Stochastic and Deterministic Simulations for Biological Problems

Petros KOUMOUTSAKOS

with: Basil BAYATI, Mattia GAZZOLA, Florian MILDE, Diego ROSSINELI, Michael BERGDORF, Philippe CHATELAIN

and: Urs Greber Laboratory (Uni ZH)

CSE LAB Computational science & Engineering Laboratory

HTTP://CSE-LAB.ETHZ.CH

Thursday, September 11, 2008

Death - Birth and everything in between

The Lotka-Volterra Model

X : Sheeps, Y:predators, A: food

$$X + A \xrightarrow{k_1} 2X \qquad \qquad X + Y \xrightarrow{k_2} 2Y \qquad \qquad Y \xrightarrow{k_3} B$$

Deterministic ODE's

$$\frac{d[X]}{dt} = k_1[A][X] - k_2[X][Y]$$

Stochastic Interpretation

$$\mathcal{P}(x \to x + 1; y \to y) = k_1 a x dt$$

$$\mathcal{P}(x \to x - 1; y \to y + 1) = k_2 x y dt$$

$$\mathcal{P}(x \to x; y \to y - 1) = k_3 y dt$$

$$\mathcal{P}(x \to x; y \to y) = 1 - (k_1 a x + k_2 x y + k_3 y) dt$$

 $\frac{d[Y]}{dt} = k_2[X][Y] - k_3[Y]$

The Lotka-Volterra Model

Gray Scott system $U+2V \longrightarrow 3V,$ $V \longrightarrow P$ Deterministic

The Spatial Gray-Scott Model

CRANIAL VESSEL ANGIOGENESIS IN ZEBRAFISH *HTTP://ZFISH.NICHD.NIH.GOV/ZFATLAS/FLI-GFP/FLI_MOVIES.HTML*

WWW.BIOONCOLOGY.COM

Example of Deterministic Models : Angiogenesis

Tumor-Induced Angiogenesis

Growth factors

A Model of Sprouting Angiogenesis

Mechanism: endothelial cells migrate towards source of growth factors • form cords • proliferate • branch / fuse Growth factor: VEGF exists in two forms: • soluble • bound to the matrix (bVEGF) Release of bVEGF

endothelial cells secrete proteinases proteinases cleave bVEGF \rightarrow soluble

Advantages of an explicit ECM: Angiogenesis

Sprouting angiogenesis:

formation of new blood vessels from existing ones initiated by tumors with low nutrient supply

Mechanism:

endothelial cells migrate towards source of growth factors

- form cords
- branch
- proliferate

Growth factor: VEGF

exists in two forms:

- soluble
- bound to the matrix (bVEGF)

Release of bVEGF

endothelial cells secrete proteinases proteinases cleave bVEGF \rightarrow soluble

Particle-mesh models for mesenchymal motion / PM4

The Cell

- confined by semipermeable membrane
- inside: cytosol (fluid) & organelles
- cell adhesion molecules on the membrane
- extends filopodia for sensing

Extracellular Matrix

- fibrous proteins
- gels of polysaccharides
- sticky scaffolding
- structural support

MAMMARY TUMOR CELLS

[1] M. SIDANI, J. WYCKOFF, C. XUE, J. E. SEGALL, AND J. CONDEELIS. PROBING THE MICROENVIRONMENT OF MAMMARY TUMORS USING MULTIPHOTON MICROSCOPY. *JOURNAL OF MAMMARY GLAND BIOLOGY AND NEOPLASIA*, V11(2):151–163, 2006.

