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OUTLINE

INTRODUCTION 

STOCHASTIC
 R-Leaping + AMR-S

DETERMINISTIC
Particles + Wavelets

BOUNDARIES

OUTLOOK
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Vortex Dynamics 
Koumoutsakos  Lab, ETHZ

Growth of Black Holes
Springel, MPI - Hernquist, Harvard

Transport in aquaporins
Schulten Lab, UIUC

MULTIPLE SCALES +  PARTICLES

-9 0 +9

Molecular 
Dynamics

Vortex
Methods

Smoothed  Particle
Hydrodynamics
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PARTICLES : Lagrangian, Conservation and Other Laws

m
dup

dt
= Fp

MD, DPD, CGMD

SPH, Vortex Methods

ρp
Dup

Dt
= (∇ · σ)p

dxp

dt
= up
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Particles and Grids 

Numerical Calculation of Time-Dependent Viscous Incompressible Flow of Fluid with Free Surface,, Harlow, Francis H. and Welch, J. Eddie, Physics of Fluids, 1965

Marker and Cell (MAC) - F.H. Harlow and E.J. Welch
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STOCHASTIC DETERMINISTIC
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Chemical kinetics : Set-up

Well stirred reaction volume V

Experiment length T

N different species S1, S2,..., SN in 
numbers X1, X2,..., XN

random collisions and reactions  
through M channels R1, R2,... , RM

V

S1
S2

cj
ci

8Tuesday, July 5, 2011



Kinetics + Space

A species U, with  elements labeled by an index i  

Diffusion as reactions of the form:

Ui
ki,i+1−−−−→ Ui+1

Ui
ki,i−1−−−−→ Ui−1

Ui+1
ki+1,i−−−−→ Ui

Ui−1
ki−1,i−−−−→ Ui

h

Uniform Cells: ki,j =
D

h2

cici−1 ci+1

Diffusion in 1-D

∂u

∂t
= D

∂2u

∂x2

Deterministic Stochastic D. Bernstein,. Phys. Rev. E, 2005.
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SPACE: 106  –  109 “Reactions”

Molecules per grid cell for a 300 x 300 grid

500 1000 5000 10000

∂u

∂t
= du∆u− uv2 + F (1− u),

∂v

∂t
= dv∆v + uv2 − (F + κ)v.

F = 0.04,κ = 0.06, t = 1000

U + 2V → 3V,

V → P
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Stochastic Simulation Algorithm

For M reactions, time until any reaction

Reaction index :  point-wise distribution

a0 =
M�

j=1

aj

p(j = l) =
al

a0

τ ∼ E(1/a0)

Gillespie,
J. Comp. Phys. 1977

The SSA simulates 
every reaction event !

Exact but SLOW

ONE	
  STEP

Sample	
  τ	
  

Sample	
  the	
  index	
  j

Update	
  the	
  Xi,	
  t=t+τ
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ACCELERATING SSA : τ leaping 

τ leaping  : several reaction events over one time step

ASSUMPTION :  reaction propensities ai remain essentially 
constant over τ, in spite of several firings

Over this given τ, the number of reaction firings KPj is 
governed by a Poisson distribution

KP
j ∼ P(ajτ)

Gillespie,
J. Chem. Phys. 2001

Cost ~  M Poisson samplings

X(t + τ) = X(t) +
M�

j=1

KP
j νj .

SPEEDUP ~  100 X SSA
12Tuesday, July 5, 2011



 τ-leaping : Consequences 

τ leaping can generate  negative populations

Tian & Burrage,
J. Chem. Phys. 2004

Chatterjee et al.,
J. Chem. Phys. 2005

Cao et al.,
J. Chem. Phys. 2005

Binomial τ leaping : Approximate the unbounded 
Poisson distributions with Binomial ones

Modified τ leaping
Critical reactions, i.e. those likely to drive some populations negative, 
handled by SSA

Other reactions advanced by τ leaping
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R-leaping : Accelerate SSA by reaction leaps 

Auger et al.,, J. Chem. Phys. 2006

Leaps : number of firings L across all  reaction  channels 

P (j = l) =
al(x)
a0(x)

for l = 1, . . . ,M.

