

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. SCI. COMPUT. c© 2011 Society for Industrial and Applied Mathematics
Vol. 33, No. 2, pp. 512–540

MULTICORE/MULTI-GPU ACCELERATED SIMULATIONS OF
MULTIPHASE COMPRESSIBLE FLOWS USING WAVELET

ADAPTED GRIDS∗

DIEGO ROSSINELLI† , BABAK HEJAZIALHOSSEINI† , DANIELE G. SPAMPINATO† , AND

PETROS KOUMOUTSAKOS†

Abstract. We present a computational method of coupling average interpolating wavelets with
high-order finite volume schemes and its implementation on heterogeneous computer architectures
for the simulation of multiphase compressible flows. The method is implemented to take advantage
of the parallel computing capabilities of emerging heterogeneous multicore/multi-GPU architectures.
A highly efficient parallel implementation is achieved by introducing the concept of wavelet blocks,
exploiting the task-based parallelism for CPU cores, and by managing asynchronously an array of
GPUs by means of OpenCL. We investigate the comparative accuracy of the GPU and CPU based
simulations and analyze their discrepancy for two-dimensional simulations of shock-bubble interac-
tion and Richtmeyer–Meshkov instability. The results indicate that the accuracy of the GPU/CPU
heterogeneous solver is competitive with the one that uses exclusively the CPU cores. We report the
performance improvements by employing up to 12 cores and 6 GPUs compared to the single-core
execution. For the simulation of the shock-bubble interaction at Mach 3 with two million grid points,
we observe a 100-fold speedup for the heterogeneous part and an overall speedup of 34.

Key words. GPU, compressible flow, wavelets, multiresolution, adaptive grid, multiphase,
multicore architectures

AMS subject classifications. 76T10, 76M12, 65T60, 68W10, 65M50

DOI. 10.1137/100795930

1. Introduction. Heterogeneous, CPU/GPU based computer architectures pro-
vide us today with unprecedented computational power for the simulation of complex
physical systems. We need, however, to develop suitable methods and algorithms to
harness these capabilities. We can only stress the importance of an integrative de-
velopment of computational methods and software that takes into consideration the
hardware architecture. In turn, synchronizing the developments of methods, software
and hardware holds the promise for even larger advances in all components involved.

A traditional testbed for the development of computational methods is fluid me-
chanics. The equations of fluid mechanics involve several classes of PDEs, and over
the years a number of benchmark problems have been established for the validation of
novel numerical methods. In fluid mechanics, exploiting the capabilities of computer
architectures with thousands of cores has enabled simulations involving billions [27] of
variables, resolving scales at Re numbers that have not been possible before. In recent
years the advent of graphics processing units (GPUs) has provided another option for
accelerated massively parallel flow simulations; albeit sometimes the best performance
is obtained at the price of a reduced accuracy. A number of different CFD methods
have been successfully implemented on GPUs such as marker and cell [46], finite
difference/volume schemes [17, 29], Lattice–Boltzmann [6], and vortex methods [42].
These simulations rely on translating computational methods into intensive and local-
ized computations that take advantage of the single-instruction-multiple-data (SIMD)

∗Submitted to the journal’s Software and High-Performance Computing section May 20, 2010;
accepted for publication (in revised form) November 22, 2010; published electronically March 1, 2011.

http://www.siam.org/journals/sisc/33-2/79593.html
†Department of Computational Science, ETHZ, CH-8092, Zürich, Switzerland (diegor@inf.ethz.

ch, babak.hejazialhosseini@inf.ethz.ch, daniele.spampinato@inf.ethz.ch, petros@ethz.ch).

512

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MULTICORE/GPU SIMULATIONS ON WAVELET ADAPTED GRIDS 513

capabilities of the GPUs, resulting in some cases in up to two orders of magnitude
speedups over the corresponding CPU-only implementations [42].

The sheer number of processors and the corresponding number of computational
elements often mask a key issue regarding the economy of flow simulations using
uniform grids. Flow simulations that exhibit high parallel efficiency benefit from
the regularity of structured grids that can readily translate into effective computer
implementations by means of data parallelism. This efficiency, however, does not
translate into short time to solution as the grid regularity is not commensurate with
the multitude of scales often associated with fluid mechanics problems. Hence, seem-
ingly paradoxically, high efficiency parallel flow simulations, using uniform grids, will
not be sufficient to address in the foreseeable future problems of engineering interest
such as the flow around an aircraft. We believe that this situation can be remedied
by developing computational methods that employ temporal and spatial adaptivity
while at the same time allow for implementations that can take advantage of modern
computer architectures.

A number of computational methods have been developed in the last twenty years
that dynamically adjust the resolution of computational elements to match the physi-
cal scales. Methods such as adaptive mesh refinement (AMR) [5, 35] or wavelet based
multiresolution techniques [22, 30, 39, 47] have been developed to this end. AMR
techniques support unstructured grids and can accommodate different grid orienta-
tions, while wavelet methods provide higher compression ratios and allow for efficient
computations by the use of fast wavelet transforms. Wavelets are becoming a tool of
choice for CFD (see [47] and references therein), and they have been extended to the
multiresolution representation of geometries using level sets [4]. Wavelets, while effi-
cient in providing spatial adaptivity, present a number of challenges for their efficient
parallelization, making them subject to several efforts in the last ten years that in turn
have resulted in hardware-accelerated wavelet transforms. The first GPU based two-
dimensional fast wavelet transform (FWT) was introduced in 2000 [25]. Since then,
many different parallel implementations have been proposed both on multicore archi-
tectures such as the Cell BE [2] and on GPUs [48]. These efforts, however, have been
restricted to the full FWT. The full FWTs are used mainly in signal processing to find
all the detail coefficients of a data set, and the subsequent processing is performed in
the wavelet space, directly modifying the detail coefficients. However, wavelet-based
adaptive PDE solvers differ in their computational implementation with respect to
wavelet-based signal processing techniques. First, when wavelets are used for solving
an initial value problem, one does not know in advance how the solution will evolve;
therefore, the full time-space FWTs cannot be employed. Second, operations involv-
ing nonlinear terms (e.g., the convection term in the Navier–Stokes equations) need
to be efficiently performed. This is not always possible when working in the wavelet
space, and it is meaningful to keep the representation of the solution in the physi-
cal space and use the detail coefficients only to readapt the grid. In this approach
not every detail coefficient is needed but only the ones directly related to points of
the adapted grid (i.e., the finest scaling coefficients of the adapted grid). When the
solution is represented in the physical space, a third difference between signal pro-
cessing and PDE solvers becomes evident. In the latter, the choice of the wavelets is
often limited to the biorthogonal ones associated with symmetric and smooth scaling
functions. Conventional choices are average interpolating wavelets, first or second
generation interpolating wavelets, or B-spline wavelets. Furthermore, the grid has to
undergo refinement and compression very frequently as extra care is needed to capture

