theorem

The distribution of K_{1} is a binomial distribution :

$$
\mathcal{B}\left(L, a_{1}(\mathbf{x}) / a_{0}(\mathbf{x})\right)
$$

and for every $m \in\{2, \ldots, M\}$ the conditional distribution of K_{m}
given the event $\left\{\left(K_{1}, \ldots, K_{m-1}\right)=\left(k_{1}, \ldots, k_{m-1}\right)\right\}$ is

$$
K_{m} \sim \mathcal{B}\left(L-\sum_{i=1}^{m-1} k_{i}, \frac{a_{m}(\mathbf{x})}{a_{0}(\mathbf{x})-\sum_{i=1}^{m-1} a_{i}(\mathbf{x})}\right)
$$

This result is invariant under any permutation of the indices

R-leaping : Sorting Reactions

- Sampling the M K_{j} efficiently

If $K_{i}=k_{i}, \forall i<m, K_{m} \sim \mathcal{B}\left(L-\sum_{i=1}^{m-1} k_{i}, \frac{a_{m}}{a_{0}-\sum_{i=1}^{m-1} a_{i}}\right)$

- When $\sum_{i=1}^{m-1} k_{i}=L$, sampling is done!
- Minimize the average m by a permutation of the indices, such that propensities are decreasing

Results

-LacZ/LacY genes expression and enzymatic/ transport activities of LacZ/ LacY proteins in E. Coli

Kierzek,

 Bioiformatics 2002- Moderately large system $(\mathrm{M}=22)$
- Disparate rates
- Scarce reactants and negative species

	Reaction Channel	Reaction rate
R_{1}	$\mathrm{PLac}+\mathrm{RNAP} \rightarrow$ PLacRNAP	0.17
R_{2}	PLacRNAP \rightarrow PLac + RNAP	10
R_{3}	PLacRNAP \rightarrow TrLacZ1	1
R_{4}	TrLacZ1 \rightarrow RbsLacZ + PLac + TrLacZ2	1
R_{5}	TrLacZ2 \rightarrow TrLacY2	0.015
R_{6}	TrLacY1 \rightarrow RbsLacY + TrLacY2	1
R_{7}	TrLacY2 \rightarrow RNAP	0.36
R_{8}	Ribosome + RbsLacZ \rightarrow RbsRibosomeLacZ	0.17
	Ribosome + RbsLacY \rightarrow RbsRibosomeLacY	0.17
R_{10}	RbsRibosomeLacZ \rightarrow Ribosome + RbsLacZ	0.45
R_{11}	RbsRibosomeLacY \rightarrow Ribosome + RbsLacY	0.45
R_{12}	RbsRibosomeLacZ \rightarrow TrRbsLacZ + RbsLacZ	0.4
R_{13}	RbsRibosomeLacY \rightarrow TrRbsLacY + RbsLacY	0.4
R_{14}	TrRbsLacZ \rightarrow LacZ	0.015
R_{15}	TrRbsLacY \rightarrow LacY	0.036
R_{16}	LacZ \rightarrow dgrLacZ	6.42×10^{-5}
R_{17}	LacY \rightarrow dgrLacY	6.42×10^{-5}
R_{18}	RbsLacZ \rightarrow dgrRbsLacZ	0.3
R_{19}	RbsLacY \rightarrow dgrRbsLacY	0.3
R_{20}	LacZ + lactose \rightarrow LacZlactose	9.52×10^{-5}
R_{21}	LacZlactose \rightarrow product + LacZ	431
R_{22}	$\mathrm{LacY} \rightarrow$ lactose + LacY	14

R-Ieaping: Sampling the M_{j} efficiently

- M can be large ($\sim 10^{2}$) for bio-chemical systems!
- M can be very large $\left(\sim 1 \mathbf{0}^{6}\right)$ for diffusion
- Efficient sampling effectively loops over a fraction of \mathbf{M}.

The larger the system, the bigger the payoff.
The more disparate the reaction rates are, the smaller the fraction.

Price to pay: carry out re-ordering often enough

Histogram errors vs CPU time

- LacZ/LacY genes expression and enzymatic/ transport activities of LacZ/LacY proteins in E. Coli

- $\mathbf{M}=22:$ R-leaping $\mathbf{2 X}$ faster than modified τ-leaping!