• In R-leaping, as in SSA, the index j of every firing obeys a point-wise distribution 

• In this interval we will have           firings of channel   Km Rm

• with : 
M�

m=1

Km = L

• Time increment τL is Gamma-distributed τL ∼ Γ(L, 1/a0(x))
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R-leaping : One step  

Auger et al.,
J. Chem. Phys. 2006

• Define L 

• Sample the index j 

• Number of reactions for channel  m  

• Update species and time : 

P (j = l) =
al(x)
a0(x)

for l = 1, . . . , L.

Km =
L�

l=1

δl,m

X(t + τL) = X(t) +
M�

j=1

Kjνj

τL ∼ Γ(L, 1/a0(x))
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R-Leaping Theorem 

 The distribution of          is a binomial distribution : 

and for every                                   the conditional distribution of 

given  the event                                                                                is

This  result is invariant under any permutation of the indices

K1

B(L, a1(x)/a0(x))

m ∈ {2, . . . ,M} Km

{(K1, . . . ,Km−1) = (k1, . . . , km−1)}

B
�

L−
m−1�

i=1

ki,
am(x)

a0(x)−
�m−1

i=1 ai(x)

�
.Km ∼
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 R-leaping : Sorting Reactions

Sampling the M Kj efficiently

When                 , sampling is done!

Minimize the average m by a permutation of the  
indices, such that propensities are decreasing

1 2 3 ... M
1
2
3
...

L
K

x
x

x
x

x
x
x

x
x
2 3 4

Fi
rin

g

Reaction index

Km ∼ B
�

L−
m−1�

i=1

ki,
am

a0 −
�m−1

i=1 ai

�

If Ki = ki, ∀i < m,

m−1�

i=1

ki = L

M 3 1 ... 2
1
2
3
...

L
K

x
x

x
x

x
x
x

x
x

4 3 2

Fi
rin

g

Reaction index

Have to sample M binomials Have to sample 3 binomials

Permutation of indicesOriginal loop
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LacZ/LacY genes expression and 
enzymatic/transport activities of LacZ/
LacY proteins in E. Coli

Moderately large system (M = 22)

Disparate rates

Scarce reactants and negative 
species

Results

Kierzek,
Bioiformatics 2002

Reaction Channel Reaction rate

R1 PLac + RNAP → PLacRNAP 0.17

R2 PLacRNAP → PLac + RNAP 10

R3 PLacRNAP → TrLacZ1 1

R4 TrLacZ1 → RbsLacZ + PLac + TrLacZ2 1

R5 TrLacZ2 → TrLacY2 0.015

R6 TrLacY1 → RbsLacY + TrLacY2 1

R7 TrLacY2 → RNAP 0.36

R8 Ribosome + RbsLacZ → RbsRibosomeLacZ 0.17

R9 Ribosome + RbsLacY → RbsRibosomeLacY 0.17

R10 RbsRibosomeLacZ → Ribosome + RbsLacZ 0.45

R11 RbsRibosomeLacY → Ribosome + RbsLacY 0.45

R12 RbsRibosomeLacZ → TrRbsLacZ + RbsLacZ 0.4

R13 RbsRibosomeLacY → TrRbsLacY + RbsLacY 0.4

R14 TrRbsLacZ → LacZ 0.015

R15 TrRbsLacY → LacY 0.036

R16 LacZ → dgrLacZ 6.42x10−5

R17 LacY → dgrLacY 6.42x10−5

R18 RbsLacZ → dgrRbsLacZ 0.3

R19 RbsLacY → dgrRbsLacY 0.3

R20 LacZ + lactose → LacZlactose 9.52x10−5

R21 LacZlactose → product + LacZ 431

R22 LacY → lactose + LacY 14

TABLE II: LacZ/LacY model (Kierzek8): reaction channels and rates.