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

514 ROSSINELLI ET AL.

all the emerging scales.
The parallel implementation of wavelet-based adaptive PDE solvers is hindered

by their, inherently sequential, nested structure. This difficulty limits their effective
implementation on multicore architectures, and the limitation is even more severe for
heterogeneous multicore/multi-GPU architectures. In the context of plain multi-core
architectures, it has been recently demonstrated that this issue can be relaxed by
introducing the concept of wavelet blocks and by employing task-based parallelism
[43]. To the present knowledge of the authors, there are no works so far that address
the issues of solving PDEs on a wavelet-based adapted grid with heterogeneous multi-
GPU/multicore machines.

In this work we introduce such a solver for the simulation of multiphase compress-
ible flows and report accuracy issues and performance gains for benchmark problems
of shock-bubble interaction and Richtmeyer–Meshkov instability. We remark that the
locality of flow structures, inherent to compressible flow simulations, is ideally suited
to the locality of data structures that can be exploited by GPUs, as has been shown
in the work of Elsen, LeGresley, and Darve [17], Brandvik and Pullan [8], and Hagen,
Lie, and Natvig [21]. These works mainly focused on single phase flows on uniform
resolution or unstructured grids, while the reduced accuracy of the GPUs has not been
extensively addressed. The present work addresses the simulations of compressible,
multiphase flows on multicore and multi-GPU architectures using grids adapted via
wavelet analysis of the flow structures.

The paper is structured as follows: in section 2 we present the governing equations
of multiphase compressible flows and their finite volume discretization. We briefly
introduce wavelet-based multiresolution analysis to construct an adaptive grid and
solve the flow equations in section 3. We then introduce a data structure referred to
as a wavelet block to reduce the granularity of the method and make it more suitable
for parallel execution. In section 4 we propose a way to couple CPU cores with
an array of GPUs to obtain a heterogeneous solver. We report the strong scaling
and a detailed study on the accuracy/discrepancy for the Sod shock-tube benchmark
and shock-bubble interaction at different Mach numbers as well as the Richtmeyer–
Meshkov instability in section 5.

2. Governing equations and uniform resolution discretization. Wemodel
an inviscid compressible flow as described by the Euler equations using the one-fluid
formulation [38]:

(2.1)

∂ρ

∂t
+∇ · (ρu) = 0,

∂(ρu)

∂t
+∇ · (ρu⊗ u+ pI) = 0,

∂(ρE)

∂t
+∇ · ((ρE + p)u) = 0,

with ρ being the density, u the velocity vector, p the pressure, and E the total energy
of the fluid per unit mass. Closure of this system of equations is enforced by ensuring
that the two phases, gas and liquid fluid, follow the ideal gas equation of state,

(2.2) p = (γ − 1)ρ

(
E − 1

2
|u|2

)
,

with γ being the ratio of specific heats of each phase.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MULTICORE/GPU SIMULATIONS ON WAVELET ADAPTED GRIDS 515

Here, the interface is represented by a color function φ, where φ < 0 represents
phase 2 and φ ≥ 0 represents phase 1.

The evolution of the interface is governed by a linear advection equation of the
form

(2.3)
∂φ

∂t
+ u ·∇φ = 0.

The specific heat ratio γ couples the evolution of the interface to the system of equa-
tions (2.1)–(2.2), and it is based on φ:

γ(φ) = γphase1Hε(φ) + γphase2(1−Hε(φ)),(2.4)

Hε(φ) =

0, φ < −ε,
1
2 + φ

2ε +
1
2π sin(πφε), |φ| ≤ ε,

1, φ > ε,
(2.5)

where the mollification length ε is constant. The governing equations (2.1) can be
cast in the form

(2.6) qt +∇ · f(q) = 0,

where the subscript t denotes the time derivative. This system of equations requires
an initial condition of the form q(x, 0) = q0(x) and appropriate boundary conditions.
The evolution of the fluid under this system of equations often leads to the develop-
ment of shocks and contact discontinuities in the solution vector q, and therefore the
integral form of (2.6), i.e.,

(2.7)

∮
(qdx − f(q)dt) = 0,

is better suited for numerical simulations. If the computational domain is uniformly
discretized by finite volumes, then cell averages {qn

i } at time t = tn and the flux

(2.8) Fi±1/2 =
1

∆t

∫ tn+1

tn
f(qn

i±1/2(t))dt

determine the new solution qn+1 at time tn+1 = tn + ∆t. In order to avoid the
expensive Riemann solver [49], Fi±1/2 is approximated by a numerical flux F̂i±1/2.

The new cell averages {qn+1
i } are found after one simulation step by evaluating the

numerical fluxes and performing a time integration for all the averages:

(2.9) qn+1
i = qn

i − ∆t

∆x
(F̂i+1/2 − F̂i−1/2).

Since F̂i+1/2 and F̂i−1/2 depend on the local cell neighbors of qn
i , the simulation step

formulated in (2.9) can be seen as a nonlinear uniform filtering at the location of qn
i .

In this work we use the HLLE [16] numerical flux that has been shown to be well
capable of capturing isolated shocks and rarefaction waves and is not as computa-
tionally expensive as the Riemann solver. We employ a fifth order WENO scheme
[33, 28] to reconstruct the primitive quantities and a time-stepper based on the second
order TVD Runge–Kutta scheme [51]. The interface evolution equation (2.3) is made
suitable for our generic conservative flux-based solver using the method introduced in
[45].

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

516 ROSSINELLI ET AL.

3. Wavelet-based adaptive grids. In this work, the creation of adapted grids
is based on average interpolating wavelets. These wavelets belong to the family of
biorthogonal wavelets and are used to construct a multiresolution analysis (MRA) of
the quantities of interest. We can use the scale information of the MRA to obtain a
compressed representation by performing a thresholding that retains only the scaling
coefficients which carry significant information.