Thursday, September 11, 2008

Representing Cells:

About scale:

Cellular Potts

shape optimizationinteraction energies

Cellular automaton

- intuitive
- behavioral rules
- one "cell" = one cell

Continuum

- cell density (= no individuals)
- PDEs

Continuum modeling of cells Primary implications:

Cell density: $ho(oldsymbol{x},t)$

MIGRATION

PROLIFERATION

Simulations using Particles

Function approximation:

$$q(\boldsymbol{x},t) = \sum_{p} Q_{p}(t) \zeta^{h} (\boldsymbol{x} - \boldsymbol{x}_{p}(t))$$

$$\underset{\text{PARTICLE}}{\text{PARTICLE}}$$

$$\underset{\text{KERNEL}}{\text{PARTICLE}}$$

$$\int \zeta \, \boldsymbol{x}^{\alpha} \, d\boldsymbol{x} = \boldsymbol{0}^{\alpha} \qquad 0 \leq \alpha < r \qquad \int \zeta \, |\boldsymbol{x}|^r \, d\boldsymbol{x} < \infty$$

Discretization of Lagrangian form:

$$\frac{Dq}{Dt} = \mathcal{L}(q, \boldsymbol{x}, t) \quad \left(\frac{\partial q}{\partial t} + \nabla \cdot (\boldsymbol{u} q) = \mathcal{L}(q, \boldsymbol{x}, t)\right)$$

$$\begin{aligned} \frac{d\mathbf{x}_p}{dt} &= \mathbf{u}(\mathbf{x}_p, t), & \text{positions} \\ \frac{dv_p}{dt} &= v_p \left(\nabla \cdot \mathbf{u} \right) \left(\mathbf{x}_p, t \right), & \text{volumes} \\ \frac{dQ_p}{dt} &= v_p \mathcal{L}^{\varepsilon, h}(q, \mathbf{x}_p, t). & \text{weights} \end{aligned}$$

itions umes

initial values on lattice

$$v_p = h^d$$

no linear stability constraints = no CFL (dt<dx/u) condition

$$Q_p = q(\boldsymbol{x}_p, 0) v_p$$

Model System

Model Components:

- Endothelial Cells (ECs)
- Extra-cellular Matrix (ECM)
- Growth Factors (VEGF)
- Matrix Metalloproteases (MMPs)

Elements of PM4

The elements of migration

cells stick to cells

transmembrane CAMs: cadherin, ICAM-1, ... formation of clusters, cords

cells guided by the extracellular matrix transmembrane CAMs: integrins,... facilitates migration

cells secrete proteinases

Matrix metalloproteinases: degrade matrix, free matrix-bound growth factors

cells sense chemical gradients

gradients of "chemoattractant" serve as migratory cues

cells proliferate

Endothelial Cell representation

Hybrid representation of ECs:

Tip cell particles Q_p :

- Discrete particle representation
- Particle location: x_p
- Migration acceleration: $oldsymbol{u}_p$
- Drag coefficient: λ

$$rac{oldsymbol{x}_p}{\partial t} = oldsymbol{u}_p, \ rac{oldsymbol{u}_p}{\partial t} = oldsymbol{a}_p - \lambda oldsymbol{u}_p$$

Stalk cell density ρ :

- Continuum vessel representation
- Tip and stalk communicate through Particle-Mesh, Mesh-Particle interpolations

$$egin{aligned} &
ho_{oldsymbol{i}}^{n+1} = max\left(
ho_{oldsymbol{i}}^{n}, \sum_{p}B(oldsymbol{i}\,h-oldsymbol{x}_{p})\,Q_{p}
ight) \ &Q_{p} = \sum_{oldsymbol{i}}h^{3}q_{oldsymbol{i}}M_{4}^{\prime}\left(oldsymbol{x}_{p}-oldsymbol{i}h
ight) \end{aligned}$$

Tip Cell "deposes" endothelial cells

Extracellular Matrix : Structure

- Material occupying the space between cells
- **Fibers of structural glycoproteins** (collagen, laminin and fibrillin are distributed throughout the ECM, occupying ~30% of the ECM)
- Collagens (the main component of the ECM cross-link with neighbouring collagens to form bundles)

[3] M. SIDANI, J. WYCKOFF, C. XUE, J. E. SEALL, AND J. CONDEELIS. PROBING THE MICROENVIRONMENT OF MAMMARY TUMORS USING MULTIPHOTON MICROSCOPY. J. MAMMARY GLAND BIOL. NEOPLASIA, V11(2):151-163, 2006

