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X
k→ 0

Death - Birth and everything in between

d[X]
dt

= −k[X]

[X](t + dt) = [X](t) − k [X](t)

Deterministic

P(x→ x− 1) = k x dt

P(x→ x) = 1 − k ax dt

Stochastic
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25 years DINFK

The Lotka-Volterra Model
X :  Sheeps,   Y:predators,  A: food

X + A
k1→ 2X X + Y

k2→ 2Y Y
k3→ B

d[X]
dt

= k1[A][X]− k2[X][Y ]
d[Y ]
dt

= k2[X][Y ]− k3[Y ]

Deterministic ODE’s

Stochastic Interpretation

P(x→ x + 1; y → y) = k1a x dt

P(x→ x− 1; y → y + 1) = k2 x y dt

P(x→ x; y → y − 1) = k3 y dt

P(x→ x; y → y) = 1 − (k1 ax + k2xy + k3 y) dt
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25 years DINFK

The Lotka-Volterra Model

Stochastic
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25 years DINFK

Reactions on Surfaces 

Gray  Scott system U + 2V → 3V,

V → P

Deterministic
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25 years DINFK

The Spatial Gray-Scott Model

U + 2V → 3V,

V → PDeterministic Stochastic
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Example  of  Deterministic  Models : Angiogenesis

WWW.BIOONCOLOGY.COM

CRANIAL VESSEL ANGIOGENESIS IN ZEBRAFISH
HTTP://ZFISH.NICHD.NIH.GOV/ZFATLAS/FLI-GFP/FLI_MOVIES.HTML
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Tumor-Induced Angiogenesis

Tissue
Vessel Network Cellular

Filopodia

Molecular
Growth factors

8Thursday, September 11, 2008



A Model of Sprouting Angiogenesis

endothelial

tip cells

secrete

MMPs
ECM

soluble

VEGF

matrix-bound

VEGF

cleaved

VEGF

sprout

Growth factor:  VEGF
exists in two forms:
• soluble
• bound to the matrix (bVEGF)

Mechanism:
endothelial cells migrate towards source of
growth factors
• form cords
•proliferate
•branch / fuse

Release of bVEGF
endothelial cells secrete proteinases
proteinases cleave bVEGF → soluble 

tumor

necrotic 
core
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Sprouting angiogenesis:
formation of new blood vessels from existing ones
initiated by tumors with low nutrient supply

Advantages of an explicit ECM: Angiogenesis

endothelial

tip cells

secrete

MMPs
ECM

soluble

VEGF

matrix-bound

VEGF

cleaved

VEGF

sprout

Growth factor:  VEGF
exists in two forms:
• soluble
• bound to the matrix (bVEGF)

Mechanism:
endothelial cells migrate towards source of
growth factors
• form cords 
•branch
•proliferate

Release of bVEGF
endothelial cells secrete proteinases
proteinases cleave bVEGF → soluble 
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Extracellular Matrix
• fibrous proteins
• gels of polysaccharides
• sticky scaffolding
• structural support

Particle-mesh models for mesenchymal motion / PM4

AMOEBOID MIGRATION
SHAPE CHANGES
NO MATRIX REMODELING

CAMS/INTEGRINS
EVENLY DISTRIBUTED

“MESENCHYMAL” MOTION
FOCAL ADHESION, 
MOUNTAIN CLIMBING 

RECEPTOR CLUSTERING
CAMS/INTEGRINS/MMPS

MATRIX DEFECT

[1] M.  SIDANI, J.  WYCKOFF, C.  XUE, J.  E. SEGALL, AND J.  CONDEELIS. PROBING THE 
MICROENVIRONMENT OF MAMMARY TUMORS USING MULTIPHOTON MICROSCOPY. 
JOURNAL OF MAMMARY GLAND BIOLOGY AND NEOPLASIA, V11(2):151–163, 2006.

matrix to aid in the epithelial cells’ invasion during
morphogenesis [33].

In mammary tumors, collagen fibers become more
numerous and support the blood vessels of the tumor as
dense arrays of fibers that surround the vessels (Fig. 3).
These collagen fibers are co-opted by the carcinoma cells as
a highway system to migrate within the tumor and ulti-
mately to reach the blood vessels themselves[13, 26, 31].

On the other hand, the dense ECM that makes up the
basement membrane of blood vessels acts as a barrier
preventing the movement of tumor cells into blood vessels
[13].