In order to solve the flow equations on adapted grids, we apply standard finite
volume (alternatively finite difference) schemes on the active coefficients. One way to
simplify these operations is to first create a local, uniform resolution neighborhood
around a grid point and then apply the corresponding finite volume scheme to it.
This process in turn requires the introduction of auxiliary grid points, the so-called
ghosts. For accuracy and efficiency reasons, the grid has to be readapted as the flow
field evolves. This is done by coarsening some regions and refining some others after
constructing a new MRA of the flow.

We refer the reader to the appendix for a detailed discussion on how average
interpolating wavelets are used to solve the flow equations on adaptive computational
grids.

3.1. Wavelet blocks. The wavelet-adapted grids for solving flow equations are
often implemented with quad-tree or oct-tree structures whose leaves are single scaling
coefficients (i.e., cell averages). The main advantage of such fine-grained trees is
the very high compression rate which can be achieved when thresholding individual
detail coefficients. The drawback of this approach is the large amount of sequential
operations it involves and the number of memory indirections (or read instructions)
necessary to access a group of elements. Even if we keep the grid structure unchanged
while computing, these grids already perform a great number of neighborhood look-
ups. In addition, operations like refining or coarsening single grid points are relatively
complex and strictly sequential.

In this work, in order to expose more parallelism and to decrease the amount of
sequential operations per grid point, the key idea is to simplify the data structure. We
address this issue by coarsening the granularity of the solver, i.e., the atomic element
of the grid, at the expense of a reduction in the compression rate. We introduce the
concept of block of grid points, whose size is one or two orders of magnitude larger
in every direction with respect to a scaling coefficient; i.e., in three dimensions, the
granularity of the block is coarser by 3 to 5 orders of magnitude with respect to a
single scaling coefficient. All the scaling coefficients contained in one block have the
same level, and every block contains the same number of scaling coefficients. The
grid is then represented with a tree which contains blocks, instead of single grid
points, as leaves (Figure 3.1). The blocks are nested so that every block can be
split and doubled in each direction and blocks can be collapsed into one. Blocks
are interconnected through the ghosts and, in the physical space, the blocks have
varying sizes and therefore different resolutions. The block structure of the grid
provides a series of benefits. First, tree operations are now accelerated as they can
be performed in log2(N

1/D/sblock) operations instead of log2(N
1/D), where N is the

total number of active coefficients, D is the considered dimensionality, and sblock is
the block size. The second benefit is that the random access at elements inside a block
can be efficient because the block represents the atomic element. Another advantage
is the reduction of the sequential operations involved in processing a local group of
scaling coefficients. The cost c (in terms of memory accesses) of filtering a grid point
with a filter of size wstencilD in a uniform resolution grid is proportional to wstencilD.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MULTICORE/GPU SIMULATIONS ON WAVELET ADAPTED GRIDS 517

Fig. 3.1. The adapted cell-centered grid is represented with 13 blocks at 3 different resolutions.
Every block contains the same number of scaling coefficients (left). The blocks are the leaves of the
grid tree (right).

For a grid represented by a fine-grained tree, the number of accesses is proportional
to c = wstencilD log2(N

1/D), due to the sequential access to the tree nodes. Using the
wavelet blocks approach and assuming that sblock is roughly one order of magnitude
larger than wstencil, the ratio of ghosts needed per grid point in order to perform the
filtering for a block is

(3.1) r =
(sblock + wstencil)D − sDblock

sDblock
≈ D

wstencil

sblock
.

Therefore, the number of accesses for filtering one grid point is

c = (1 − r)wstencilD + rwstencilD
(
log2(N

1/D/sblock)
)

= wstencilD + wstencilDr
(
log2(N

1/D/sblock)− 1
)
.(3.2)

As an example we consider a two-dimensional worst case scenario: an adapted grid
of four million points that is fully refined everywhere. For N = 222, D = 2 we want
to perform a fifth-order WENO reconstruction; therefore, wstencil = 6. For a uniform
resolution grid representation we have c = 12, and for a fine-grained adapted tree we
have c = 132. For a blocked adaptive grid with sblock = 32 we have c ≈ 36. This
means that in terms of memory accesses, by using blocks we are 3 times slower than
a uniform grid and 3.7 times faster than a fine-grained adapted grid. On average, in
places where we have an “actual” adaptation of the grid, the speed difference between
the block-based and the fine-grained grids becomes substantially larger because of the
number of ghosts that they need to reconstruct.

We note that none of the blocks overlap with any other block in the physical
space as the blocks are the leaves of the tree. In order to improve the efficiency of
finding the neighbors of a block, we define as neighbors all the blocks adjacent to the
one considered. Because of this constraint, the highest jump in resolution allowed
(between two adjacent blocks), Lj, is bounded by log2 (sblock/wstencil).

3.2. Local time stepping (LTS) for wavelet adapted grids. Additional
speedup is obtained by combining spatially adapted grids with local time-stepping
(LTS) schemes, which advance in time the properties of the computational elements
by taking into consideration their corresponding different time scales necessary for a
stable discretization. LTS schemes have been shown to speed up the computation by
one order of magnitude or more depending on the number of blocks at each level of
resolution [13, 14, 1, 44].

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

518 ROSSINELLI ET AL.

Recently, we proposed a new perspective on LTS schemes [23] that allows us to
reformulate existing LTS algorithms in a simpler way. In this view each computa-
tional element of the grid is considered as an independent entity. We associate a
time-reconstruction function to every computational element (i.e., cell averages). The
computation of the right-hand side is not performed by considering directly the com-
putational elements, but by considering their time-reconstructed values. Each block
in the grid is also associated with a state diagram, which is repeatedly traversed when
the grid elements undergo a time integration. The operations involved in the state
transitions of a grid point are deduced by imposing some interpolating postcondi-
tions on the reconstruction functions. In the new formulation we relax, or almost
eliminate, the coupling between the evaluation of right-hand sides, the update of the
blocks, and the recursive iteration through the blocks. This enables us to identify
the compute-intensive parts of the LTS schemes and therefore obtain, in combina-
tion with the block-based representation of the grid, an effective implementation for
multicore/multi-GPU machines.

Even though LTS schemes are capable of dramatically decreasing computing time,
they present a major shortcoming: the grid blocks have to be grouped by their time
scales, and therefore multiple groups cannot be processed in parallel. This means
that there are additional synchronization points in the algorithm, and the degree of
parallelism for processing a group of blocks is limited by the group size.

