Coalescence and transport of bubbles and drops

Petr Karnakov
ETH Zürich, Switzerland

Computational Science \& Engineering Laboratory

with:
Dr. Sergey Litvinov
Prof. Petros Koumoutsakos

CSCS

Centro Svizzero di Calcolo Scientifico Swiss National Supercomputing Centre
projects s754, s931

support:

FNSNF

Swiss National Science Foundation grant CRSII5_173860

Subject:

a new method for curvature estimation with superior accuracy at low resolutions

- Formulation
- Benchmarks
- curvature of a sphere
- translating droplet
- Applications
- bubble coalescence
- turbulent flows with bubbles

Formulation

Model

Two-component incompressible flow

- Navier-Stokes equations

$$
\begin{aligned}
\nabla \cdot \mathbf{v} & =0 \\
\rho\left(\frac{\partial \mathbf{v}}{\partial t}+(\mathbf{v} \cdot \nabla) \mathbf{v}\right) & =-\nabla p+\nabla \cdot\left(\mu\left(\nabla \mathbf{v}+\nabla \mathbf{v}^{T}\right)\right)+\mathbf{f}_{\sigma}
\end{aligned}
$$

- Discretization
- Finite Volume on a uniform grid

$$
\frac{\partial \alpha}{\partial t}+(\mathbf{v} \cdot \nabla) \alpha=0
$$

- SIMPLE for pressure coupling
- VOF advection [Aulisa 2007]

$$
\begin{aligned}
& \rho=(1-\alpha) \rho_{1}+\alpha \rho_{2} \\
& \mu=(1-\alpha) \mu_{1}+\alpha \mu_{2}
\end{aligned}
$$

- Advection of volume fraction
- Implementation
- Hypre for linear solvers [Falgout 2002]
- Cubism for parallelization [Wermelinger 2018]

Surface tension

- Calculation of surface tension $\mathbf{f}_{\sigma}=\sigma \kappa \mathbf{n}_{S} \delta_{S}$ relies on interface curvature $\kappa=\nabla_{S} \cdot \mathbf{n}_{S}$
- Existing methods show poor accuracy at low resolution
- volume fraction [Brackbill 1992]
- level-set [Sussman 1998]

- height functions [Cummins 2005]
- generalized height functions: parabolic fit to reconstructed interface [Popinet 2009]

VOF reconstruction

Piecewise-linear interface from volume fraction
Line segments in 2D and polygons in 3D

- Volume fraction field

0.1	0.1	0	0
0.9	0.9	0.5	0
1	1	0.9	0.1
1	1	0.6	0

- Normals as gradients

- Lines cutting cells at given volume fraction

Height functions

Generalized height function method [Popinet 2009] for curvature estimation implemented in Basilisk [basilisk.fr]

- Height function
- sum of volume fraction over column
- defined if the column connects 0 and 1
- Curvature computed using
- finite differences of height function (if 3 points available)
- parabola fitted to interface centroids (if fewer points)
- Used for comparison

$$
\kappa \approx \frac{1}{h} \frac{H_{i-1}-2 H_{i}+H_{i+1}}{\left(1+\left(\frac{H_{i+1}-H_{i-1}}{2}\right)^{2}\right)^{1.5}}
$$

Proposed method

Curvature from positions of constrained particles attracted to the interface

1. Interface

- line segments (e.g. from VOF reconstruction)

3. Forces

- attraction to nearest point on the interface

2. Constrained particles

- fixed distance
- uniform angle
\Rightarrow particles belong to a circle

4. Equilibrium positions

- provide the estimate of curvature

Proposed method

Evolution of particles in terms of

 parameters satisfying the constraints- Constraints leave 4 scalar parameters
- position of central particle $\mathbf{p}=\left(x_{c}, y_{c}\right)$
- orientation angle ϕ
- bending angle θ

- Attraction forces \mathbf{f}_{i} from \mathbf{x}_{i} to nearest point on the interface
- Each step applies corrections
$\Delta \phi=\sum_{i} \mathbf{f}_{i} \cdot \frac{\partial \mathbf{x}_{i}}{\partial \phi} / \sum_{i} \frac{\partial \mathbf{x}_{i}}{\partial \phi} \cdot \frac{\partial \mathbf{x}_{i}}{\partial \phi}$
(similar for \mathbf{p} and θ)

Proposed method

Mean curvature in 3D

- Interface consists of polygons
- Plane section consists of line segments \Rightarrow problem reduced to 2D
- Mean curvature is arithmetic mean over plane sections

Benchmarks

Curvature of a sphere

 \longrightarrow present

- Basilisk

Translating droplet

- Uniform initial velocity \mathbf{u}_{0}
- Flow driven by surface tension

$$
\mathrm{We}_{0}=\frac{2 \rho R\left|\mathbf{u}_{0}\right|^{2}}{\sigma}=0.1
$$

- Magnitude of the spurious flow

$$
\mathrm{We}_{\max }=\frac{2 \rho R}{\sigma} \max \left|\mathbf{u}-\mathbf{u}_{0}\right|^{2}
$$

- Pressure jump

$$
\Delta p=\max p-\min p
$$

- Basilisk

$R / h=1.19$

Applications

Coalescence of bubbles

- Experiment on near-wall coalescence
- Bubbles grow due to diffusion of dissolved gas
- Simulations reproduce the experiment

[^0]Coalescence of diffusively growing gas bubbles.
Journal of fluid mechanics. 2018

Coalescence of bubbles

Coalescence of bubbles

- Periodic domain $[0,2 \pi]^{3}$
- Initial velocity

$$
\begin{aligned}
& v_{x}=\sin x \cos y \cos z \\
& v_{y}=-\cos x \sin y \cos z \\
& v_{z}=0
\end{aligned}
$$

- 890 bubbles, volume fraction 1.4%
- $\operatorname{Re}=\frac{\rho}{\mu}=1600 \quad \mathrm{We}=\frac{2 \rho R}{\sigma}=2$
- Mesh 256^{3} or 384^{3}

Taylor-Green vortex with bubbles

trajectory of one bubble, no change on finer mesh

number of bubbles reduces with time due to coalescence

with bubbles
without bubbles
coalescence causes fluctuations of dissipation rate

The proposed method:

- more accurate at low resolutions than standard techniques (curvature error below 0.1 even with one cell per radius)
- straightforward to implement
- naturally describes contact angles of 0° and 180°

Outlook:

- hybrid method using height functions at high resolution

Thank you!

web demonstration

tinyurl.com/demogrid

References

1. P. Karnakov, S. Litvinov, and P. Koumoutsakos, "Connected particles for curvature estimation applied to flows with surface tension"
(in preparation)
2. P. Karnakov, F. Wermelinger, M. Chatzimanolakis, S. Litvinov, and P. Koumoutsakos, "A High Performance Computing Framework for Multiphase, Turbulent Flows on Structured Grids" in Proceedings of the platform for advanced scientific computing PASC '19, 2019.
(accepted)
3. S. M. H. Hashemi, P. Karnakov, P. Hadikhani, E. Chinello, S. Litvinov, C. Moser, P. Koumoutsakos, and D. Psaltis, "A versatile and membrane-less electrochemical reactor for the electrolysis of water and brine," Energy \& environmental science, 2019.

Contact angle

[^0]: Soto ÁM, Maddalena T, Fraters A, Van Der Meer D, Lohse D.