Motility is Imperative in Determining Tumor Cell Fate
Inside the Primary Tumor

Tumor cell motility in vivo determines the microenviron-
ment in which the tumor cell is located, and hence its
invasion, intravasation and metastatic potential. During
movement, the cancer cell generates cycles of actin
polymerization which are important to determine cell
direction and for each of the consecutive steps of the
motility cycle [37]. Tumor cells in mammary tumors are
challenged by extracellular stimuli which originate from
their immediate microenvironment, such as neighboring
cancer cells, macrophages, and blood vessels. This stimu-
lation causes localized actin polymerization and protrusion
[37] followed by cell-ECM adhesion, contraction of the cell
body creating a tension between the adhesion sites, and
subsequently cell translocation [37] resembling an inch
worm-like motion (Fig. 4). Migrating cells need to degrade
and remodel the ECM in order to invade neighboring
tissues and basement membranes that surround blood
vessels; this process involves their ability to extend
protrusions into the ECM [38–40]. Recently, invadopodia
have been characterized as important in the metastasis of
cancer cells. These specialized structures contain many
actin-regulatory proteins, including N-WASP (WASP in
macrophages), and cofilin, adhesion molecules, signaling
proteins, and matrix degrading proteins (MMPs) [39].

Cell Motility Inside Tumors Involves an Array
of Different Cell Types Moving in Relation to ECM
and to Each Other

Multiphoton-based intravital imaging has shown that cancer
cells inside mammary tumors migrate as solitary amoeboid
cells, not as a collection of adherent cells, and at much
higher speeds than that seen in vitro (∼3.4 vs. 0.45 μm/min,
respectively) [12, 26]. The high velocity of tumor cell
motility in vivo may be explained by a combination of
factors, including the absence of a dense network of ECM
in tumor tissue, the presence of linear ECM fibers as a
substratum, and the unique gene expression pattern of
invasive tumor cells which makes them more motile and
chemotactic [12, 13, 26]. Current work has analyzed the
motility behaviors inside mammary tumors in vivo, derived
either from the injection of tumor cells into the mammary
glands or from spontaneous tumors of transgenic animals

Figure 3 The microenvironment of a mammary tumor can be imaged
using multiphoton microscopy. a Tumor cells with GFP-labeled Mena
(green) are seen growing as an epithelial layer and have Mena-GFP at
the cell periphery. Collagen (purple) is imaged by second harmonic-
generated polarized light. b Tumor cells (green) are associated with
ECM fibers (purple). ECM fibers not only support the tumor cells and
blood vessels but also act as roadways used by the tumor cells to
crawl toward blood vessels (arrow). Image is a 60 μm thick z-
projection. Scale bar for a and b = 25 μm.

J Mammary Gland Biol Neoplasia (2006) 11: 151–163 155

25µm

MAMMARY 
TUMOR CELLS

BLOOD VESSEL

The Cell
• confined by semipermeable membrane
• inside: cytosol (fluid) & organelles
• cell adhesion molecules on the membrane
• extends filopodia for sensing
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About scale:

Representing Cells:

Cellular automaton
• intuitive
• behavioral rules
• one “cell” = one cellFINER

FINER

FINER

Cellular Potts
• shape optimization
• interaction energies

Continuum
• cell density (= no individuals)
• PDEs
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Continuum modeling of cells 
Primary implications:

Cell density: ρ(x, t)

∂ρ

∂t
= −∇(u ρ) + k ρ

MIGRATION PROLIFERATION
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no linear stability constraints
= no CFL (dt<dx/u) condition

→

Simulations using Particles

Function approximation:

∫
ζ |x|r dx <∞

∫
ζ xα dx = 0α 0 ≤ α < r

q(x, t) =
∑

p

Qp(t) ζh
(
x− xp(t)

)

PARTICLE
WEIGHTS

PARTICLE
KERNEL

PARTICLE
POSITIONS

h
ε

(
∂q

∂t
+∇ ·

(
u q

)
= L(q, x, t)

)Dq

Dt
= L(q, x, t)

dxp

dt
= u(xp, t) ,

dvp

dt
= vp (∇ · u) (xp, t) ,

dQp

dt
= vp Lε,h(q,xp, t) .

positions

volumes

weights

vp = hd

Qp = q(xp, 0) vp

initial values 
on lattice

Discretization of Lagrangian form:
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Model System

endothelial

tip cells

secrete

MMPs
ECM

soluble

VEGF

matrix-bound

VEGF

cleaved

VEGF

sproutModel Components:

• Endothelial Cells (ECs)

• Extra-cellular Matrix (ECM)

• Growth Factors (VEGF)

• Matrix Metalloproteases (MMPs)
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The elements of migration

Elements of PM4

cells stick to cells
transmembrane CAMs: cadherin, ICAM-1, ...
formation of clusters, cords

cells guided by the extracellular matrix
transmembrane CAMs: integrins,...
facilitates migration

cells secrete proteinases
Matrix metalloproteinases: degrade matrix,
free matrix-bound growth factors

cells sense chemical gradients
gradients of “chemoattractant” serve as
migratory cues

cells proliferate
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Tip cell particles     :
• Discrete particle representation
• Particle location:
• Migration acceleration:
• Drag coefficient:

Endothelial Cell representation

xp

∂t
= up,

up

∂t
= ap − λup

xp

up

λ

Tip Cell “deposes” endothelial cells

Hybrid representation of ECs:

ρn+1
i = max

(
ρn

i ,
∑

p

B(ih− xp) Qp

)

Qp =
∑

i

h3qiM
′
4 (xp − ih)

Stalk cell density   :
• Continuum vessel representation 
• Tip and stalk communicate through Particle-Mesh, 

Mesh-Particle interpolations

Qp ρ
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Extracellular Matrix : Structure

• Material occupying the space between cells

• Fibers of structural glycoproteins 
(collagen, laminin and fibrillin are distributed throughout the ECM, occupying 
~30% of the ECM)

• Collagens (the main component of the ECM cross-link with 
neighbouring collagens to form bundles)

[3] M. SIDANI, J. WYCKOFF, C. XUE, J. E. SEALL, AND J. CONDEELIS. PROBING THE MICROENVIRONMENT OF MAMMARY TUMORS USING MULTIPHOTON MICROSCOPY. J. MAMMARY GLAND BIOL. NEOPLASIA, V11(2):151-163, 2006

IN MOUSE:  
TUMOR CELLS 
(GREEN
ASSOCIATED 
WITH  ECM 
FIBERS (

17Thursday, September 11, 2008



Extracellular Matrix (ECM) 

• Fibrous structures in ECM provide a guiding structure for migrating 
endothelial cells

• ECM fibers are subject of remodeling by migrating EC’s

• The ECM expresses binding sites for various growth factors and 
integrins

[4] N. D. KIRKPATRICK, S. ANDREOU, J. B. HOYING, AND U. UTZINGER. LIVE IMAGING OF COLLAGEN REMODELING DURING ANGIOGENESIS. AJP HEART.. PAGES 0124.2006-,2007
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Model matrix explicitly:
• structure: collection of fiber bundles
• function: cell-matrix adhesion sites

Modeling the Matrix:

Fibers:
• straight
• random direction
• distribution of lengths

l

b
α

l = l0 2m z

α ∈ U([0,π])
z ∈ N (0, 1)

Indicator field   :
• unity where fibers present 
• smoothed (implicit filopodia)

e
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Existing models:

Chemotaxis & cell-matrix adhesion

aecm,φ =
[(

1−
∣∣∣
∇e

|∇e| · ∇φ

|∇φ|

∣∣∣
)
∇e +∇φ

] (
e + eo

)(
ρcpd − e

)

CLING TO FIBER
AN ADVANTAGE? WHERE IS THE

FIBER?
WHERE IS THE
GF SOURCE?

FIBERS FACILITATE
MIGRATION TOO MANY FIBERS

BLOCK MIG. PATH

PM4:

Opportunistic: get to growth factor (GF) source

aφ = ∇φ

∇φγ = 1

0 < γ < 1

γ = 0

γ
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The elements of migration

Tip Cell Migration

cells stick to cells
gradient of “haptotactic” 
molecules serve as migration cues

cells are guided by extracellular matrix
transmembrane CAMs: integrins,...)
facilitates migration

cells sense chemical gradients
gradients of “chemoattractant” serve as
migratory cues

a = α (Eρ)T (wV∇Ψ + wF∇Φb)

Migration Speed
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Growth Factors: Assumptions

• We model only one representative growth factor (VEGF)

• VEGF exists in a soluble and a matrix bound isoform

• Soluble VEGF is released from a tumor source

• Unbound VEGF diffuses through the ECM

• VEGF is subject to uptake by endothelial cells 

• decays naturally
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• Model : One VEGF isoform in soluble and bound state

• sVEGF establishes global chemotactic gradient

Soluble VEGF (sVEGF) - Assumptions

U ([sVEGF], ρ) = min ([sVEGF], υV ρ)

∂[sVEGF]
∂t

= kV∇2[sVEGF]− U ([sVEGF], ρ)− δV [sVEGF]

tu
m
o
r

ρ

• Tumor source modeled by boundary 

conditions 
•  sVEGF diffuses through ECM
•  Uptake of sVEGF by endothelial cells 

•  Subject of natural decay
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Matrix-bound VEGF (bVEGF)

• Some VEGF isoforms express 
heparin-binding sites binding to 
domains in the ECM  

• Local gradients of matrix bound 
VEGF influence sprout 
morphology

• Matrix bound VEGF is cleaved by 
MMPs released at endothelial 
sprout tips

[1] C. RUHRBERG, H. GERHARDT, M.  GOLDING, R. WATSON, S. IOANNIDOU, H. FUJISAWA, C. BETSHOLTZ AND D. T. SHIMA. SPATIALLY RESTRICTED PATTERNING CUES PROVIDED BY HEPARIN-BINDING VEGF-A CONTROL BLOOD 
VESSEL BRANCHING MORPHOGENESIS. GENES DEV., 16(20):2684-2698, 2002.
[2] S. LEE, S. M. JILAI, G. V.  NIKOLOVA,  D. CARPIZO, AND M. L. IRUELA-ARISPE. PROCESSING OF VEGF-A BY MATRIX METALLOPROTEINASES REGULATES BIOAVAILABILITY AND VASCULAR PATTERNING IN TUMORS. J. CELL BIOL., 
V42(3):195-238, 2001