- Fibrous structures in ECM provide a guiding structure for migrating endothelial cells
- ECM fibers are subject of remodeling by migrating EC's
- The ECM expresses binding sites for various growth factors and integrins

[4] N. D. KIRKPATRICK, S. ANDREOU, J. B. HOYING, AND U. UTZINGER. LIVE IMAGING OF COLLAGEN REMODELING DURING ANGIOGENESIS. AJP HEART.. PAGES 0124.2006-,2007

Modeling the Matrix:

Model matrix <u>explicitly</u>:

- structure: collection of fiber bundles
- function: cell-matrix adhesion sites

Fibers:

- straight
- random direction
- distribution of lengths

Indicator field :e

• smoothed (implicit filopodia)

Opportunistic: get to growth factor (GF) source

Existing models: $oldsymbol{a}_{\phi} =
abla \phi$

Tip Cell Migration

The elements of migration

cells are guided by extracellular matrix transmembrane CAMs: integrins,...) facilitates migration

- We model only one representative growth factor (VEGF)
- VEGF exists in a soluble and a matrix bound isoform
- Soluble VEGF is released from a tumor source
- Unbound VEGF diffuses through the ECM
- VEGF is subject to uptake by endothelial cells
- decays naturally

Soluble VEGF (sVEGF) - Assumptions

- Model : One VEGF isoform in soluble and bound state
- sVEGF establishes global chemotactic gradient
 - Tumor source modeled by boundary

conditions

- sVEGF diffuses through ECM
- \odot Uptake of sVEGF by endothelial cells ρ
- Subject of natural decay

$$\frac{\partial [\text{sVEGF}]}{\partial t} = k_V \nabla^2 [\text{sVEGF}] - U([\text{sVEGF}], \rho) - \delta_V [\text{sVEGF}]$$
$$U([\text{sVEGF}], \rho) = min([\text{sVEGF}], v_V \rho)$$

Matrix-bound VEGF (bVEGF)

- Some VEGF isoforms express heparin-binding sites binding to domains in the ECM
- Local gradients of matrix bound VEGF influence sprout morphology
- Matrix bound VEGF is cleaved by MMPs released at endothelial sprout tips

[1] C. RUHRBERG, H. GERHARDT, M. GOLDING, R. WATSON, S. IOANNIDOU, H. FUJISAWA, C. BETSHOLTZ AND D. T. SHIMA. SPATIALLY RESTRICTED PATTERNING CUES PROVIDED BY HEPARIN-BINDING VEGF-A CONTROL BLOOD VESSEL BRANCHING MORPHOGENESIS. GENES DEV., 16(20):2684-2698, 2002.

[2] S. LEE, S. M. JILAI, G. V. NIKOLOVA, D. CARPIZO, AND M. L. IRUELA-ARISPE. PROCESSING OF VEGF-A BY MATRIX METALLOPROTEINASES REGULATES BIOAVAILABILITY AND VASCULAR PATTERNING IN TUMORS. J. CELL BIOL., V42(3):195-238, 2001

Matrix-bound VEGF - Assumptions

- Initially distributed in pockets
- establishes local chemotactic gradient
- cleaved VEGF (cVEGF) becomes soluble
 - bVEGF is cleaved by MMPs
 - \bullet Uptake of cVEGF by ECs ρ
 - cVEGF diffuses through ECM
 - cVEGF is subject to natural decay

$$\frac{\partial [bVEGF]}{\partial t} = -C ([bVEGF], [MMP]) - U ([bVEGF], \rho)$$

$$C ([bVEGF], [MMP]) = min ([bVEGF], v_{bV} [MMP] [bVEGF])$$

$$\frac{\partial [cVEGF]}{\partial t} = k_V \nabla^2 [cVEGF] + C ([bVEGF], [MMP]) - U ([cVEGF], \rho) - \delta_V [cVEGF]$$