4. Implementation on multi-GPU/multicore architectures. In this sec-
tion we discuss the retainment of scales on the grid, introduce OpenCL for GPUs, and
explain the parts of the algorithm that have been redesigned for multi-GPU execution.
Finally, we present the OpenCL-based GPU implementation of the solver.

4.1. One simulation step. In order to keep the grid adapted to the evolv-
ing solution, a simulation step modifies the grid in three different stages [32]—the
refinement stage, the computing stage, and the compression stage—as illustrated in
Figure 4.1 (left).

The refinement stage refines the grid in those regions where small scales are
expected to emerge. In practice, we perform a one-level FWT to compute the finest
detail coefficients of the grid. If the maximum detail over all detail coefficients within
a block is bigger than εrefine, we trigger the split of the block, and we fill the new
blocks by performing a one-level inverse wavelet transform of the scaling coefficients
of the old block.

In the computing stage we perform the time integration of the solution by com-
bining finite volume schemes and the LTS scheme. Note that in this stage the grid
structure remains unchanged. It is desired (and empirically observed) that most of
the execution time is spent here. This stage generally takes between 80% and 98%
of the execution time, depending on the problem, the chosen wavelet type, and other
computational parameters. This means that the refinement/compression stage intro-
duces a time overhead between 1–10%, which is the cost for maintaining a dynamically
adapted grid.

Once the numerical time integration is performed, the grid is further processed
in the compression stage. In this stage we perform another one-level FWT to retrieve
the new detail coefficients; based on those coefficients we decide where to coarsen the
grid by collapsing blocks. We traverse the grid considering, at once, all the blocks
sharing the same parent. If the maximum detail over all the children blocks that share
the same parent is less than εcompress and if the local resolution jump is less than the

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MULTICORE/GPU SIMULATIONS ON WAVELET ADAPTED GRIDS 519

Fig. 4.1. Stages to perform one simulation step (left) and data flow diagram for evaluating the
right-hand side in the computing stage (right).

maximum allowed, then we collapse the children. The data of the new leaf is created
by performing a one-level FWT of the scaling coefficients within the blocks.

4.2. The computing stage. In order to integrate the solution in time, the
computing stage performs one global step of the LTS scheme. We can identify three
different operations during the grid traversing of the LTS: time-reconstruction of the
quantities, evaluation of the right-hand side, and update of the quantities by time inte-
gration. Time-reconstruction and integration are not computationally very expensive
as they involve a small number of multiplications and additions per grid point. Be-
cause of their poor/medium computing intensity, it is likely that the performance of
these two operations are bounded by the speed of accessing the grid points in memory.
The evaluation of the right-hand side is performed after the time-reconstruction and
is computationally expensive. This consists in reconstructing the ghosts, converting
the conserved quantities into primitive quantities, WENO reconstructing five quanti-
ties (ρ, u, v, E,φ) in two directions, evaluating HLLE fluxes for all the quantities, and
summing them, as illustrated in Figure 4.1 (right).

WENO reconstructions involve a considerable amount of computation. A WENO
reconstruction of order 2r − 1 can be written as [28]

(4.1) f̂+
j+1/2 =

r−1∑

k=0

ωkq
r
k(fj+k−r+1, . . . , fj+k),

where {fj} are primitive quantities and

qrk(g0, g1, . . . , gr−1) =
r−1∑

l=0

ark,lgl,(4.2)

ωk =
αk∑r−1
i=0 αi

,(4.3)

αk =
Cr

k

(ε + ISk)p
, k = 0, 1, . . . , r − 1,(4.4)

with ε = 10−6 and p = 2 in our computations. For a fifth order WENO reconstruction,
r = 3 and ark,l, C

r
k are obtained from Table 4.1, and the indicators of smoothness ISk

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

520 ROSSINELLI ET AL.

Table 4.1
Coefficients of the 5th order WENO reconstruction.

ar=3
k,l Cr=3

k

k l = 0 l = 1 l = 2 -
0 1/3 -7/6 11/6 1/10
1 -1/6 5/6 1/3 6/10
2 1/3 5/6 -1/6 3/10

for r = 3 and k = 0, 1, 2 are computed as

IS0 =
13

12
(fj−2 − 2fj−1 + fj)

2 +
1

4
(fj−2 − 4fj−1 + 3fj)

2,(4.5)

IS1 =
13

12
(fj−1 − 2fj + fj+1)

2 +
1

4
(fj−1 − fj+1)

2,(4.6)

IS2 =
13

12
(fj − 2fj+1 + fj+2)

2 +
1

4
(fj − 4fj+1 + 3fj+2)

2.(4.7)

Because the reconstructed values are shared by adjacent cells in a block, we have to
perform 10 WENO reconstructions per cell per block (the “south” and “west” cell
faces for five scalar quantities).

The evaluation of the numerical flux HLLE is compute-intensive. It reads

(4.8) F̂j+1/2 =

f̂−
j+1/2, a−j+1/2 > 0,

f̂+
j+1/2, a+j+1/2 < 0,

a+
j+1/2f̂

−
j+1/2−a−

j+1/2f̂
+
j+1/2+a+

j+1/2a
−
j+1/2(u

+
j+1/2−u−

j+1/2)

a+
j+1/2−a−

j+1/2

otherwise,

where a− and a+ are the left-running and right-running characteristic velocities, re-
spectively.

4.3. OpenCL. OpenCL stands for “open computing language” and is a specifi-
cation for programming on heterogeneous (parallel) computing devices. An extensive
introduction to the OpenCL specification can be found in [36]. Here we restrict our-
selves to discussing OpenCL for GPU computing. In this case OpenCL is similar to
the CUDA framework [37], and, moreover, it provides portability between different
GPU hardware. The OpenCL specification consists mainly in the description of three
models: the execution model, the memory model, and the programming model. The
execution model is split into two parts: kernels that execute on one or more OpenCL
devices (in our case the GPUs) and a host program that executes on the host (CPU).
The host program defines the context for the kernels and manages their execution.
When a kernel is submitted for execution by the host, the OpenCL devices are capa-
ble of running multiple instances of the same kernel in parallel. One kernel instance
is called a work item. Work items are executed in parallel and can process different
data. One can submit kernels for execution, memory commands, and synchroniza-
tion commands to an OpenCL device with a command queue. When the host places
commands into the command queue, the queue schedules them onto the device. A
very appealing feature of command queues is that they can support out-of-order ex-
ecution: commands that are issued in order do not wait to complete before the next
commands execute. Submissions of commands to a queue return event handles, the
OpenCL events. They are used to describe the dependency between commands, to
monitor the execution, and to coordinate execution between the host and the devices.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MULTICORE/GPU SIMULATIONS ON WAVELET ADAPTED GRIDS 521