[1]

ONLY MATRIX-BOUND VEGF

WILD TYPE

BL
O
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IX

 B
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N

D
 V

EG
F
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• Initially distributed in pockets

• establishes local chemotactic gradient

• cleaved VEGF (cVEGF) becomes soluble

endothelial

tip cells

secrete

MMPs
ECM

soluble

VEGF

matrix-bound

VEGF

cleaved

VEGF

sprout

endothelial

tip cells

secrete

MMPs
ECM

soluble

VEGF

matrix-bound

VEGF

cleaved

VEGF

sprout

ρ

∂[bVEGF]
∂t

= −C ([bVEGF], [MMP])− U ([bVEGF], ρ)

C ([bVEGF], [MMP]) = min ([bVEGF], υbV [MMP][bVEGF])

∂[cVEGF]
∂t

= kV∇2[cVEGF] + C ([bVEGF], [MMP])− U ([cVEGF], ρ)− δV [cVEGF]

Matrix-bound VEGF - Assumptions

• bVEGF is cleaved by MMPs 
• Uptake of cVEGF by ECs

• cVEGF diffuses through ECM 
• cVEGF is subject to natural decay
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Angiogenesis: Post-dicting Experiments

ONLY SOLUBLE  VEGF

SOLUBLE & MATRIX-BOUND VEGF

Matrix-bound VEGF leads to increased branching.
vessel branching ↔ capillary function

RADIAL SOLUBLE VEGF GRADIENT AND 
LOCALIZED MATRIX-BOUND VEGF

[1] S.  LEE, S.  M. JILANI, G.  V. NIKOLOVA, D.  CARPIZO, AND M.  L. IRUELA-ARISPE. PROCESSING OF VEGF-A BY MATRIX 
METALLOPROTEINASES REGULATES BIOAVAILABILITY AND VASCULAR PATTERNING IN TUMORS. J. CELL BIOL., 169(4):681–
691, 2005.

BLOOD VESSEL FORMATION IN A MOUSE MODEL

ONLY SOLUBLE VEGF
> THICKER VESSELS

new: branching is an output of the simulation

SOLUBLE + MATRIX-BOUND VEGF
> INCREASED BRANCHING
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• decreases local chemotactic gradients

endothelial

tip cells

secrete

MMPs
ECM

soluble

VEGF

matrix-bound

VEGF

cleaved

VEGF

sprout

endothelial

tip cells

secrete

MMPs
ECM

soluble

VEGF

matrix-bound

VEGF

cleaved

VEGF

sprout

[EC]

∂[MMP]
∂t

= kM∇2[MMP] + γMG (Mth, [MMP]) [EC]− δM [MMP]

Mth

G (Mth, [MMP]) =
Mth − [MMP]

Mth

• RELEASED BY MIGRATING TIP-CELLS

• RELEASE BOUND BY THRESHOLD LEVEL 

• DIFFUSE THROUGH ECM

• SUBJECT TO NATURAL DECAY

MATRIX METALLOPROTEINASES
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TUMOR INDUCED  ANGIOGENESIS

MILDE F., BERGDORF M. AND KOUMOUTSAKOS P., A HYBRID MODEL OF SPROUTING ANGIOGENESIS, BIOPHYSICAL J., 2008
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Simulation II (bVEGF)
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Extra-cellular Matrix density

A B C D E

0.01 0.1 1
ECM density [-]
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FIBER 

DENSITY:
A: 6%, 

B: 11%, 

C: 26%, 

D: 48% 

E:75%
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NEXT STEPS

• flow through vessel network

• tip cell/stalk cell differentiation

• combine with tumor growth model

• signaling

• validation
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25 years DINFK

 Stochastic Simulation  Algorithms

Ribosomal Biogenesis - J. Stelling - ETHZ
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25 years DINFK

Accelerating  Stochastic Simulation  Algorithms

∑
Aj

i ↔
∑

Bj
k j = 1, · · · ,M

dP (σ)
dt

=
∑

σ′

P (σ′) G(σ′ → σ) −
∑

σ′

P (σ)G(σ → σ′)

σ ↔ σ′

The Chemical Master Equation
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25 years DINFK

Chemical kinetics : Set-up

• Well stirred reaction volume V

• N different species S1, S2,..., SN in 
numbers X1, X2,..., XN

• random collisions and reactions  
through M channels R1, R2,... , RM

• Experiment length T

V

S1
S2

cj

ci
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25 years DINFK

Chemical  Kinetics

• Discrete approach
• Species concentrations are random variables

• macroscopic approach only gives their expected value
• with variance ~ V-2

• For small volumes, and small Xi, variance blows up

xi =
Xi

V

• Macroscopic/Continuous  approach
• Species concentrations

• Reaction rates ~ reactant concentrations product

• ODEs for xi...