Angiogenesis: Post-dicting Experiments

Matrix-bound VEGF leads to increased branching. vessel branching \leftrightarrow capillary function

BLOOD VESSEL FORMATION IN A MOUSE MODEL

ONLY SOLUBLE VEGF > THICKER VESSELS

SOLUBLE + MATRIX-BOUND VEGF > INCREASED BRANCHING

RADIAL SOLUBLE VEGF GRADIENT AND LOCALIZED MATRIX-BOUND VEGF

new: branching is an output of the simulation

[1] S. LEE, S. M. JILANI, G. V. NIKOLOVA, D. CARPIZO, AND M. L. IRUELA-ARISPE. PROCESSING OF VEGF-A BY MATRIX METALLOPROTEINASES REGULATES BIOAVAILABILITY AND VASCULAR PATTERNING IN TUMORS. J. CELL BIOL., 169(4):681– 691, 2005.

MATRIX METALLOPROTEINASES

decreases local chemotactic gradients

TUMOR INDUCED ANGIOGENESIS

MILDE F., BERGDORF M. AND KOUMOUTSAKOS P., A HYBRID MODEL OF SPROUTING ANGIOGENESIS, BIOPHYSICAL J., 2008

Simulation II (bVEGF)

Extra-cellular Matrix density

- flow through vessel network
- tip cell/stalk cell differentiation
- combine with tumor growth model
- signaling

• validation

Stochastic Simulation Algorithms

Accelerating Stochastic Simulation Algorithms

Chemical kinetics : Set-up

• Well stirred reaction volume V

 N different species S₁, S₂,..., S_N in numbers X₁, X₂,..., X_N

 random collisions and reactions through M channels R₁, R₂,..., R_M

• Experiment length T

Chemical Kinetics

- Macroscopic/Continuous approach
 - Species concentrations
 - Reaction rates ~ reactant concentrations product
 - ODEs for x_i...
 - Really result of a limiting process

• Discrete approach

- Species concentrations are random variables
 - macroscopic approach only gives their expected value
 - with variance ~ V⁻²
- For small volumes, and small X_i, variance blows up

Stochastic Simulation Algorithm (55A)

- **Gillespie 1977 -** Well-stirred volume V (example):
 - a single 2nd order reaction A+B->C
 - Probability of A-B collision within $dt \sim X_A X_B dt$
 - Probability of reaction within dt is $k_{AB} X_A X_B dt$
 - Time until next A-B reaction

$$au \sim \mathcal{E}(1/a)$$
 $a = k_{AB}X_AX_B$
Stochastic Simulation Algorithm

Gillespie, J. Comp. Phys. 1977

- For **M reactions**, time until **any** reaction $au \sim \mathcal{E}(1/a_0) \qquad a_0 = \sum_{j=1}^M a_j$
 - Reaction index : point-wise distribution $p(j = l) = \frac{a_l}{a_0}$
 - One timestep:
 Sample T
 Sample the index j

Update the X_i , t=t+**T**

exact BUT slow

The SSA simulates <u>every</u> reaction event !

• **T-leaping** : several reaction events over one time step,

 Assumption : reaction propensities a_i remain essentially constant over τ, in spite of several firings

 Over this given **τ**, the number of reaction firings K^P_j is governed by a Poisson distribution

$$\begin{split} K_{j}^{\mathcal{P}} \sim \mathcal{P}(a_{j}\tau) & M \\ \mathbf{X}(t+\tau) = \mathbf{X}(t) + \sum_{j=1}^{M} K_{j}^{\mathcal{P}}\boldsymbol{\nu}_{j}. \end{split}$$

Ost ~ M Poisson samplin

• **Tleaping**: Can generate negative populations

 Binomial τ leaping : Approximate the unbounded Poisson distributions with Binomial ones
 Tian & Burrage, J. Chem. Phys. 2004
 Chatterjee et al., J. Chem. Phys. 2004

- Modified τ leaping
 - Critical reactions, i.e. those likely to drive some populations negative, handled by SSA
 - Other reactions advanced by τ leaping