4.4. OpenCL for GPUs. Optimal GPU performance dictates that the paral-
lelism must be expressed with fine-grained homogeneous work items. These devices
aremany-core architectures, and each core processes work items in a single-instruction
multiple-data (SIMD) fashion. As the number of resources available per core is very
limited, the work items have to be fine-grained, with many threads performing small
processing on a small amount of data. Because of their fine-grained properties, the
lifetime of a work item is expected to be in the order of microseconds or less. At the
same time, the number of work items is expected to be large—at least one order of
magnitude larger than the amount of cores. Considering this and the fact that cur-
rently GPUs are single-instruction multiple-threads (SIMT) machines, it is clear that
optimal performance is achieved when work items are homogeneous, i.e., when the
small tasks perform the same operations. The performance gain achieved by GPUs is
very fragile: severe performance degradation can be observed when work items require
too many resources (i.e., they are not fine-grained) or contain too many condition de-
pendent instructions (inhomogeneous work items) or do not access memory with the
right pattern (memory-indirections, traversing sequential data structures, etc.).

4.5. Heterogeneous computing with multicore and multi-GPU. The
above-mentioned performance fragility of the GPUs prompted us not to aim for a
complete GPU implementation but instead to accelerate the computing stage, which
is the most expensive part of the algorithm, using multiple GPUs. In order to achieve
this, a number of modifications were necessary in our original algorithm. The main
reason is that one single block does not expose enough fine-grained work items to keep
all the GPU cores busy, as the block size is in the range of 8 × 8 and 32 × 32 grid
points, while current generation of GPUs have hundreds of cores (on the computing
hardware considered in this work we have 240 cores per GPU). Moreover, work items
within a block are not homogeneous: grid points close to the block faces need to
reconstruct ghosts in order to evaluate the right-hand side. Because of the ghosts’
reconstruction, these work items demand a substantial number of extra registers to
carry out the summation of a dynamic-sized array. This request of extra resources
makes these work items not fine-grained anymore, which leads to a reduced number
of active (concurrent) work items.

In order to achieve better performance, we pack blocks into input tokens, and
we reconstruct ghosts on the CPU. We then process the tokens on the GPUs. The
advantage of working with packs of blocks (ranging from 4 × 4 to 20 × 20 blocks) is
that we expose enough work items to keep all the GPU cores busy. The CPU prepa-
ration of the tokens is multithreaded and is expressed with task-based parallelism.
As illustrated in Figure 4.2, input tokens include not only grid points of blocks but
also ghosts. The calculation of ghosts is nested in parallel tasks spawned inside the
creation of input tokens, which are also parallel tasks. The ghosts’ reconstruction
tasks are not load balanced, as the time complexity for reconstructing ghosts depends
on the local structure of the grid. However, dynamic load balance is achieved by the
Work Stealing algorithm [7], which schedules these tasks in a near-optimal way. As
soon as one input token is ready to be processed, it is asynchronously scheduled by
OpenCL for an out-of-order GPU execution. In Figure 4.2 it is shown that the GPU
processing fills output tokens, which contain the right-hand side of the flow quan-
tities. The GPU-CPU transfer of the output tokens is asynchronously scheduled by
OpenCL. When the transfer of one output token is complete, the token is unpacked in
parallel and the grid blocks associated with that token are time-integrated using the
new right-hand side values. As the memory resources of GPUs are limited, sometimes

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

522 ROSSINELLI ET AL.

Fig. 4.2. Wavelet blocks are prepared and sent to the GPUs for the evaluation of the right-
hand side. The GPU output is then postprocessed to update the solution. The preparation of the
input tokens is fully multithreaded and is responsible for reconstructing the ghosts, packing the
blocks into tokens and sending them to the GPUs. Once the GPUs have processed some tokens, the
postprocessing stage unpacks the output token in a multithreaded fashion.

it is not possible to create and submit all the necessary input tokens at once. In that
case the program waits for a GPU to be done with some of the tokens and reuses the
allocated GPU memory to make new input tokens. As tokens are stored on both CPU
and GPUs, their memory layout is divided into a CPU part and a GPU part. As we
desire asynchronous CPU-GPU transfer of the tokens, the CPU part of each token is
allocated through OpenCL requests for page-locked memory regions. The CPU part
of a token consists of several plain two-dimensional arrays, where each entry has four
components (“float4”). During the packing process, these arrays are filled by CPU
threads with the necessary content from the wavelet blocks. This data is then sent
to the GPUs and converted into image objects, which represent the GPU part of the
token. The packing of the tokens consists in the extraction of the relevant quantities
from the grid points, and it is performed by iterating over a group of wavelet blocks.
Similarly, to unpack a token we iterate over the associated wavelet blocks and read
the corresponding entries from their arrays.

4.6. Reimplementing the right-hand side evaluation for GPUs. The
most straightforward way of reimplementing the right-hand side evaluation would
be to directly map grid-points of one input token to work items and perform all
the computation in one kernel. Since optimal performance on GPUs imposes a high
number of work items that are fine-grained and homogeneous, we cannot afford a one-
to-one mapping. Such a mapping would require many registers, and due to limited
resources this would result in a reduced number of concurrently active work items.
Instead, we split the processing into different kernels, as depicted in Figure 4.3: four
kernels for the WENO reconstruction, two kernels for evaluating the HLLE fluxes,
and one to sum up the fluxes. This splitting of the GPU processing into multiple
kernels introduces an additional overhead associated to their invocation. The large
number of work items involved in these kernels makes this overhead negligible as it
takes less than 1% of the total execution time (from empirical observations). The
GPU computation starts after the GPU uploads an input token. The four WENO
kernels start to process the token in parallel. The group of four WENO kernels can be
split into pairs: one pair performs the reconstruction between the grid points in the

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MULTICORE/GPU SIMULATIONS ON WAVELET ADAPTED GRIDS 523

Fig. 4.3. Data flow for the GPU computation. The input data (left) contains the current
solution. Intermediate data (green blocks) are produced by executing the WENO and HLLE kernels
(blue). The final data (RHS) is the result of the SUM kernel.

x-direction, whereas the second pair performs the reconstruction in the y-direction.
The first kernel in this pair carries out the “−” side reconstruction whereas the sec-
ond one takes care of the “+” side. As soon as the WENO reconstruction in the
x-(y-)direction is done, the execution of the kernels computing the HLLE x-(y-)fluxes
can take place. Once both x- and y-fluxes are computed, the SUM kernel sums the
fluxes in both directions and fills the output token with the right-hand side. At this
point the output token is ready to be downloaded to the CPU. Except for the last
one, every kernel fills some intermediate data that is subsequently read as input in
the next kernel.