• Really result of a limiting process

35Thursday, September 11, 2008
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25 years DINFK

Stochastic  Simulation  Algorithm (SSA)

• Gillespie 1977 - Well-stirred volume V (example):  

• a single 2nd order reaction  A+B -> C
• Probability of A-B collision within dt ~ XA XB dt

• Probability of reaction within dt is  kAB XA XB dt

• Time until next A-B reaction

a = kABXAXB

τ ∼ E(1/a)

36Thursday, September 11, 2008
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25 years DINFK

Stochastic  Simulation  Algorithm

• One timestep:

• Sample τ 

• Sample the index j

• Update the Xi, t=t+τ 

p(j = l) =
al

a0

a0 =
M∑

j=1

ajτ ∼ E(1/a0)

Gillespie,J. Comp. Phys. 1977

exact BUT slow

• For M reactions, time until any reaction

• Reaction index :  point-wise distribution

• The SSA simulates every reaction event !
37Thursday, September 11, 2008

http://www.icos.ethz.ch/cse
http://www.icos.ethz.ch/cse


25 years DINFK

SSA : acceleration in time
• τ-leaping  : several reaction events over one time step, 

• Assumption : reaction propensities ai remain essentially 
constant over τ, in spite of several firings

• Over this given τ, the number of reaction firings KPj is 
governed by a Poisson distribution

KP
j ∼ P(ajτ)

Gillespie,J. Chem. Phys. 2001

Cost ~  M Poisson samplings

X(t + τ) = X(t) +
M∑

j=1

KP
j νj .

38Thursday, September 11, 2008
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25 years DINFK

 τ leaping : Fast BUT Inexact  

• τ leaping : Can generate  negative populations 

• Binomial τ leaping : Approximate the unbounded Poisson 
distributions with Binomial ones

• Modified τ leaping
• Critical reactions, i.e. those likely to drive some populations negative, handled by SSA

• Other reactions advanced by τ leaping

Tian & Burrage,
J. Chem. Phys. 2004

Chatterjee et al.,
J. Chem. Phys. 2005

Cao et al.,
J. Chem. Phys. 2005
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25 years DINFK

R-leaping : Accelerate SSA by reaction leaps 

• Leaps :  prescribe number of firings L across all channels 

P (j = l) =
al(x)
a0(x)

for l = 1, . . . ,M.

• In R-leaping, (as in SSA), the index j of every firing obeys a point-wise distribution 

• In this interval we will have           firings of channel   Km Rm

• with : 
M∑

m=1

Km = L

• Time increment τL is Gamma-distributed τL ∼ Γ(L, 1/a0(x))

Auger, Chatelain, Koumoutsakos, R-leaping: Accelerating the stochastic simulation algorithm by reaction leaps.
J. Chem. Phys. , 125, 84103, 2006

40Thursday, September 11, 2008
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25 years DINFK

R-leaping : One step  Auger, Chatelain, Koumoutsakos
J. Chem. Phys. 125, 84103, 2006

• Define L 

• Sample the index j 

• Number of reactions for channel  m  

• Update species and time : 

P (j = l) =
al(x)
a0(x)

for l = 1, . . . , L.

Km =
L∑

l=1

δl,m

X(t + τL) = X(t) +
M∑

j=1

Kjνj

τL ∼ Γ(L, 1/a0(x))

41Thursday, September 11, 2008
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25 years DINFK

R-leaping : Accelerate SSA by reaction leaps 

• L firings distributed  across M reaction channels
• In τ leaping:  KPj are independent Poisson variables. 

• In R-leaping, Kj are not independent.

• L as a control parameter
• System can be brought to a desired state X

• Time is not a-priori specified 

• New approaches to controlling  negative species

42Thursday, September 11, 2008
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25 years DINFK

 R-leaping : How to  Sample the  the M   Kj

• Pointwise Sampling of  L independent 
reaction indices 

• Simple  BUT  scales with L - close to the work load of SSA!

1 2 3 ... M
1
2
3
...
L
K

x
x

x
x

x
2 2 1

Fi
rin

g

Reaction index

p(j = l) =
al

a0

The R0-sampling scales with L and, in particular when compared with τ -leaping that scales with M, the method is inefficient for large leap sizes, L ≫ M.

R0 Algorithm
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25 years DINFK

R-Leaping Theorem 

 The distribution of          is a binomial distribution : 

and for every                                   the conditional distribution of 

given  the event                                                                                is

This  result is invariant under any permutation of the indices

K1

B(L, a1(x)/a0(x))

m ∈ {2, . . . ,M} Km

{(K1, . . . ,Km−1) = (k1, . . . , km−1)}

B
(

L−
m−1∑

i=1

ki,
am(x)

a0(x)−
∑m−1

i=1 ai(x)

)
.Km ∼
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25 years DINFK

 R-leaping : How to  Sample the  the M   Kj

• Pointwise Sampling of  L independent 
reaction indices 

• Simple  BUT  scales with L - close to the work load of SSA!