Reaction-Diffusion : SSA + AMR

-Collisions and reactions within each element
-For homogeneity
Kuramato,Prog. Theor. Phys. 1974

$$
\frac{\tau_{R}}{\tau_{D}} \gg 1
$$

- τ_{R} mean free time for reactive collisions in a cell
- \mathcal{T} mean time during which a molecule will remain in element.
- For a bimolecular reaction with rate \mathbf{k} and diffusion coefficient D

$\frac{\hat{\tau}_{R}}{\hat{\tau}_{D}}=\frac{D}{h^{2} k}$
h must be small for the discretization to be valid

i. PROPENSITIES FROM FV

ii. GRID REFINEMENT
iii. STOCHASTIC INTERPOLATION
iv. INTEGRATE: t/R Leaping
v. DATA STRUCTURES : OVERTURE

B. Bayati, et. al. , Phys. Chem. Chem. Phys., 2008
Bayati B., et.al., J. of Computational Physics, 2011

L. Propensities from FVV schemes

$\mathbf{J}\left(x, y+\frac{2}{3} \delta y\right)$ approximated by three Taylor series:
around the point $\left(x, y+\frac{2}{3} \delta y\right)$
$\mathbf{J}\left(x, y+\frac{2}{3} \delta y\right)=-\frac{D}{2 \delta y}\left(\bar{u}_{j}^{(s)}+\bar{u}_{k}^{(s)}-2 \bar{u}_{i}^{(s)}\right)+\mathcal{O}(h)$
$\frac{\mathrm{d} U_{i}^{(s)}}{\mathrm{d} t}=\frac{4 D}{3 h^{2}}\left(2\left(U_{j}^{(s)}+U_{k}^{(s)}\right)-U_{i}^{(s)}\right)+\mathcal{O}(h)$
propensities for transitions between $\mathrm{j} \& \mathrm{i}$

$$
\begin{aligned}
a_{i, j}^{D} & =\frac{4 D}{3 h^{2}}\left(U_{j}^{(s)}+U_{k}^{(s)}\right) \\
a_{j, i}^{D} & =\frac{2 D}{3 h^{2}} U_{i}^{(s)}
\end{aligned}
$$

D. Bernstein. Simulating mesoscopic reaction-diffusion systems using the Gillespie algorithm. Phys. Rev.E, 2005.

II. Refinement Griteria

Distinguish between gradients and fluctuations,
 refined
 not refined, probably
 background noise

In equilibrium:

Refine volume element if:
$\left|U_{i+1}^{(s)}-U_{i-1}^{(s)}\right|>2 C \sqrt{\Omega}$

IJJ. Stochastic Interpolation

Conservative + Strictly Positive

2D, 3D : Tensor products

weights: $\quad w_{1}:=\frac{m x_{1}+a}{m\left(x_{1}+x_{2}\right)+2 a}$
$w_{2}:=\frac{m x_{2}+a}{m\left(x_{1}+x_{2}\right)+2 a}$
sampling:

$$
\hat{U}_{1}^{(s)} \sim \mathcal{B}\left(U_{i}^{(s)}, w_{1}\right)
$$

$$
\hat{U}_{2}^{(s)}=U_{i}^{(s)}-\hat{U}_{1}^{(s)}
$$

Fisher-Kolmogorov Reaction-Diffusion System in 2-D

$$
U+V \xrightarrow{k} 2 U
$$

Wovespeed \& Efficiency

STOCHASTIC

DETERMINISTIC

16384 Cores - 10 Billion Particles - 60\% efficiency

PARTICLES ARE ADAPTIVE

FUNCTIONS and PARTICLES

Integral Function Representation

$$
\Phi(x)=\int \Phi(y) \delta(x-y) d y
$$

Function Mollification

$$
\Phi_{\epsilon}(x)=\int \Phi(y) \zeta_{\epsilon}(x-y) d y
$$

Particles are "mesh" free

Point Particle Quadrature

$$
\Phi^{h}(x, t)=\sum_{p=1}^{N_{p}} h_{p}^{d} \Phi_{p}(t) \delta\left(x-x_{p}(t)\right)
$$

Smooth Particle Quadrature

$$
\Phi_{\epsilon}^{h}(x, t)=\sum_{p=1}^{N_{p}} h_{p}^{d} \Phi_{p}(t) \zeta_{\epsilon}\left(x-x_{p}(t)\right)
$$

