Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich www.cse-lab.ethz.ch

Multi-scale Simulations Using Particles

Petros Koumoutsakos

OUTLINE

PARTICLE METHODS

• A computational framework

MULTIRESOLUTION - UNBOUNDED DOMAINS

• Particles + Wavelets

MULTISCALING – BOUNDARIES AND INTERFACES

Atomistic_Mesoscale_Macroscale Particle Methods

CLASS NOTES, Links, Movies, Papers

http://www.cse-lab.ethz.ch/teaching/classes/mulsup.html

Modeling and Technology

 No aircraft is flown without having been designed with complex, mechanistic simulations

Modeling and Medicine

- Heuristics and Data
- Models ?

M. H. MERKS, S. V. BRODSKY, M. S. GOLIGORKSY, S. A.NEWMAN, AND J. A. GLAZIER. CELL ELONGATION IS KEY TO IN SILICO REPLICATION OF IN VITRO VASCULOGENESIS AND SUBSEQUENT REMODELING. DEVELOPMENTAL BIOLOGY, 289(1): 44-54, 2006.

Crown Breakup - maragoni instability

drop impact onto an ethanol sheet

[2] S. T. THORODDSEN, T. G. ETOH, AND K. TAKEHARA. CROWN BREAKUP BY MARANGONI INSTABILITY. J. FLUID MECH., 557(-1):63-72, 2006.

Τα παντα ρει

Friday, July 20, 12

16384 Cores - 10 Billion Particles - 60% efficiency

Runs at IBM Watson Center - BLue Gene/L

Chatelain P., Curioni A., Bergdorf M., Rossinelli D., Andreoni W., Koumoutsakos P., Billion Vortex Particle Direct Numerical Simulations of Aircraft Wakes, Computer Methods in Applied Mech. and Eng. 197/13-16, 1296-1304, 2008

Eidgenössische Technische Hochschule Zü

Tumor Induced Angiogenesis

Advances in Hardware – Theory – Data Processing

Tracking of Adeno Virus Greber&Koumoutsakos Lab, ETHZ

Intussuceptive Angiogenesis in the growing Chick CAM Djonov&Burri Lab, Uni Bern Swimming Medusa, Dabiri Lab, Caltech

Advances in Hardware – Theory – Data Processing

Transport in aquaporins Schulten Lab, UIUC

-9

Anguiliform Swimmers Koumoutsakos Lab, ETHZ

Growth of Black Holes Springel, MPI - Hernquist, Harvard

+9

PARTICLES: Lagrangian Form of Conservation Laws

$$\frac{d\mathbf{x}_{\mathbf{p}}}{dt} = \mathbf{u}_{p}$$
$$\rho_{p} \frac{D\mathbf{u}_{\mathbf{p}}}{Dt} = (\nabla \cdot \sigma)_{p}$$

SPH, Vortex Methods

$$\frac{d\mathbf{x}_{\mathbf{p}}}{dt} = \mathbf{u}_p$$

$$m\frac{d\mathbf{u_p}}{dt} = F_p$$

Molecular Dynamics, DPD

MODELING – APPROXIMATION

J. H. Walther, P. Koumoutsakos, Three-dimensional vortex methods for particle-laden flows with two-way coupling, J. Comput. Phys., 167, 39-71, 2001

Particle Methods: an N-BODY problem

Particle (position, value) $i, j = 1, \dots, N$

$$\frac{dx_i}{dt} = U_i(q_j, q_i, x_i, x_j, \cdots)$$
$$\frac{dq_i}{dt} = G_i(q_j, q_i, x_i, x_j, \cdots)$$

SMOOTH

Particles are quadrature points for continuum properties RHS of ODEs: quadratures of integral equations

DISCRETE:

Particles are carriers of physical properties - Models RHS of ODEs : Physical models (MD,...) - Other

• Multipole Algorithms, Fast Poisson solvers , Adaptivity, multiresolution, multiphysics

CFD: Then and Now

 $Re = 9500 \sim 10^6$ particles

1995 20 Days on CRAY YMP

Rossinelli D., et.al., GPU accelerated simulations of bluff body flows using vortex particle methods, Journal of Computational Physics, 229, 9, 3316-3333, 2010

Friday, July 20, 12

multi Scale Simulations using Particles

PK, Ann. Rev. Fluid Mechanics, 2005

Diffusion in/on Cell Organelles

Swimming Organisms

Vortex Rings

Friday, July 20, 12

F1G. 4.