1 2 3 ... M
1
2
3
...
L
K

x
x

x
x

x
2 2 1

Fi
rin

g

Reaction index

1 2 3 ... M
1
2
3
...
L
K

x
x

x
x

x
2 2 1

Fi
rin

g

Reaction index

p(j = l) =
al

a0

The R0-sampling scales with L and, in particular when compared with τ -leaping that scales with M, the method is inefficient for large leap sizes, L ≫ M.

R0 Algorithm

B(L, aj/a0)

Km ∼ B
(

L−
m−1∑

i=1

ki,
am

a0 −
∑m−1

i=1 ai

)
If Ki = ki, ∀i < m,

• Sampling M correlated binomial variables

• Create correlations with conditional distributions 

R1 Algorithm
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 R-leaping : Efficient  Sampling / Sorting

• Sampling the M Kj efficiently (SORT the reactions)

• M can be large (~102) for bio-chemical systems!

• Efficient sampling effectively loops over a fraction of M.

• The larger the system, the bigger the payoff.

• The more disparate the  reaction rates are, 
the smaller the fraction.

• Price to pay: carry out re-ordering often enough
(cheap!)

Number of binomial samples per time step
LacYLacZ activities in E. Coli., M=22

Original

Efficient

Efficient 
(averaged)
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• Controlling the leap approximation

• All three methods of τ leaping are transposable to R-
leaping

• Absolute change of aj

• Relative change of aj

• Relative change of aj but efficiently through the 
relative changes in populations

Stochastic simulation: R-leaping
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• LacZ/LacY genes expression and enzymatic/
transport activities of LacZ/LacY proteins in E. Coli

• Moderately large system (M = 22)
• Disparate rates
• Scarce reactants and negative 

species

Results

Kierzek,
Bioiformatics 2002

Reaction Channel Reaction rate

R1 PLac + RNAP → PLacRNAP 0.17

R2 PLacRNAP → PLac + RNAP 10

R3 PLacRNAP → TrLacZ1 1

R4 TrLacZ1 → RbsLacZ + PLac + TrLacZ2 1

R5 TrLacZ2 → TrLacY2 0.015

R6 TrLacY1 → RbsLacY + TrLacY2 1

R7 TrLacY2 → RNAP 0.36

R8 Ribosome + RbsLacZ → RbsRibosomeLacZ 0.17

R9 Ribosome + RbsLacY → RbsRibosomeLacY 0.17

R10 RbsRibosomeLacZ → Ribosome + RbsLacZ 0.45

R11 RbsRibosomeLacY → Ribosome + RbsLacY 0.45

R12 RbsRibosomeLacZ → TrRbsLacZ + RbsLacZ 0.4

R13 RbsRibosomeLacY → TrRbsLacY + RbsLacY 0.4

R14 TrRbsLacZ → LacZ 0.015

R15 TrRbsLacY → LacY 0.036

R16 LacZ → dgrLacZ 6.42x10−5

R17 LacY → dgrLacY 6.42x10−5

R18 RbsLacZ → dgrRbsLacZ 0.3

R19 RbsLacY → dgrRbsLacY 0.3

R20 LacZ + lactose → LacZlactose 9.52x10−5

R21 LacZlactose → product + LacZ 431

R22 LacY → lactose + LacY 14

TABLE II: LacZ/LacY model (Kierzek8): reaction channels and rates.

26
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(c)ε = 0.2 for R-leaping

FIG. 9:

37

• LacZ/LacY genes expression and enzymatic/
transport activities of LacZ/LacY proteins in E. Coli
• Histogram errors vs CPU time

• Efficient sampling offers factor 2 in speed w.r.t. 
modified τ-leaping! 

Results

   modified τ-leaping 
x R-leaping
o R-leaping efficient sampling
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Summary

• R-leaping, an accelerated stochastic algorithm that is 
complementary to existing τ-leaping algorithms

• Efficient binomial sampling offers computational 
savings for large systems with disparate rates

• Efficient sampling exploits size and stiffness of system.
• Can be transposed to τ-leaping algorithms (!)...

• Treatment of negative species with a tunable 
compromise efficiency-accuracy

• An alternative to modified τ-leaping, which essentially recurs to SSA when in trouble
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Stochastics in Space: Tau and R-leaping
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Simulations of Gray-Scott Equations (2D)

Molecules per grid cell for a 300 x 300 grid

500 1000 5000 10000

∂u

∂t
= du∆u− uv2 + F (1− u),

∂v

∂t
= dv∆v + uv2 − (F + κ)v.