26
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 R-leaping :  Sampling the M Kj efficiently

M can be large (~102) for bio-chemical systems!

M can be very large (~106) for diffusion

Efficient sampling effectively loops over a fraction of M.

Number of binomial samples per time step
LacYLacZ activities in E. Coli., M=22

Original

Efficient

Efficient 
(averaged

)

The larger the system, the bigger the payoff.

The more disparate the  reaction rates are, 
the smaller the fraction.

Price to pay: carry out re-ordering often enough
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(b)ε = 0.1 for R-leaping
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(c)ε = 0.2 for R-leaping

FIG. 9:

37

Histogram errors vs CPU time

   modified τ-leaping 
x R-leaping
o R-leaping efficient sampling

M = 22 : R-leaping 2X faster than modified τ-leaping! 

   modified τ-leaping 
x R-leaping
o R-leaping efficient sampling

LacZ/LacY genes expression and enzymatic/transport activities of LacZ/LacY proteins in E. Coli
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•Collisions and reactions  within  each element

τ̂R

τ̂D
=

D

h2k

τR

τD
� 1•For homogeneity : 

τR

τD

•      mean free time for reactive collisions in a cell

•For a bimolecular reaction with rate k and diffusion 
coefficient D

h must be small for the discretization to be valid

Reaction-Diffusion : SSA + AMR

Kuramato,Prog. Theor. Phys. 1974

•       mean time during which a molecule will remain 
in element.  
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AMR + STOCHASTIC

i. PROPENSITIES	
  FROM	
  FV

ii. GRID	
  REFINEMENT	
  

iii. STOCHASTIC	
  INTERPOLATION	
  

iv. INTEGRATE:	
  t/R	
  Leaping	
  

v. DATA	
  STRUCTURES	
  :	
  OVERTURE

B. Bayati, et.al. , Phys. Chem. Chem. Phys., 2008

Bayati B., et.al., J. of Computational Physics,  2011 
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I. Propensities from FV schemes

i

j k

uj uk

ui

h

l

ul

δx

δy
γ2

γ3

γ4

γ1

J
�

x, y +
2
3
δy

�
approximated by three Taylor series:

around the point
�

x, y +
2
3
δy

�

J
�

x, y +
2
3
δy

�
= −

D

2δy

�
ū(s)

j + ū(s)
k − 2ū(s)

i

�
+O(h)

dU (s)
i

dt
=

4D

3h2

�
2(U (s)

j + U (s)
k )− U (s)

i

�
+O(h).

aD
i,j =

4D

3h2
(U (s)

j + U (s)
k ),

aD
j,i =

2D

3h2
U (s)

i

propensities for transitions between  j & i 

D. Bernstein. Simulating mesoscopic reaction-diffusion systems 
using the Gillespie algorithm. Phys. Rev. E, 2005.
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|U (s)
i+1 − U (s)

i−1| > 2C
√

Ω Refine volume element i if :

Bell et al., J. Comp. Phys., 2007

α βi

Ω

Ω +2
√

Ω

Ω +3
√

Ω

Ω +
√

Ω

Ω−
√

Ω

Ω− 2
√

Ω
Ω− 3

√
Ω

II. Refinement  Criteria

refined

not refined, probably 
background noise

U (s)
β ∼ P(Ω) ≈ N (Ω,Ω)

In equilibrium:

Distinguish between 
gradients and fluctuations,

Text
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weights: w1 :=
mx1 + a

m(x1 + x2) + 2a
w2 :=

mx2 + a

m(x1 + x2) + 2a

Û (s)
1 ∼ B(U (s)

i , w1) Û (s)
2 = U (s)

i − Û (s)
1

x1 =
3
4
h

x2 =
5
4
h

Û (s)
1 Û (s)