SURFACES AS LEVEL SETS

$$
\begin{aligned}
\Gamma(t) & =\{\mathbf{x} \in \Omega \mid \phi(\mathbf{x}, t)=0\} \\
|\nabla \phi| & =1
\end{aligned}
$$

EVOLVING THE LEVEL SETS
$\partial \Phi$
$\frac{\partial \Phi}{\partial t}+u \cdot \nabla \Phi=0$
PARTICLE APPROXIMATION
$\Phi_{\epsilon}^{h}(x, t)=\sum_{p=1}^{N_{p}} h_{p}^{d} \Phi_{p}(t) \zeta_{\epsilon}\left(x-x_{p}(t)\right)$
Lagrangian Surface Transport

$$
\frac{d x_{p}}{d t}=\mathbf{u}_{\mathbf{p}} \quad \frac{D \Phi_{p}}{D t}=0
$$

Lagrangian vs Eulerian Descriptions

- PARTICLE LEVEL SETS exact for rigid body motion

$$
\Phi(\mathbf{x}, t)=\Phi_{0}(\mathbf{x}-\mathbf{u} t)
$$

Lagrangian Particle methods good for linear advection

LAGRANGIAN DISTORTION

- loss of overlap -> loss of convergence

Particles follow flow trajectories - Location distortion

EXAMPLE :

Incompressible 2D Euler Equations

$$
\omega=\nabla \times \mathbf{u} \quad \nabla \cdot \mathbf{u}=0
$$

$$
\frac{D \omega}{D t}=0
$$

There is an exact axisymmetric solution

Solution of the Euler equation with particle methods.

SMOOTH PARTICLES MUST OVERLAP

Integral Function Representation

$$
\Phi(x)=\int \Phi(y) \delta(x-y) d y
$$

Function Mollification

$$
\Phi_{\epsilon}(x)=\int \Phi(y) \zeta_{\epsilon}(x-y) d y
$$

$$
\int \zeta x^{\alpha} d x=0^{\alpha} \quad 0 \leq \alpha<r
$$

TOTAL ERROR

$$
\begin{aligned}
\left\|\Phi-\Phi_{\epsilon}^{h}\right\| & \leq\left\|\Phi-\Phi_{\epsilon}\right\|+\left\|\Phi_{\epsilon}-\Phi_{\epsilon}^{h}\right\| \\
& \leq\left(C_{1}\left(\epsilon^{r}\right)+C_{2}\left(\frac{h}{\epsilon}\right)^{m}\right)\|\Phi\|_{\infty}
\end{aligned}
$$

Point Particle Quadrature
$\Phi^{h}(x, t)=\sum_{p=1}^{N_{p}} h_{p}^{d} \Phi_{p}(t) \delta\left(x-x_{p}(t)\right)$
Smooth Particle Quadrature

$$
\Phi_{\epsilon}^{h}(x, t)=\sum_{p=1}^{N_{p}} h_{p}^{d} \Phi_{p}(t) \zeta_{\epsilon}\left(x-x_{p}(t)\right)
$$

Need $\mathrm{h} / \mathrm{\varepsilon}<1$ for accuracy
PARTICLES MUST OVERLAP

Are Particle Methods Grid Free?

How to fix it?

- Modify the smoothing kernels (SPH - Monaghan)
- Re-distribute particles with Voronoi Meshes (ALE - Russo)
- Re-initialise particle strengths (WRKPM - Liu, Belytchko)

DOES NOT WORK
EXPENSIVE - UNSTABLE
EXPENSIVE

REMESHING: Re-project particles on a mesh

- NO MESH-FREE particle methods
- Can use all the "tricks" of mesh based methods
- High CFL
- Multiresolution \& Multiscaling

Particle Remeshing

Koumoutsakos, JCP, 1997

Moment Conserving Interpolation : $Q_{p}^{\text {new }}=\sum_{p^{\prime}} Q_{p^{\prime}} M\left(j h-x_{p^{\prime}}\right)$

REMESHED PARTICLE METHODS

1.ADVECT : Particles ->Large CFL
2.REMESH: Particles to Mesh \rightarrow Gather/scatter
3.SOLVE:Poisson/Derivatives on Mesh_->FFTw/Ghosts