Cao et al., J. Chem. Phys. 2005

R-leaping : Accelerate SSA by reaction leaps

Leaps : prescribe number of firings L across all channels

- Time increment \mathbf{T}_{L} is Gamma-distributed $\tau_{L} \sim \Gamma(L, 1/a_{0}(\mathbf{x}))$
- In this interval we will have K_m firings of channel R_m

• with:
$$\sum_{m=1}^{M} K_m = L$$

λ

• In R-leaping, (as in SSA), the index j of every firing obeys a point-wise distribution $P(j = l) = \frac{a_l(\mathbf{x})}{a_0(\mathbf{x})} \text{ for } l = 1, \dots, M.$

Auger, Chatelain, Koumoutsakos, R-leaping: Accelerating the stochastic simulation algorithm by reaction leaps. J. Chem. Phys., 125, 84103, 2006

Thursday, September 11, 2008

R-leaping : One step

Define L

$$\tau_L \sim \Gamma(L, 1/a_0(\mathbf{x}))$$

• Sample the index j

$$P(j=l) = \frac{a_l(\mathbf{x})}{a_0(\mathbf{x})} \text{ for } l = 1, \dots, L.$$

• Number of reactions for channel m

$$K_m = \sum_{l=1}^L \delta_{l,m}$$

• Update species and time :

$$\mathbf{X}(t+\tau_L) = \mathbf{X}(t) + \sum_{j=1}^{M} K_j \boldsymbol{\nu}_j$$

λ

R-leaping : Accelerate SSA by reaction leaps

• L firings distributed across M reaction channels

- In $\mathbf{\tau}$ leaping: K_{j}^{P} are independent Poisson variables.
- In R-leaping, K_j are not independent.
- Las a control parameter
 - System can be brought to a desired state X
 - Time is not a-priori specified
 - New approaches to controlling negative species

Thursday, September 11, 2008

R-leaping: How to Sample the the M K_j

R_0 Algorithm

 Pointwise Sampling of Lindependent reaction indices

$$p(j=l) = \frac{a_l}{a_0}$$

• Simple BUT scales with L - close to the work load of SSA!

Ro-sampling scales with L and, in particular when compared with **τ** -leaping that scales with M, the method is inefficient for large leap sizes, L » M.

		_				→
		I	2	3	•••	Μ
		X				
50	2			X		
irin	3					x
				X		
·	L	X				
	K	2		2		

Reaction index

R-Leaping Theorem

The distribution of K_1 is a binomial distribution : $\mathcal{B}(L, a_1(\mathbf{x})/a_0(\mathbf{x}))$

and for every $m \in \{2, \ldots, M\}$ the conditional distribution of K_m

given the event
$$\{(K_1, \dots, K_{m-1}) = (k_1, \dots, k_{m-1})\}$$
 is

$$K_m \sim \mathcal{B}\left(L - \sum_{i=1}^{m-1} k_i, \frac{a_m(\mathbf{x})}{a_0(\mathbf{x}) - \sum_{i=1}^{m-1} a_i(\mathbf{x})}\right)$$

This result is invariant under any permutation of the indices

R-leaping: How to Sample the the M K_j

R_0 Algorithm

 Pointwise Sampling of Lindependent reaction indices

$p(j=l) = \frac{a_l}{a_0}$

• Simple BUT scales with L - close to the work load of SSA!

Ro-sampling scales with L and, in particular when compared with au -leaping that scales with M, the method is inefficient for large leap sizes, L \gg M.

R_1 Algorithm

Sampling M correlated binomial variables

$$\mathcal{B}(L, a_j/a_0)$$

Create correlations with conditional distributions

If
$$K_i = k_i, \forall i < m$$
,

$$K_m \sim \mathcal{B}\left(L - \sum_{i=1}^{m-1} k_i, \frac{a_m}{a_0 - \sum_{i=1}^{m-1} a_i}\right)$$

Reaction index

R-leaping : Efficient Sampling / Sorting

- Sampling the M K_j efficiently (SORT the reactions)
- **M** can be large (~10²) for bio-chemical systems!
- Efficient sampling effectively loops over a fraction of **M**.