A BRIEF HISTORY of PARTICLE METHODS

Friday, July 20, 12

CFD genesis : Vortex Particle Methods

$$\nabla \times \left(\begin{array}{c} \frac{\partial u}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} = -\nabla P + \nu \nabla^2 \mathbf{u} \end{array}\right)$$
$$\omega = \nabla \times \mathbf{u} \qquad \nabla^2 \mathbf{u} = -\nabla \times \omega$$
$$\left(\frac{D\omega}{Dt} = \omega \cdot \nabla \mathbf{u} + \nu \nabla^2 \omega \right) \qquad \frac{dx_p}{dt} = \mathbf{u}$$

- •No pressure Incompressibility enforced
- •Poisson equation for getting the velocity
- •Langragian formulation

Vortex Particle Methods : From the 20's to the 50's

1920's : Rosenhead

1950's Feynman

SIMULATIONS USING PARTICLES Friday, July 20, 12 www.cse-lab.ethz.ch

The 60's : Marker And Cell (MAC) -(velocity - pressure)

F.H. Harlow and E.J. Welch

Numerical Calculation of Time-Dependent Viscous Incompressible Flow of Fluid with Free Surface,, Harlow, Francis H. and Welch, J. Eddie, Physics of Fluids, 1965

Vortex Methods the 70–80's

Leonard

Belotserkovsky

Chorin

Friday, July 20, 12

vortex Particle Methods : From the 60's to the 80's

t = 00.01

3D - Boundaries Cost No theory of convergence

What PAUSED Vortex Methods?

Friday, July 20, 12

Mesh Methods for complex problems

Unstructured Mesh - Center for Turbulence Research, 2005

SIMULATIONS USING PARTICLES Friday, July 20, 12 www.cse-lab.ethz.ch

COMPUTING: The 3 Gaps

Adapted from : US-DOE

www.cse-lab.ethz.ch

Particles strike back : SPH (Monaghan, Lucy, 1970's)

Growth of Black Holes Springel, MPI -Hernquist, Harvard

GRID FREE + LAGRANGIAN/ADAPTIVE + NO POISSON EQUATION

Fluids, Particles and Graphics

Rigid Fluid: Animating the Interplay Between Rigid Bodies and Fluid

Mark Carlson Peter J. Mucha Greg Turk

Georgia Institute of Technology

Sound FX by Andrew Lackey, M.P.S.E.

Fluids, Particles and Graphics and CFD

FLUIDS and PARTICLES : CFD and GRAPHICS

2000

1990

1970

F10. 4.

SIMULATIONS (

Friday, July 20, 12

www.cse-lab.ethz.ch

3 Factors for Particle Simulations

Can we precise the (V,E,P) of each simulation ?

SIMULATIONS USING PARTICLES Friday, July 20, 12 www.cse-lab.ethz.ch

PARTICLE METHODS

 $\frac{dx_i}{dt} = U_i(q_j, q_i, x_i, x_j, \cdots)$ $\frac{dq_i}{dt} = G_i(q_j, q_i, x_i, x_j, \cdots)$

CONTINUUM APPROXIMATIONS

- Particles as quadrature points of integral approximations
- DISCRETE MODELS
 - Particles represent discrete elements
- COMMON ALGORITHMIC STRUCTURES
 - Algorithms, Data structures HPC implementation

PROS

Adaptivity, Robustness
Multiphysics

CONS

- Low Accuracy, Inconsistent
- Expensive

Flow Simulations Using Particles

Volumes

Surfaces and Interfaces

Equations

See : Multiscale flow simulations using particles, Koumoutsakos P, Ann. Rev. Fluid Mech., 37, 457-487, 2005

SIMULATIONS USING PARTICLES Friday, July 20, 12 www.cse-lab.ethz.ch

FUNCTIONS and PARTICLES

Integral Function Representation

$$\Phi(x) = \int \Phi(y) \,\delta(x-y) \,dy$$

Function Mollification

$$\Phi_{\epsilon}(x) = \int \Phi(y) \zeta_{\epsilon}(x-y) \, dy$$

Point Particle Quadrature

 $\Phi^{h}(x,t) = \sum_{p=1}^{N_{p}} h_{p}^{d} \Phi_{p}(t) \,\delta(x - x_{p}(t))$