4:RESAMPLE: Mesh Nodes BECOME Particles

Remeshing Stencils

Bergdorf et. al., MMS,2005
Cottet et.al., CRAS, 2008

$$
u_{p}^{n+1}=-\frac{\lambda(\lambda-1)}{2} u_{p-2}^{n}+\frac{\lambda(2-\lambda)}{2} u_{p-1}^{n}+\left(1-\frac{3}{2} \lambda+\frac{1}{2} \lambda^{2}\right) u_{p}^{n}
$$

$$
\frac{\partial u}{\partial t}+a \frac{\partial u}{\partial x}=0 \quad u_{p}=u\left(x_{p}\right) h \Rightarrow \begin{aligned}
& \frac{d u_{p}}{d t}=0 \\
& \frac{d x_{p}}{d t}=a
\end{aligned} \quad+\text { REMESH }
$$

$$
u_{p}^{n+1}=u_{p}^{n}-\frac{\lambda}{2}\left(3 u_{p}^{n}-4 u_{p-1}^{n}+4 u_{p-2}^{n}\right)+\frac{\lambda^{2}}{2}\left(u_{p}^{n}-2 u_{p-1}^{n}+u_{p-2}^{n}\right)
$$

Euler Advect + One-sided Remesh = Beam-Warming FD
Euler Advect + Central Remesh = Lax - Wendroff FD

VORTEX RING COLLISION, Re=1800

Experiments : P. Schatzle \& D. Coles (1986)

VORTEX DYNAMICS at High Re

Evolution of error in effective viscosity

Adaptive Mesh Refinement

- Support of unstructured grids
- Different mesh orientations
- Low compression rate (Gradient, curvature)
- No explicit control on the compression error

M. Bergdorf, P. Koumoutsakos. A Lagrangian Particle-Wavelet Method. Multiscale Modeling and Simulation: A SIAM Interdisciplinary Journal, 5(3), 980-995, 2006

PARTICLETS: Particles and Wavelets

Wavelet particle method

While particles are on grid locations
mollification kernel \longleftrightarrow basis/scaling function
Multiresolution analysis (MRA) $\left\{\mathcal{V}^{l}\right\}_{l=0}^{L}$ of particle quantities

Refineable kernels as basis functions of \mathcal{V}^{l}

Wavelets as basis functions of the complements \mathcal{W}^{l}

Multiresolution function representation:

Analysis (collocation): $d_{k}^{l} \sim \mid$ fine - Prediction(coarse) |

Each wavelet is associated
with a specific
grid point/particle

Compression / Adaptation:

Discard insignificant detail coefficients: $\left|d_{k}^{l, m}\right|<\varepsilon$
Compressed function representation:

$$
\left\|q^{L}-q_{\geq}^{L}\right\|<\varepsilon \rightarrow \text { Adapted grid }
$$

PARTICLETS : REMESHED PARTICLES + WAVELETS

$q^{L}=\sum_{k} c_{k}^{0} \zeta_{k}^{0}+\sum_{\substack{l<L \\ \text { "ground" level } \\ \text { detail } \\ \text { coefficients }}} \sum_{k} d_{k}^{l} \psi_{k}^{l}$
wavelets
0 00000

o

0000 o o o o 0
000000000
000000000
000000000
०००००००००
000000000
000000000

Wavelet-adapted grids

PDE:

$$
\frac{\partial \phi}{\partial t}+\boldsymbol{u} \cdot \nabla \phi=0
$$

Spatial Differences = filtering operations:

$$
F\left(c_{k}^{l}\right)=\sum_{j=s_{f}}^{e_{f}-1} c_{k+j}^{l} \beta_{j}^{l}, \quad \beta_{j}^{l} \text { function of }\left\{c_{m}^{l}\right\}
$$

GHOSTS : easy to compute - locally, uniform filtering of the grid

MULTIRESOLUTION LEVEL SETS

Enright, Fedkiw et al, 2002
dof = \# grid points + aux. particles at $\mathrm{t}=0.0$

*Hu, Khoo, Adams and Huang, 2006

Multi-core: Blocked Grid

Neighbors look-up: less memory indirections
Less \#ghosts
Within a block: random access