F = 0.04,κ = 0.06, t = 1000

U + 2V → 3V,

V → P
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R-LEAP  for Stochastic Diffusion on Non-uniform Discretizations

ci ci+1ci−1 ci+2

h

hi =
h

2
hi−1 = h

Uniform Cells:

Non-uniform Cells:

ai,j(x) = Xi · ki,j

ki,j =
D

h2

ki,j = ?

Diffusion events between cells, i.e. propensity for diffusion from cell i to cell j:

cici−1 ci+1
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Stochastic Diffusion on Non-Uniform Mesh Using a Finite Volume [1]

dUi

dt
= −(ki,i+1 + ki,i−1)Ui + ki+1,iUi+1 + ki−1,iUi−1

Diffusion ProcessContinuum
∂u

∂t
= −∇ · J

J = −D(x)∇u
∂Ui

∂t
= −

∫

i
∇ · J dx

∂Ui

∂t
= J(ci −

hi

2
)− J(ci +

hi

2
)

Using the Divergence Theorem Approximating the Gradient in Fick’s Law

∇u(ci −
hi

2
) ≈ u(ci)− u(ci−1)

ci − ci−1
=

1
ci − ci−1

(
Ui

hi
− Ui−1

hi−1

)

...
dUi

dt
= −

(
Di,i+1

hi|ci − ci+1| +
Di,i−1

hi|ci − ci−1|

)
Ui +

(
Di+1,i

hi+1|ci − ci+1|

)
Ui+1 +

(
Di−1,i

hi−1|ci − ci−1|

)
Ui−1

[1] D. Bernstein. Simulating mesoscopic reaction-diffusion systems using the gillespie algorithm. Phys. Rev. E, 2005.

ki,j =

{
Di,j

hi|ci−cj | if |i− j| = 1
0 otherwise

Reaction Rates for Diffusion Events:
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Stochastic Diffusion on Non-uniform Discretizations: Propensity Disparities

ci ci+1ci−1 ci+2

h

hi =
h

2
hi−1 = h

Uniform Cells:

Non-uniform Cells:

Disparity in diffusion propensities arise from two sources:

cici−1 ci+1

Gradients in the concentration, which are problem specific.  

Non-uniform cells.  E.g. consider the diffusion of a uniform concentration field as shown below.

ai,i−1(x) = ai,i+1(x)

ai,i−1(x) < ai,i+1(x)
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Stochastic Diffusion on Non-uniform Discretizations: Optimization

2D Fisher Equation

Multiresolution Stochastic Simulations of Reaction-Diffusion Processes, B. Bayati, P. Chatelain, P. Koumoutsakos, Phys. Chem. Chem. Phys., 2008
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optimizing Stochastic Models :  Adenovirus Transport

with Urs Greber, Christoph Burkhardt, Uni ZH
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Proposed models for bi-directional transport

Tug of war

Exclusionary 
presence

Motor 
coordination

from Gross, Physical Biology (2004)
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Our modeling approach assumes that ...

 viruses are cytosolic, and invariant

 motions along a filament are equivalent to 1D runs

 planar virus movements in flat regions of the cell

 homogeneous microtubules without MAPs & 

dynamics

 individual microtubules independent of each other

 motor step size 8 nm

 no motor inhibitors
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From directed motions to segmented 1-D tracks 

Images of HeLa cells infected with 
Adenovirus serotype 2 imaged using a 

spinning disk confocal microscope

• 2D virus trajectories are extracted by a single particle tracking algorithm [1]
• Different motion patterns are identified through segmentation and classification by Support Vector Machine [2]

[1] I.F. Sbalzarini and P. Koumoutsakos, Feature point tracking and trajectory analysis for video imaging in cell biology, Journal of Structural Biology, 2005
[2] J.A. Helmuth, C.J. Burckhardt and P. Koumoutsakos and U.F. Greber and I.F. Sbalzarini, Feature point tracking and trajectory analysis for video imaging in cell biology, Journal of Structural Biology, 2007

confined motion
slow drifting
fast drifting
directed motion
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From directed motions to segmented 1-D tracks 

d
is

ta
nc

e 
(µ

m
)

-

2-D trajectory

1-D tracks

Ad5 trajectories, HeLa cells

10 µm

1 µm
frames

directed 
motions
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Our input into the model

 Segmented 25Hz virus trajectories

 Motor binding to virus at distinct or overlapping 
sites

 Step size of the plus & minus end motor: +/- 8nm
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Six parameters optimized by the algorithm

 dynein (D) and kinesin (K) can bind, unbind and move the virus cargo along a microtubule. 
Eq. 1 : movement of the motor proteins, where dµ and kµ are the displacement rates for dynein and kinesin, respectively.  
Eq. 2(3) : binding and unbinding of dynein(kinesin), where ρ is the number of binding sites, dα and dδ are the binding and 
unbinding rates. 
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Six parameters optimized by the algorithm

B) Fitness value F from the optimization, 
plotted against the number of fitness 
evaluations e, for the competing binding sites 
model with 14 binding sites.