Smooth Particle Quadrature

$$\Phi^h_{\epsilon}(x,t) = \sum_{p=1}^{N_p} h^d_p \, \Phi_p(t) \, \zeta_{\epsilon}(x-x_p(t))$$

Particles are "mesh" free

Interface Tracking versus Capturing

Tracking

- Explicit description
- Lagrangian framework
- Interface distortion requires reseeding

Capturing

- Implicit description
- Eulerian framework
- Evolution leads to numerical diffusion

Level Sets for Surface Representation

PARTICLE METHODS : Geometry

Volume particles

- •Particles are quadrature points
- Easy to discretize COMPLEX GEOMETRIES

Surface particles

- Particle Level Sets COMPLEX SURFACES
- Surface Operators Anisotropic Volume Operators

SURFACES AS LEVEL SETS

 $\Gamma(t) = \{ \mathbf{x} \in \Omega \mid \phi(\mathbf{x}, t) = 0 \}$ $|\nabla \phi| = 1$

EVOLVING THE LEVEL SETS $\frac{\partial \Phi}{\partial t} + u \cdot \nabla \Phi = 0$

PARTICLE APPROXIMATION $\Phi_{\epsilon}^{h}(x,t) = \sum_{p=1}^{N_{p}} h_{p}^{d} \Phi_{p}(t) \zeta_{\epsilon}(x - x_{p}(t))$

Lagrangian Surface Transport

$$\frac{dx_p}{dt} = \mathbf{u_p}$$

$$\frac{D\Phi_p}{Dt} = 0$$

S. E. Hieber and P. Koumoutsakos. A Lagrangian particle level set method. J. Computational Physics, 210:342-367, 2005

Friday, July 20, 12

Particle Level sets : 3D curvature-driven flow: Collapsing Dumbbell

A Lagrangian Particle Level Set, Hieber and Koumoutsakos, J. Comp. Phys. 2005

se-lab.ethz.ch

Lagrangian vs Eulerian Descriptions

Friday, July 20, 12

LAGRANGIAN DISTORTION

loss of overlap -> loss of convergence

Particles follow flow trajectories - Location distortion

EXAMPLE : Incompressible 2D Euler Equations

$$\omega = \nabla \times \mathbf{u} \quad \nabla \cdot \mathbf{u} = 0$$

 $\frac{D\omega}{Dt} = 0$

There is an exact axisymmetric solution

SMOOTH PARTICLES MUST OVERLAP

Integral Function Representation

$$\Phi(x) = \int \Phi(y) \,\delta(x-y) \,dy$$

Function Mollification

$$\Phi_{\epsilon}(x) = \int \Phi(y) \zeta_{\epsilon}(x-y) \, dy$$

$$\int \zeta \, x^{\alpha} \, dx = 0^{\alpha} \qquad 0 \le \alpha < r$$

TOTAL ERROR

$$||\Phi - \Phi_{\epsilon}^{h}|| \leq ||\Phi - \Phi_{\epsilon}|| + ||\Phi_{\epsilon} - \Phi_{\epsilon}^{h}||$$
$$\leq (C_{1}(\epsilon^{r}) + C_{2}((\frac{h}{\epsilon})^{m}))||\Phi||_{\infty}$$

Point Particle Quadrature

$$\Phi^{h}(x,t) = \sum_{p=1}^{N_{p}} h_{p}^{d} \Phi_{p}(t) \delta(x - x_{p}(t))$$

Smooth Particle Quadrature

$$\Phi^h_{\epsilon}(x,t) = \sum_{p=1}^{N_p} h^d_p \Phi_p(t) \zeta_{\epsilon}(x - x_p(t))$$

Need h/ε < 1 for accuracy

PARTICLES MUST ALWAYS OVERLAP

J. Raviart (1970's), O. Hald (1980's), Anderson, G.H. Cottet (1990's)

Are Particle Methods Grid Free ?

How to fix it?