In order to potentially increase data-level parallelism and reduce the number of
instructions, the computation inside the kernels is expressed with SIMD instructions
with a vector width of four (“float4”). Inside the WENO and HLLE kernels, the work
items are mapped to the work of a cell face. We observed that the WENO kernels
take 48–51 registers per work item, which translates to an occupancy of 0.312 on the
considered GPU hardware. The HLLE kernel is more expensive in terms of register
usage, as it takes 107 registers per work item, leading to an occupancy of 0.125. The
work items of the SUM kernels are mapped to the work of 2× 2 cells to maximize the
reuse of the fluxes. We observed an occupancy of 0.375 using 42 registers per work
item. Both input and intermediate data are represented with image objects, as the
WENO and SUM kernels show nontrivial data access patterns.

Control flow instructions could result in different branches among the work items
(divergent branches). These branches are absent in the WENO and SUM kernels.
Instead, the HLLE kernels show a rate of 0.05 divergent branches per work item. We
explain this by the presence of three conditional assignments (per kernel) that are
translated into if-statements.

As illustrated in Figure 4.3 most kernels (even of different types) can be executed
in parallel. Our implementation submits these kernels for execution so as to take
advantage of the newest hardware capability to support parallel execution of different
types of kernels [18]. However, it should be noticed that the results reported in this
work are obtained with GPUs without this capability.

We note that the dependency graph of all the operations involved in processing
one token is not trivial (some nodes in the graph have a degree that is higher than
two). An efficient implementation that follows this dependency graph with the explicit
use of synchronization points is challenging, especially if we take into account that

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

524 ROSSINELLI ET AL.

Fig. 5.1. L1 (left) space convergence for uniform and adaptive simulation on multicore and
multi-GPU using different block sizes and a jump in resolution of 2. Number of right-hand side
evaluations versus the absolute L2 norm error using global time stepping (GTS) and local time
stepping (LTS) versions of RK2 time stepper (right).

different tokens can be processed at the same time. With OpenCL, however, we do
not have to handle these synchronization points explicitly, as we can describe the
complete sequence of actions by means of the OpenCL events. The submission of the
commands to transfer a token, process it on the GPU, and transfer it back is done in
one shot. The events are used by OpenCL to optimally schedule these tasks in order
to achieve a near-optimal execution.

5. Results. In this section we report the accuracy of the heterogeneous solver
for the simulation of the Sod shock-tube benchmark [31] and simulations of shock-
bubble interaction and Richtmeyer–Meshkov instability. We highlight the discrepancy
in the flow quantities computed on the CPU and the GPU and present the achieved
performance gain with the heterogeneous solver. All the results have been obtained
with the hardware listed in section 5.4.1 and by using fifth-order average interpolating
wavelets and a maximum resolution jump of two. We have used block sizes of 16×16,
24×24, and 32×32 grid points for the shock-tube problem and a block size of 32×32
in our two-dimensional simulations.

5.1. One-dimensional benchmark: Sod shock-tube. Figure 5.1 shows the
convergence plots for the Sod shock-tube problem simulated on both multicore CPU
and multicore/multi-GPU. We observe that there is no significant difference between
the two plots. This test case is a standard benchmark for the accuracy of numerical
methods in solving compressible flows and has an analytical solution. We notice the
expected first-order convergence in space for the L1 (left picture) norm errors using
uniform resolution grids. The discontinuities present in the exact solution of this test
case prohibit convergence orders of more than one in finite volume based methods.
This slow convergence can be overcome by using fewer grid points when possible,
therefore increasing the convergence rate to 3 in both cases. We note that to achieve
the same accuracy (in terms of L1 norm errors), fewer grid points are necessary when
using smaller block sizes with a jump in resolution of 2. It is clear from Figure 5.1
(left picture) that in almost all the cases, the CPU+GPU execution produces the same

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MULTICORE/GPU SIMULATIONS ON WAVELET ADAPTED GRIDS 525

accuracy in space as the CPU-only execution. This test case is a standard benchmark
for the accuracy of numerical methods in solving compressible flows and has an exact
solution [31].

To show the performance improvement obtained with LTS, we present the number
of right-hand side evaluations needed when using global time-stepping (GTS) and LTS
versions of RK2 time-stepper versus the L2 norm error in Figure 5.1 (right) in the
simulation of the Sod shock-tube problem up to a given time. It is clear that to achieve
the same accuracy (here in the L2 norm), we need fewer right-hand side evaluations
with LTS. In fact, LTS asymptotically improves the complexity of the solver from
O(1/e2) to O(1/e), where e is the upper bound for the L2 error at the final time.
Smaller L2 norm errors translate to having finer resolutions (and more adaptivity in
space), and, therefore, the performance improvement obtained by LTS becomes more
significant at smaller errors.

5.2. Two-dimensional benchmark: Shock-bubble interaction. We per-
form simulations of the shock-bubble interaction problem in order to study the dis-
crepancy between the solutions of CPU+GPUs and CPU-only executions. Further-
more, we report on the achieved speedup using different computer architectures for
the simulations at different Mach numbers.

In the shock-bubble interaction problem a supersonic shock wave in one medium
(air) collides with a cylindrical inhomogeneity (helium) with a nonunit ratio of specific
heat constants. The generated baroclinic vorticity modifies the interface between
the two phases and produces a complex structure of waves in the vicinity of the
inhomogeneity.

Fig. 5.2. Density field (top) and the adaptive grid (bottom) in the simulation of the shock-bubble
interaction at M = 1.2. From left to right: the initial condition, density at the nondimensional time
T = 1, and density at T = 5.