2

U (s)
i

III. Stochastic Interpolation

Conservative + Strictly Positive

sampling:

2D, 3D : Tensor products
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Fisher-Kolmogorov Reaction-Diffusion System in 2-D

U + V
k−→ 2U

Fisher,
Ann. Eugenics 1937

26Tuesday, July 5, 2011



Wavespeed & Efficiency

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

t’

E
(t
’)

Ratio of Cells vs Time

0 2 4 6 8 10 12
0

0.05

0.1

0.15

t

r(
t)

Fisher:Wavefront vs 

1-D Speed

2-D numerical

Gray-Scott Fisher-Kolmogorov

E(t�) =
LAMR(t�)

Lhmin

Bayati B., et.al., J. of Comp. Phys.,  2011 
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STOCHASTIC DETERMINISTIC
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25 years DINFKCSE  Lab

Runs at IBM Watson Center - BLue Gene/L 

The Flow and Growth of  Aircraft Wakes16384 Cores  - 10 Billion  Particles - 60% efficiency

Chatelain P., Curioni A., Bergdorf M., Rossinelli D., Andreoni W., Koumoutsakos P., Billion Vortex Particle Direct Numerical Simulations of Aircraft Wakes, Computer Methods in Applied Mech. and Eng. 197/13-16, 1296-1304, 2008 

29Tuesday, July 5, 2011



PARTICLES ARE ADAPTIVE

yet inefficient ! 

30Tuesday, July 5, 2011



FUNCTIONS and PARTICLES

h

!

Φ(x) =
�

Φ(y) δ(x− y) dy

Integral Function Representation Point Particle Quadrature

Φh(x, t) =
Np�

p=1

hd
p Φp(t) δ(x− xp(t))

Φh
� (x, t) =

Np�

p=1

hd
p Φp(t) ζ�(x− xp(t))Φ�(x) =

�
Φ(y) ζ�(x− y) dy

Function Mollification Smooth Particle Quadrature

Particles are “mesh” free 
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Γ(t) = {x ∈ Ω | φ(x, t) = 0}
|∇φ| = 1

SURFACES  AS  LEVEL SETS

∂Φ
∂t

+ u ⋅∇Φ = 0

EVOLVING THE LEVEL SETS

PARTICLE APPROXIMATION

Φh
� (x, t) =

Np�

p=1

hd
p Φp(t) ζ�(x− xp(t))

DΦp

Dt
= 0

dxp

dt
= up

Lagrangian Surface Transport

S. E. Hieber and P. Koumoutsakos. A Lagrangian particle level set method. J. Computational Physics, 210:342-367, 2005
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Lagrangian vs Eulerian Descriptions

PARTICLE LEVEL SETS  exact for rigid body motion

Lagrangian Particle  Level Sets 
(Hieber and Koumoutsakos, 2005)Hubrid Particle-Grid  Level Sets 

(Enright and Fedkiw, 2002)

Φ(x, t) = Φ0(x− ut)

 Lagrangian Particle methods 
good for linear advection 
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LAGRANGIAN  DISTORTION

Particles follow flow trajectories - Location distortion 

EXAMPLE :  
Incompressible 2D Euler Equations  

ω = ∇× u ∇ · u = 0

Dω

Dt
= 0

There is an exact axisymmetric solution

•loss of overlap -> loss of convergence
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Hald, Beale and Majda, (80‘s) Anderson, Cottet (90’s)

SMOOTH PARTICLES MUST OVERLAP

 Need h/ε < 1 for accuracy 

  PARTICLES MUST OVERLAP

Φh(x, t) =
Np�

p=1

hd
p Φp(t) δ(x− xp(t))

Φh
� (x, t) =

Np�

p=1

hd
p Φp(t) ζ�(x− xp(t))Φ�(x) =

�
Φ(y) ζ�(x− y) dy

Φ(x) =
�

Φ(y) δ(x− y) dy

Integral Function Representation Point Particle Quadrature

Function Mollification Smooth Particle Quadrature

||Φ − Φh
� || ≤ ||Φ − Φ�|| + ||Φ� − Φh

� ||

≤ (C1 �r + C2 (
h

�
)m) ||Φ||∞

TOTAL ERROR 

�
ζ xα dx = 0α 0 ≤ α < r
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Are Particle Methods  Grid Free ?