- The larger the system, the bigger the payoff.
- The more disparate the reaction rates are, the smaller the fraction.
- Price to pay: carry out re-ordering often enough (cheap!)

Number of binomial samples per time step LacYLacZ activities in E. Coli., M=22

Stochastic simulation: R-leaping

- Controlling the leap approximation
 - All three methods of τ leaping are transposable to Rleaping
 - Absolute change of a_j
 - Relative change of a_j
 - Relative change of a_j but efficiently through the relative changes in populations

Results

 LacZ/LacY genes expression and enzymatic/ transport activities of LacZ/LacY proteins in E. Coli

Kierzek, Bioiformatics 2002

- Moderately large system (M = 22)
- Disparate rates
- Scarce reactants and negative species

		Reaction Channel	Reaction rate
	R_1	$PLac + RNAP \rightarrow PLacRNAP$	0.17
	R_2	$\mathrm{PLacRNAP} \rightarrow \mathrm{PLac} + \mathrm{RNAP}$	10
١	R_3	$PLacRNAP \rightarrow TrLacZ1$	1
	R_4	$\mathrm{TrLacZ1} \rightarrow \mathrm{RbsLacZ} + \mathrm{PLac} + \mathrm{TrLacZ2}$	1
-	R_5	$TrLacZ2 \rightarrow TrLacY2$	0.015
	R_6	$\mathrm{TrLacY1} \rightarrow \mathrm{RbsLacY} + \mathrm{TrLacY2}$	1
	R_7	$TrLacY2 \rightarrow RNAP$	0.36
	R_8	$Ribosome + RbsLacZ \rightarrow RbsRibosomeLacZ$	0.17
	R_9	$Ribosome + RbsLacY \rightarrow RbsRibosomeLacY$	0.17
	R_{10}	$RbsRibosomeLacZ \rightarrow Ribosome + RbsLacZ$	0.45
	R_{11}	$RbsRibosomeLacY \rightarrow Ribosome + RbsLacY$	0.45
	R_{12}	$RbsRibosomeLacZ \rightarrow TrRbsLacZ + RbsLacZ$	0.4
	R_{13}	$RbsRibosomeLacY \rightarrow TrRbsLacY + RbsLacY$	0.4
	R_{14}	$TrRbsLacZ \rightarrow LacZ$	0.015
	R_{15}	$\mathrm{TrRbsLacY} \rightarrow \mathrm{LacY}$	0.036
	R_{16}	$LacZ \rightarrow dgrLacZ$	$6.42 \text{x} 10^{-5}$
	R_{17}	$LacY \rightarrow dgrLacY$	$6.42 \text{x} 10^{-5}$
	R_{18}	$RbsLacZ \rightarrow dgrRbsLacZ$	0.3
	R_{19}	$RbsLacY \rightarrow dgrRbsLacY$	0.3
	R_{20}	$LacZ + lactose \rightarrow LacZlactose$	$9.52 \text{x} 10^{-5}$
	R_{21}	$LacZlactose \rightarrow product + LacZ$	431
	R_{22}	$LacY \rightarrow lactose + LacY$	14

Results

 LacZ/LacY genes expression and enzymatic/ transport activities of LacZ/LacY proteins in E. Coli

Histogram errors vs CPU time

- R-leaping, an accelerated stochastic algorithm that is complementary to existing τ-leaping algorithms
- Efficient binomial sampling offers computational savings for large systems with disparate rates
 - Efficient sampling exploits size and stiffness of system.
 - Can be transposed to **τ**-leaping algorithms (!)...
- Treatment of negative species with a tunable compromise efficiency-accuracy
 - An alternative to modified τ -leaping, which essentially recurs to SSA when in trouble

Stochastics in Space: Tau and R-leaping

Thursday, September 11, 2008

Simulations of Gray-Scott Equations (2D)