We present the density field as well as the adaptive grid for two simulations
at M = 1.2 and M = 3 in Figures 5.2 and 5.3 at three different times. In these

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

526 ROSSINELLI ET AL.

Fig. 5.3. Density field (top) and the adaptive grid (bottom) in the simulation of shock-bubble
interaction at M = 3: the initial condition (left), at nondimensional time T = 1.5 (center), and at
T = 4 (right).

Fig. 5.4. L1 discrepancy between the solution computed with CPU+GPUs and the CPU one
versus time. Left: M = 1.2. Right: M = 3.

simulations, grid adaptation was driven by the detail coefficients of the density field as
well as the location of the interface. The results ofM = 1.2 andM = 3 simulations are
in very good agreement with the experimental and numerical results of [20, 40, 3, 26].

In Figure 5.4 we present the discrepancy in the solution of integration steps us-
ing the LTS version of the RK2 time-stepper for M = 1.2 and M = 3 between
CPU+GPUs and CPU-only executions. We notice that, although the differences in
both cases become smaller in time, those in the M = 1.2 case are higher than those
in the M = 3 case. Since the solution is updated by multiplying the right-hand side
by a small time step, which is on the order of 10−3 nondimensional time units in
our two-dimensional simulations, it is more appropriate to consider the relative and
absolute discrepancies of the right-hand side computation stage.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MULTICORE/GPU SIMULATIONS ON WAVELET ADAPTED GRIDS 527

Fig. 5.5. Time evolution of the L1 discrepancy of the right-hand side between CPU+GPUs and
CPU executions. Left: M = 1.2. Right: M = 3.

Fig. 5.6. Localization of the GPU-CPU discrepancy in space. Top: M = 1.2. Bottom: M = 3.
White/black: low/high L1 relative difference, black = 10−6, chronologically from left to right.

Figure 5.5 shows the L1 relative difference in computing the right-hand side for
γ, ρ, ρu, and ρE components of the solution between CPU+GPUs and CPU-only
executions versus time (T) in the simulation of the shock-bubble interaction at M =
1.2 (left) and M = 3 (right). The discrepancy of the right-hand side for the vertical
velocity component v is not shown here, as during the early times of the simulation
its value was zero everywhere in the field. We observe that the L1 relative difference
in computing the right-hand side remains smaller than 10−5 for both Mach numbers.

We also present the distribution of the relative difference of the flow quantities in
space at three different times in Figure 5.6. We observe that the highest discrepancies
are located in the proximity of the shocks.

We further investigate the discrepancies introduced in the substeps involved in
computing the right-hand side, i.e., the WENO reconstruction, HLLE flux computa-
tion, and the summation of fluxes. The space and time averaged relative and absolute
differences are shown in Figure 5.7 (left), where it is clear that the significant discrep-

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

528 ROSSINELLI ET AL.

Fig. 5.7. Averaged relative and absolute discrepancies in the WENO reconstruction, HLLE flux
computation and the summation of fluxes for the simulation of the shock-bubble interaction (left).
The histogram of relative and absolute discrepancies produced in WENO reconstruction stage on
random initial data contains some large discrepancies that are in the order of 10−4 (right).

Fig. 5.8. Histogram of the absolute differences (left) in computing the internal elements of the
WENO reconstruction:

∑2
i=0 Nωi (orange),

∑2
i=0 Nqi (green), result (violet). Histogram of the

absolute differences between single/mixed precision and the reference computations of the internal
components in the WENO reconstruction stage (right). The significant errors are eliminated by
using double precision in computing ISi. Little improvement is observed by using double precision
in all the stages of computing ωi.

ancies are generated in the WENO and the HLLE stages. Although the average
WENO discrepancy is similar to that of HLLE, we observe that some of the WENO
discrepancies can assume values of two orders of magnitude higher than those of
HLLE. Our goal is therefore to analyze the internal elements of the WENO recon-
struction stage in detail and to reveal where relatively high discrepancies lie within
this stage so as to eliminate the significant errors.

We perform the WENO reconstruction with random initial data on the GPU using
OpenCL using single precision as well as on the CPU using double precision as the
reference. The histogram of relative and absolute differences is plotted in Figure 5.7
(right). We have also performed the same computation on the CPU using OpenCL
in single precision and compared it to the reference, and we noticed no significant
difference between the results obtained from the GPU (OpenCL, single precision) and
those from the CPU (OpenCL, single precision). Therefore, in our further analysis of
the discrepancy we compare our computations on the CPU using OpenCL in single
precision with those on the CPU using double precision.

In the next step, we investigate the discrepancies introduced by the internal com-
putations involved in the WENO reconstruction stage. Figure 5.8 (left) shows the

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MULTICORE/GPU SIMULATIONS ON WAVELET ADAPTED GRIDS 529

Fig. 5.9. Evolution of the interfacial perturbation amplitude in time: air/helium at M = 1.52
(Meshkov experiment) (left) and helium/air at M = 3 (right).

population distributions of the discrepancies in ωi and qi (i = 0, 1, 2) as well as the
histogram of the discrepancies in the final result of the WENO reconstruction stage,
i.e., f̂j+1/2. It is clear that the distribution of differences of ωi has a larger mean than
that of qi. By using mixed precision we try to improve some of the stages used to com-
pute (4.2)–(4.7). We focus only on the critical cases that generate relatively higher
discrepancies in plots of Figure 5.8 and use double precision first in all the stages for
computing ωi, i.e., in (4.2)–(4.4), and then only in the computation of smoothness
indicators, i.e., (4.5)–(4.7). The improvements are presented in the histograms of the
Figure 5.8 (right) versus the original single precision computations. It can be ob-
served that the significant errors on the rightmost part of this plot are suppressed by
using double precision in computing ωi. We also notice that if we use double precision
only for the computation of ISi, we maintain almost the same accuracy as we would
when using the double precision for the whole computation of ωi together with saving
processing time.

5.3. Simulations of the Richtmeyer–Meshkov instability. The Richtmeyer–
Meshkov instability (RMI) [41, 9] is another benchmark problem in gas dynamics
where baroclinic vorticity is generated on the perturbed interfaces by shock-induced
pressure gradients. We validate our solver against the Meshkov experiment [34], which
consists of a M = 1.52 normal shock wave in air with an Atwood number A = 0.76
for the air/helium interface. The initial amplitude of the sinusoidal perturbation is
η0 = 0.2 cm with a wavelength λ = 4 cm and a nondimensional amplitude (η̃ = 2πη/λ)
of 0.314. Time is nondimensionalized using T = Ma∞t/η0, where a∞ is the speed
of sound inside the preshock air. The quantity measured in the literature and in our
simulations is the amplitude η of the interfacial perturbations (defined as half the
interpenetration length) [24]. In Figure 5.9 (left), we present the evolution of η in
time using our method and compare with the results found in [24]. The interface
undergoes the linear stage of RMI with a phase change at later times (T ≈ 18) and
deviates from the linear theory predictions. The results are in good agreement with
those achieved by the front tracking method [19, 11].