- Modify the smoothing kernels (SPH Monaghan)
- Re-distribute particles with Voronoi Meshes (ALE Russo) EXPENSIVE UNSTABLE
- Re-initialise particle strengths (WRKPM Liu, Belytchko)

REMESHING : Re-project particles on a mesh • NO MESH-FREE particle methods

DOES NOT WORK

EXPENSIVE

- Can use all the "tricks" of mesh based methods
- High CFL
- Multiresolution & Multiscaling

Particle Remeshing = Resampling

 $Q_p^{\text{new}} = \sum_{p'} Q_{p'} M(j h - x_{p'})$

Particle Remeshing = Resampling

N

Moment conserving Interpolation

$$\sum_{i} M(x-i) i^{\alpha} = x^{\alpha}$$
Remesh on i -1. Logrid points

7 1

Remesh on 1 = 1...L grid points Conserving L moments a = 1...L implies L (well posed) equations for L unknowns

Solve to derive M

 $M_{6}^{*}(x) = \begin{cases} -\frac{1}{12}(|x|-1)(24|x|^{4}+38|x|^{3}-3|x|^{2}+12|x|+12) & |x|<1\\ \frac{1}{24}(|x|-1)(|x|-2)(25|x|^{3}-114|x|^{2}+153|x|-48) & 1\leq |x|<2\\ -\frac{1}{24}(|x|-2)(|x|-3)^{3}(5|x|-8) & 2\leq |x|<3\\ 0 & 3\leq |x| \end{cases}$

Remeshing No Remeshing

t = 0.00

ution of the Euler equation with particle me

REMESHED PARTICLE METHODS

1.ADVECT : <u>Particles</u> ->Large CFL

2.REMESH : <u>Particles</u> to <u>Mesh</u> -> Vectorized

3. SOLVE: Poisson/Derivatives on <u>Mesh</u>->FFTw/Ghosts

4:RESAMPLE: <u>Mesh</u> Nodes BECOME <u>Particles</u>

PPM : Parallel Particle Mesh library

www.ppm-library.org

OPEN SOURCE <u>www.cse-lab.ethz.ch/software.html</u> Library for MPI parallel Particle-Mesh simulations

I.F. Sbalzarini, et. al.. J. Computational Physics,, 2006

Scalability – CRAY XT5

Strong Size : 1280x1280x640 time : 512/90s - 8192/10s

Weak time: 64/40s - 32768/85s

Friday, July 20, 12

Particles for Fluid Mechanics @ 2000+

Vortex Rings and Vortex Wakes

Bluff Body and Turbulent Flows

Swimming and Flying

VORTEX RING COLLISION, Re = 1800

Experiments : P. Schatzle & D. Coles (1986)

Vortex Ring Collision - Re = 10,000

VORTEX DYNAMICS at High Re

VORTEX DYNAMICS OF TUBES @ Re = 10,000

Timings : 23sec (PSP) & 12.5 sec (VM) per step (on 4096 cores) : to T = 11.5 : Nsteps (PSP - RK4) = 8400, Nsteps (VM) - RK3 = 17,000

VORTEX DYNAMICS OF TUBES @ Re = 10,000

What is the effect of Remeshing ?

RESOLUTION : 1280 X 960 x 640 = 0.8 Billion elements

Timings : 23sec (PSP) & 12.5 sec (VM) per step (on 4096 cores) : to T = 11.5 : Nsteps (PSP - RK4) = 8400, Nsteps (VM) - RK3 = 17,000

Friday, July 20, 12

Wavelet-based Block-Adaptivity

VORTICITY + BLOCKS

VORTICITY

Wavelet-based Block-Adaptivity

SIMULATIONS USING PARTICLES Friday, July 20, 12 www.cse-lab.ethz.ch

Particle Simulation of Elastic Solid

Plane Strain Compression Test

- Pistons move with constant velocity
- Elastic solid fixed to the pistons
- Highly dynamic deformation of large extent

Particle Simulation of Elastic Solid

Plane Strain Compression Test

- Pistons move with constant velocity
- Elastic solid fixed to the pistons
- Highly dynamic deformation of large extent

Plane Strain Compression Test

S.E. Hieber and P. Koumoutsakos A Lagrangian particle method for the simulation of linear and nonlinear elastic models of soft tissue. *al., J. Comp. Physics, 2008*

SURFACES and INTERFACES

Friday, July 20, 12

0.0

1.0

0.8

0.6

0.4

0.2

Friday, July 20, 12