How to fix it ?
•Modify the smoothing kernels (SPH - Monaghan) 
•Re-distribute particles with Voronoi Meshes (ALE - Russo)
•Re-initialise particle strengths (WRKPM - Liu, Belytchko) 

DOES NOT WORK
EXPENSIVE - UNSTABLE

EXPENSIVE 

REMESHING : Re-project particles on a mesh
•NO MESH-FREE particle methods
•Can use all the “tricks” of mesh based methods
•High CFL
•Multiresolution & Multiscaling
•.......
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Particle Remeshing

Koumoutsakos, JCP, 1997

Qnew
p =

�

p�

Qp�M(j h− xp�)Moment Conserving Interpolation :
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REMESHED PARTICLE METHODS

1.ADVECT :  Particles ->Large CFL

2.REMESH :  Particles  to  Mesh -> Gather/Scatter

3.SOLVE:Poisson/Derivatives on Mesh ->FFTw/Ghosts

4:RESAMPLE: Mesh Nodes  BECOME  Particles 
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Remeshing Stencils 

h Xp - Xg

− λ(λ− 1)
2

λ(2− λ)
2

(1− 3
2
λ +

1
2
λ2)

λ =
Xp −Xg

h

Bergdorf et. al., MMS,2005
Cottet et.al., CRAS, 2008

39Tuesday, July 5, 2011



+ REMESH

Euler Advect + One-sided Remesh = Beam-Warming FD

Euler Advect + Central Remesh = Lax - Wendroff FD ................

dxp

dt
= a

dup

dt
= 0up = u(xp)h

un+1
p = un

p −
λ

2
(3un

p − 4un
p−1 + 4un

p−2) +
λ2

2
(un

p − 2un
p−1 + un

p−2)

− λ(λ− 1)
2

un
p−2 +

λ(2− λ)
2

un
p−1 + (1− 3

2
λ +

1
2
λ2)un

pun+1
p =

p-­‐1p-­‐2 p+1 p+2p

tn

tn+1

∂u

∂t
+ a

∂u

∂x
= 0

λ = xp − xg =
aδt

h

= (p + λ)hxn+1
p = xn

p + a δt
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Experiments : P. Schatzle & D. Coles (1986)

VORTEX RING COLLISION,  Re = 1800
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VORTEX DYNAMICS at High Re
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Evolution of error in effective viscosity

0.995

1

1.005

1.01

1.015

1.02

0 2 4 6 8 10 12 14

ν e
ff/

ν

time (s)

1

dE

dt
= νE νeff =

dE

dt
/E
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Adaptive Mesh Refinement 

Support of unstructured grids

Different mesh orientations

• Low compression rate 
(Gradient, curvature)

• No explicit control on the 
compression error 

Berger, Colella,J. Comp. Phys., 1989
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PARTICLETS : Particles and Wavelets

M. Bergdorf, P. Koumoutsakos. A Lagrangian Particle-Wavelet Method. 
Multiscale Modeling and Simulation: A SIAM Interdisciplinary Journal, 5(3), 980-995, 2006
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WAVELET  PARTICLE  METHOD
While particles are on grid locations

mollification kernel             basis/scaling function

Multiresolution analysis (MRA)              of particle quantities{V l}L
l=0

+

ζl+1
k =

�

j

h̃l
j,k ζl

j +
�

j

g̃l
j,k ψl

j

Refineable kernels
as basis functions of 

=

ζl
k =

�

j

hl
j,k ζl+1

jV l

Wavelets as basis functions of the 
complements W l

=
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Multiresolution function representation:

l

qL =
�

k

c0
k ζ0

k +
�

l<L

�

k

dl
k ψl

k

GROUND LEVEL

DETAIL 
COEFFICIENTS

WAVELETS

Analysis (collocation): ~ | fine - Prediction(coarse) |dl
k

(2D)