C) The parameter values plotted against the 
number of fitness evaluations e.

D) Run length distributions (probability p 
versus Χ, µm) for the biological (black) and in 
silico (red) data.

E) Velocity distributions (probability p versus 
ν, µm/s).
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The optimized model reproduces in vivo data

displacement speed (µm/s)

time (s) time (s)

in vivo

in silico

> 100’000 
CPU hours 

in silico 
trajectories

processive run

non-processive 
run

d
is

ta
nc

e
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and the winner is ........

Tug of war

Exclusionary 
presence

Motor 
coordination

from Gross, Physical Biology (2004)
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Model predicts an non-coordinated ‘tug-of-war’

 Distinct or overlapping binding sites for dynein & 
kinesin are possible

 kon and koff for dynein and kinesin are lower than 
expected

 1-3 motors bound per virus during runs

 a total of 8-14 motor binding sites required
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Where is motor binding site, on hexon or pIX?

hexon

protein IX

15 hexon-hexon 
interfaces / facette

protein IIIa

Adenovirus model Facette

fiber
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A message from your mother : Chose your models carefully

Deterministic ?

Stochastic ?
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Juxtacrine Signaling

Definition
Intercellular signaling induced by physical cell contact.
Mainly involved in 
•developmental processes, 
•wound healing, 
• angiogenesis

Examples
Receptor: Notch    Ligands: Delta, Jagged, Serrate
Receptor: EGFR     Ligand:   TGFa

Pattern formation
through positive and negative feedback loops
(autoinduced up-regulation and down-regulation of ligand and receptor expression)
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Computational Models (EGFR/TGFa)

Deterministic

3 Species:

Stochastic e.g. 1D

R L BReceptor Ligand Bound receptor (=R-L complex)

∂Bi

∂t
= ka Ri 〈L〉i − kd Bi − kint Bi

∂Li

∂t
= −ka 〈R〉i Li + kd 〈B〉i − dl L + Pl(Bi)

∂Ri

∂t
= −ka Ri 〈L〉i + kd Bi − dr Ri + Pr(Bi)

FEEDBACK

FEEDBACK

DECAY

DECAY

DISASSOCIATION

DISASSOCIATION

BINDING

BINDING

BINDING DISASSOCIATION INTERNALIZATION

Pl(B) =
Cm

1 Bm

Cm
2 + Bm

Pr(B) = C3
Cn

4 Bn

Cn
5 + Bn

OWEN&SHERRATT, MATHEMATICAL BIOSCIENCES, 1998

〈 · 〉iSpatial operator = CONCENTRATION ON CELLS j
TOUCHING CELL i

Ri + Li+1
1/2 ka−→ Bi

Ri + Li−1
1/2 ka−→ Bi

Bi
1/2 kd−→ Ri + Li+1

Bi
1/2 kd−→ Ri + Li−1

Li
dl−→ Ri

dr−→ Bi
ki−→

Pl(Bi)−→ Li
Pr(Bi)−→ Ri

DECAY &
INTERNALIZATION

BINDING

DISASSOCIATION

FEEDBACK

2X POSITIVE FEEDBACK:
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Stochastic vs. Det. simulation

Spatiality:
Species of different cells i encoded as different species, i.e.

B1, R1, L1, B2, R2 . . . , LN

For 70 cells:  770 reactions, prohibitively expensive with SSA → R-leap

Patterning after 100h:

10 20 30 40 50 60 70

cell id

2000

3000

4000

5000

6000

[B
]

10 20 30 40 50 60 70

cell id

2000

3000

4000

5000

6000

[B
]

Deterministic Stochastic

Lj = 462Bj = Rj = 3000initial condition:
Lj = 462
Bj = Rj = 3000initial condition:

+ 10% Uniform noise
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Dynamics: Stochastic vs. Deterministic

0 20 40 60 80 100

time [h]

0

200

400
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1400
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E

more noise in initial condition

average E (100 realizations)

± 1 std. dev.
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STOCHASTIC

50%
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R
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D
IS

TR
IB

U
TI

O
N

Energy of 1-spike mode

Deterministic simulation is unable to assess dynamics

E =
√ ∑

j∈cells

|Bj − 1
2 (Bj+1 + Bj−1)|2
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Outlook: Notch/Dll4 system on vessels
Notch1

ActiveNotch1

dll4

VEGF

ActiveVEGFR

243661434

276011736

2461245

685

298913
time: 1.087e+01

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/PropertyList-1.0.dtd">

<plist version="1.0">

<dict>

<key>Ve</key>

<real>0.0</real>

<key>averaged</key>

<false/>

<key>expo</key>

<real>2.5</real>

<key>run name</key>

<string>case1011</string>

</dict>

</plist>

• Reverse-Engineering of Notch/Dll4 feedback system
• Coupling with Simulations of sprouting angiogenesis
• Juxtacrine signaling on vessel-graphs reconstructed from experiments
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A WARNING
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