Microscopic scale

Macroscopic scale

$$F = 0.04, \kappa = 0.06, t = 1000$$

$$\begin{array}{ll} U+2V & \to 3V, \\ V & \to P \end{array} & \begin{array}{l} \frac{\partial u}{\partial t} = d_u \Delta u - uv^2 + F(1-u), \\ \frac{\partial v}{\partial t} = d_v \Delta v + uv^2 - (F+\kappa)v. \end{array}$$

R-LEAP for Stochastic Diffusion on Non-uniform Discretizations

Diffusion events between cells, i.e. propensity for diffusion from cell i to cell j:

$$a_{i,j}(\mathbf{x}) = X_i \cdot k_{i,j}$$

Uniform Cells:
$$k_{i,j} = \frac{D}{h^2}$$

Non-uniform Cells:
$$k_{i,j}=?$$

$$\begin{array}{c} c_{i-1} \\ \bullet \\ \bullet \\ \end{array}$$

Stochastic Diffusion on Non-Uniform Mesh Using a Finite Volume [1]

Continuum

$$\frac{\partial u}{\partial t} = -\nabla \cdot J \qquad \qquad \frac{dU_i}{dt} = -(k_{i,i+1} + k_{i,i-1})U_i + k_{i+1,i}U_{i+1} + k_{i-1,i}U_{i-1} \leftarrow \frac{\partial U_i}{\partial t} = -\int_i \nabla \cdot J \ dx$$

Using the Divergence Theorem

Approximating the Gradient in Fick's Law

$$\frac{\partial U_i}{\partial t} = J(c_i - \frac{h_i}{2}) - J(c_i + \frac{h_i}{2}) \qquad \qquad \nabla u(c_i - \frac{h_i}{2}) \approx \frac{u(c_i) - u(c_{i-1})}{c_i - c_{i-1}} = \frac{1}{c_i - c_{i-1}} \left(\frac{U_i}{h_i} - \frac{U_{i-1}}{h_{i-1}}\right)$$

$$\frac{dU_i}{dt} = -\left(\frac{D_{i,i+1}}{h_i|c_i - c_{i+1}|} + \frac{D_{i,i-1}}{h_i|c_i - c_{i-1}|}\right)U_i + \left(\frac{\cdots}{h_{i+1}|c_i - c_{i+1}|}\right)U_{i+1} + \left(\frac{D_{i-1,i}}{h_{i-1}|c_i - c_{i-1}|}\right)U_{i-1}$$

Reaction Rates for Diffusion Events:

$$k_{i,j} = \begin{cases} \frac{D_{i,j}}{h_i |c_i - c_j|} & \text{if } |i - j| = 1\\ 0 & \text{otherwise} \end{cases}$$

[1] D. Bernstein. Simulating mesoscopic reaction-diffusion systems using the gillespie algorithm. Phys. Rev. E, 2005.

Thursday, September 11, 2008

Stochastic Diffusion on Non-uniform Discretizations: Propensity Disparities

Disparity in diffusion propensities arise from two sources:

- Gradients in the concentration, which are problem specific.
- Non-uniform cells. E.g. consider the diffusion of a uniform concentration field as shown below.

Uniform Cells: $a_{i,i-1}(\mathbf{x}) = a_{i,i+1}(\mathbf{x})$

Non-uniform Cells: $a_{i,i-1}(\mathbf{x}) < a_{i,i+1}(\mathbf{x})$

Stochastic Diffusion on Non-uniform Discretizations: Optimization

2D Fisher Equation

Multiresolution Stochastic Simulations of Reaction-Diffusion Processes, B. Bayati, P. Chatelain, P. Koumoutsakos, Phys. Chem. Chem. Phys., 2008

with Urs Greber, Christoph Burkhardt, Uni ZH

optimizing Stochastic Models : Adenovirus Transport

Thursday, September 11, 2008

Proposed models for bi-directional transport

from Gross, Physical Biology (2004)

Our modeling approach assumes that ...