Each wavelet is associated 
with a specific
grid point/particle Compression/Adaptation:

Discard insignificant detail coefficients:

Compressed function representation:

→ Adapted grid

|dl,m
k | < ε

�qL − qL
≥� < ε
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PARTICLETS : REMESHED PARTICLES + WAVELETS

qL =
�

k

c0
k ζ0

k +
�

l<L

�

k

dl
k ψl

k

“ground” level detail 
coefficients wavelets

1.Remesh 
2.Wavelets- Compress/Adapt
3.Convect
4.Wavelets Reconstruct
5.GOTO 1

M. Bergdorf, P. Koumoutsakos. A Lagrangian Particle-Wavelet Method, Multiscale 
Modeling and Simulation: A SIAM Interdisciplinary Journal, 5(3), 980-995, 2006
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Wavelet-adapted grids

Spatial Differences = filtering operations:

∂φ
∂t + u ·∇φ = 0

PDE:

GHOSTS :  easy to compute - (locally) uniform filtering of the grid
49Tuesday, July 5, 2011



102 103 104 105
10-5

10-4

10-3

10-2

10-1

104 105103102

10 -2

10 -3

10 -4

10 -5

10 -1

MULTIRESOLUTION  LEVEL  SETS

Present Method
dof = # active gp/particles at t=0.0
dof = # active gp/particles at final time

Enright,  Fedkiw et al, 2002
dof = # grid points  + aux. particles at t=0.0

degrees of freedom

re
la

tiv
e 

er
ro

r 
in

 a
re

a

CFLmax ~ 40

M. Bergdorf, P. Koumoutsakos. A Lagrangian Particle-Wavelet Method, Multiscale 
Modeling and Simulation: A SIAM Interdisciplinary Journal, 5(3), 980-995, 2006
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‣ Fifth order WENO reconstruction

‣ HLLE fluxes using primitive quantities

‣ 5th-order average interpolating wavelets

‣ LTS based on TVD RK2 time stepper

‣ Levelset approach for the interface

‣ 8 levels of resolution, maximum jump 2

(M=3, At=0.8)

Shock Bubble Interaction

FINEST RESOLUTION EQUIVALENT
8000 x 8000 uniform grid

~40 times smaller adaptive grid

ref.*
ref.*

*Hu, Khoo, Adams and Huang, 2006
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Multi-core: Blocked Grid

Neighbors look-up: less memory indirections
Less #ghosts
Within a block: random access
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Multiresolution + MultiCore + GPU

DISTRIBUTED	
  TASKS	
  

1.task	
  parallel,ghost	
  computing	
  _>	
  multi-­‐core

2.fine-­‐grained	
  data	
  parallelism	
  for	
  RHS	
  _>	
  GPUs

OpenCL/GPUs

qnew = qold + δtF
�
qold,∇qold

�
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Wavelet Blocks on GPUs

Wavelet-Blocks

CPU

OpenCL Output Tokens

GPU 1

GPU 2

GPU 3

OpenCL Input Tokens OpenCL Devices

Rossinelli D., Hejazialhosseini B., Spampinato D., Koumoutsakos P., 
Multicore/Multi-GPU Accelerated Simulations of Multiphase 
Compressible Flows Using Wavelet Adapted Grids, SIAM J. Sci. 
Comput., 33, pp. 512-540, 2011
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shock-bubble interaction

density field

Chombo: 
91 min, 230 MB

multi-phase
3rd order WENO scheme

single-phase
2nd order PPM

A comparison of CHOMBO vs MRAG 

MRAG (home grown, swiss quality stuff): 
56 min, 244 MB (+ 1 GPU: 7 min)