Multiresolution + Multicore + GPU

- DISTRIBUTED TASKS
1.task parallel,ghost computing _> multi-core
2.fine-grained data parallelism for RHS _> GPUs

$$
\mathbf{q}^{\text {new }}=\mathbf{q}^{\text {old }}+\delta t \mathbf{F}_{\text {OpenCL/GPUs }}^{\left.\longmapsto \mathbf{q}^{\text {old }}, \nabla \mathbf{q}^{\text {old }}\right)}
$$

Wavelet Blocks on GPUs

Rossinelli D., Hejazialhosseini B., Spampinato D., Koumoutsakos P., Multicore/Multi-GPU Accelerated Simulations of Multiphase Compressible Flows Using Wavelet Adapted Grids, SIAM J. Sci. Comput., 33, pp. 512-540, 2011

A comparison of CHOMBO vs MRAG

TIME: FLLow AVeraging integratOR

Stiff ODEs:

$$
\begin{gathered}
\dot{\mathbf{u}}=\mathbf{G}(\mathbf{u})+\frac{1}{\epsilon} \mathbf{F}(\mathbf{u}) \\
\epsilon \ll 1
\end{gathered}
$$

with the legacy integration scheme:

$$
\begin{array}{ll}
\overline{\mathbf{u}}_{t+\tau}=\boldsymbol{\Phi}_{\tau}^{1 / \epsilon}\left(\overline{\mathbf{u}}_{t}\right) \\
\text { Small time-step: } & \tau \ll \epsilon
\end{array}
$$

FLAVOR:

$$
\overline{\mathbf{u}}_{t+h}=\left(\boldsymbol{\Phi}_{\frac{h}{M}-\tau}^{0} \circ \boldsymbol{\Phi}_{\tau}^{1 / \epsilon}\right)^{M}\left(\overline{\mathbf{u}}_{t}\right)
$$

$$
\frac{1}{\epsilon}:
$$

OFF
ON

$$
\text { Large time-step: } \quad \delta=\frac{h}{M}
$$

M regulates accuracy of large time-step

$$
0<\tau \ll \epsilon \ll \delta \ll 1
$$

FLAVOR + Stiff Stochastic

SSA written as $\left(\mathbf{X}_{n}, t_{n}\right)=\left(\mathbf{\Phi}^{(1 / \epsilon)}\right)\left(\mathbf{X}_{n-1}, t_{n-1}\right)$
Define FLAVOR-SSA:

$$
\left(\mathbf{X}_{n}, t_{n}\right)=\left(\boldsymbol{\Phi}^{(\xi / \epsilon)} \circ \boldsymbol{\Phi}^{(1 / \epsilon)}\right)\left(\mathbf{X}_{n-1}, t_{n-1}\right)
$$

amounts to rescaling
the total propensity every other iteration

$$
\begin{aligned}
& \delta=\delta(\xi) \sim \mathcal{E}\left(\frac{1}{\hat{a}_{0}}\right) \\
& \hat{a}_{0}(t, \xi):=\underbrace{\xi}_{\epsilon} \sum_{i} \tilde{a}_{i}^{(f a s t)}(t)+\sum_{j} a_{j}^{(s l o w)}(t) \\
& \xi \in[0,1]
\end{aligned}
$$

OPTIMAL revalue?

FLAVOR - 5 a cutofif Phenomenon

Bayati B., Owhadi H., Koumoutsakos P, J. Chem. Phys., 2010

Boundary Conditions = Coupling

COUPLING Different Physics in Space/ Time

	I	II	III
No Slip	FLUID	Sharp Force	-
No Slip + PENALTY/IBM	Fluid	Smooth Force	-
Flow-Structure	Fluid		Solid
Multiscale I	Fluid	Fluid+MD	MD
Multiscale II	Fluid	Fluid+DPD	DPD+MD

COMPRESSIBLE FLOWS

Moving Boundaries
Brinkman Penalization for Compressible Flow

FISH SCHOOLING

Simulations of Gliomas using MRAG

COMPUTATIONAL Challenges

"Although X seem to be a small step from \mathbf{Y} computation, in fact, they represent a huge step. They discard the most essential and appealing properties of Y computation: understandability, predictability, and determinism.

X as a model of computation, are wildly nondeterministic, and the job of the programmer becomes one of pruning that nondeterminism."
-- 'The Problem with X, Edward A. Lee, UC Berkeley, 2006
$\mathrm{X}=$ threads
$Y=$ sequential
X = Multi-scale
Y = single-scale