- viruses are cytosolic, and invariant
- motions along a filament are equivalent to 1D runs
 - planar virus movements in flat regions of the cell
 - homogeneous microtubules without MAPs & dynamics
- individual microtubules independent of each other
- motor step size 8 nm
- no motor inhibitors

From directed motions to segmented 1-D tracks

- 2D virus trajectories are extracted by a single particle tracking algorithm [1]
- Different motion patterns are identified through segmentation and classification by Support Vector Machine [2]

Images of HeLa cells infected with Adenovirus serotype 2 imaged using a spinning disk confocal microscope

[1] I.F. Sbalzarini and P. Koumoutsakos, Feature point tracking and trajectory analysis for video imaging in cell biology, Journal of Structural Biology, 2005

[2] J.A. Helmuth, C.J. Burckhardt and P. Koumoutsakos and U.F. Greber and I.F. Sbalzarini, Feature point tracking and trajectory analysis for video imaging in cell biology, Journal of Structural Biology, 2007

From directed motions to segmented 1-D tracks

Our input into the model

- Segmented 25Hz virus trajectories
- Motor binding to virus at distinct or overlapping sites
- Step size of the plus & minus end motor: +/- 8nm

Six parameters optimized by the algorithm

dynein (D) and kinesin (K) can bind, unbind and move the virus cargo along a microtubule.

Eq. I : movement of the motor proteins, where d_{μ} and k_{μ} are the displacement rates for dynein and kinesin, respectively. Eq. 2(3) : binding and unbinding of dynein(kinesin), where ρ is the number of binding sites, d_{α} and d_{δ} are the binding and unbinding rates.

Six parameters optimized by the algorithm

 $D \xrightarrow{d_{\mu}} D + \mu_{D'} K \xrightarrow{K_{\mu}} K + \mu_{K}$ [1] ρ [2] [3] 6 В 110 C) The parameter values plotted against the number of fitness evaluations e. 50 ш 15 2 0 2000 6000 10000 6000 10000 2000 е e 0.08 E 0.04 D 0.06 0.03 **Q**.0.04 E) Velocity distributions (probability p versus a_0.02 ν, μm/s). 0.01 0.02 0 05 0 X -10 10 0 5 V

B) Fitness value F from the optimization, plotted against the number of fitness evaluations e, for the competing binding sites model with 14 binding sites.

D) Run length distributions (probability p versus X, μ m) for the biological (black) and in silico (red) data.

The optimized model reproduces in vivo data

and the winner is

Model predicts an non-coordinated 'tug-of-war'

- Distinct or overlapping binding sites for dynein & kinesin are possible
- kon and koff for dynein and kinesin are lower than expected
- 1-3 motors bound per virus during runs
 - a total of 8-14 motor binding sites required

Where is motor binding site, on hexon or pIX?

Stochastic ?

A message from your mother : Chose your models carefully

Juxtacrine Signaling

Definition

Intercellular signaling induced by physical cell contact. Mainly involved in

- developmental processes,
- wound healing,
- angiogenesis

Examples

Receptor: NotchLigands: Delta, Jagged, SerrateReceptor: EGFRLigand: TGFa

Pattern formation

through positive and negative feedback loops

(autoinduced up-regulation and down-regulation of ligand and receptor expression)

Computational Models (EGFR/TGFa)

OWEN&SHERRATT, MATHEMATICAL BIOSCIENCES, 1998

Stochastic vs. Det. simulation

Spatiality:

Species of different cells i encoded as different species, i.e.

```
B_1, R_1, L_1, B_2, R_2 \ldots, L_N
```

For 70 cells: **770** reactions, prohibitively expensive with SSA \rightarrow **R-leap**

Patterning after 100h:

Dynamics: Stochastic vs. Deterministic

Deterministic simulation is **unable** to assess dynamics

Outlook: Notch/Dll4 system on vessels

- Reverse-Engineering of Notch/DII4 feedback system
- Coupling with Simulations of sprouting angiogenesis
- Juxtacrine signaling on vessel-graphs reconstructed from experiments