Rossinelli D., Hejazialhosseini B., Spampinato D., Koumoutsakos P., Multicore/Multi-GPU 
Accelerated Simulations of Multiphase Compressible Flows Using Wavelet Adapted Grids, 
SIAM J. Sci. Comput., 33, pp. 512-540, 2011
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BOUNDARIES + ALGORITHMS
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TIME : FLow AVeraging integratOR

ūt+h =
�
Φ0

h
M−τ ◦ Φ1/�

τ

�M
(ūt)

0 < τ � �� δ � 1

FLAVOR:

M regulates accuracy of large time-step

Tao, Owhadi, & Marsden, Multiscale Model. Simul., 2010.

Stiff ODEs:
u̇ = G(u) +

1
�
F(u)

�� 1

ūt+τ = Φ1/�
τ (ūt)

with the legacy integration scheme:

!!!
! " " !

"

!!!"!
# ! !

!!!""
" " 0

!

" " !

"

# ! !

" " 0

turn on/off large 
coefficients:

τ � �Small time-step:

ONOFF1

�
:

δ =
h

M
Large time-step:
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Define FLAVOR-SSA:
(Xn, tn) =

�
Φ(ξ/�) ◦ Φ(1/�)

�
(Xn−1, tn−1)

(Xn, tn) =
�
Φ(1/�)

�
(Xn−1, tn−1)

δ = δ(ξ) ∼ E
�

1
â0

�

â0(t, ξ) :=
ξ

�

�

i

ã(fast)
i (t) +

�

j

a(slow)
j (t)

SSA written as

ξ ∈ [0, 1]

SSAξ = 1 =⇒ξ = 0 =⇒Largest Speedup

amounts to rescaling 
the total propensity 

every other 
iteration

FLAVOR + Stiff Stochastics 

OPTIMAL 
value?
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� = 10−4

S1 ←→ S2 ←→ S3 ←→ S4
O(1/�) O(1)

FLAVOR -S : A Cutoff Phenomenon
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1
ξ < � ξ ≈ � ξ > �

Error vs.ξ

S1←→S2

S1←→S3

2S2 + S3←→3S4

Bayati B., Owhadi H., Koumoutsakos P, J. Chem. Phys.,2010
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Boundary Conditions = Coupling Dynamics

COUPLING Different Physics in Space/Time

I

III II

I II III
No Slip FLUID Sharp Force -
No Slip + 

PENALTY/IBM
Fluid Smooth Force -

Flow-Structure Fluid Smooth/Sharp 
Force

Solid

Multiscale I Fluid Fluid+MD MD

Multiscale II Fluid Fluid+DPD DPD+MD
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Moving Boundaries

COMPRESSIBLE FLOWS 

Brinkman Penalization for 
Compressible Flow
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FISH  SCHOOLING

1 FISH 2 FISH (OBVIOUSLY)
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Simulations of Gliomas using MRAG

actual M = 10^7 
effective M = 10^10 
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MULTISCALE METHODS  MD - Lattice-Boltzmann
GPU

CORECORE

CORE

GPU

CORE

+
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COMPUTATIONAL Challenges 

"Although X seem to be a small step from Y computation, in fact, 
they represent a huge step. They discard the most essential and 
appealing properties of Y computation: 
understandability, predictability, and determinism. 

X as a model of computation, are wildly nondeterministic, and the 
job of the programmer becomes one of pruning that 
nondeterminism."

 -- 'The Problem with X, Edward A. Lee, UC Berkeley, 2006

Y  = single-scaleX = Multi-scale

X = threads Y  = sequential
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Bayati Chatelain

Chatelain

Bergdorf

Rossinelli

Hedjazialhosseini
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