In Figure 5.9 (right), we present the evolution of the interfacial amplitude for a
M = 3 shock wave in helium interacting with an A = 0.76 interface between helium
and air. We set η0 = 0.125 and λ = 0.5, which gives a nondimensionalized initial
amplitude of 1.57 for the interfacial perturbation. The evolution of the interface is

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

530 ROSSINELLI ET AL.

Fig. 5.10. Density field (left) and the adaptive grid (right) of the simulation of Richtmeyer–
Meshkov instability at M = 3. Red/blue denote high/low density. Initial condition (top), solution
at T = 7.68 (bottom).

Fig. 5.11. Closeup on the density contours of the Richtmeyer–Meshkov instability simulated
using CPU with double precision (green) and single precision (orange) as well as CPU+GPUs in
single precision (violet), from left to right. The contours coincide except at later times of the
simulation.

no longer predictable by linear theory and, as the phases are swapped, the amplitude
of the interfacial perturbation does not undergo a phase change as in the air/helium
case. Until time T ≈ 2 (in our simulation), i.e., when the shock has passed over the
whole interface, the interface is compressed to η̃ ≈ 1.1.

In Figure 5.10 we present the density field and the adapted grid at two different
times. It can be observed that the grid adapts to follow the helium/air interface
and the discontinuities in density, i.e., transmitted and reflected shock waves. The
initial grid illustrated in Figure 5.10 (top right) contains 70,000 grid points. After
an execution time of 4 hours, the heterogeneous solver has a grid (bottom right)
consisting of 2,000,000 grid points, with 5 levels of resolution.

Figure 5.11 shows a close-up of the contours of density for three different execu-
tions of an RMI simulation on the CPU using double and single precision as well as on
the heterogeneous CPU+GPU architecture. We notice that the small discrepancies
appear at very late times in the simulation, these differences mostly exist between the
double and single precision executions, and they are not as significant between the
single precision executions on CPU and on CPU+GPUs.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MULTICORE/GPU SIMULATIONS ON WAVELET ADAPTED GRIDS 531

Fig. 5.12. Speedup achieved in computing the right-hand side (left) and in the overall computing
stage (right) by multicore/multi-GPU execution (green) and CPU-only execution (orange) on a
compute node with 16 cores and 2 GPUs.

5.4. Performance. We compare the performance of the multicore/multi-GPU
solver for the adaptive simulation of a shock-bubble interaction. The results were
obtained using a grid with 7 levels of resolution and about 2,200,000 grid points.
We report the strong scaling with respect to multicore and single-core CPU-only
execution, and we analyze how strong scaling varies by changing different parameters.
Both single-core and multicore CPU-only solvers were profiled using VTune and were
found to be reasonably efficient; they make extensive use of SSE 3 intrinsics to improve
the computing performance as well as the bandwidth and were compiled using Intel
C++ Compiler 11.1 with the flags “-O3 -axTW -ip.” The multicore CPU-only solver
exploits the task-based parallelism and processes the blocks as in [43]. In this study
we consider two machines: a compute node with 16 cores and 2 GPUs, and a compute
node with 12 cores and 6 GPUs.

5.4.1. Performance on 16 CPU cores and 2 GPUs. In Figure 5.12 we show
the speedup for different numbers of wavelet-blocks (and therefore grid points) on a
machine with 4 quad-core AMD Opteron 8380 processors (“Shanghai” cores, 2.5 GHz,
6 MB L3-cache) and 2 NVIDIA Tesla T10 S1070 (480 GPU cores in total). On the
left we report the speedup for the evaluation of the right-hand side compared to a
single-CPU core only. With 16 cores (orange) and no GPUs we observe a speedup of
15, meaning that the solver achieved a strong efficiency of roughly 94%. If we make
use of two GPUs we get a considerable improvement in the speedup (green) that
monotonically increases with the number of wavelet blocks. For a simulation that
handles about 2000 blocks (∼ 2, 200, 000 grid points) the GPUs are able to improve
the multicore execution by a factor of 3.3.

The right part of Figure 5.12 shows the overall speedups, i.e., the speedups in-
cluding also the parts that were not executed on GPUs. Using only the CPU cores the
overall speedup is almost 12, and by including both GPUs the solver shows a maxi-
mum speedup of roughly 35. This means that GPUs improve the multicore execution
time by a factor of roughly 2.8.

5.5. Performance on 12 CPU cores and 6 GPUs. The following results
are obtained with a machine with two six-core AMD Opteron 2435 processors (“Is-
tanbul,” 2.8 GHz, 6 MB L3-cache) and 32 GB of memory, connected to six GPUs
(Tesla S1070). Figure 5.13 shows the strong scaling of the right-hand side evaluations
against the number of cores and the number of GPUs. We observed a peak internal
GPU bandwidth of 73 GB/s out of the theoretical 102 GB/s and a peak computing
performance of 680 GFLOP/s out of the theoretical 690 GFLOP/s.

The first observation is that the highest performance gains are around 102 (versus
a single core execution) and are obtained by using all the 12 cores with 5–6 GPUs.
Over the multicore only execution, GPUs amplify the improvement factor by 9.2. We

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

532 ROSSINELLI ET AL.

Fig. 5.13. Strong scaling for the evaluation of the RHS against the number of CPU cores (left)
and against the number of GPUs.

Fig. 5.14. Overall strong scaling against the number of CPU cores (left) and GPUs (right).

also note that increasing the number of cores to more than six and using 1 GPU
does not give any improvements. Also, there is a substantial difference between the
strong scaling obtained with one GPU compared to 2 GPUs. The difference between
2 GPUs and 3–6 GPUs is not substantial anymore and we obtain approximately the
same scaling for more than two GPUs (left plot).

A general observation about the right plot of Figure 5.13 pertains to the poor
scaling in the number of GPUs. It seems that this scaling always reaches a plateau
regardless of the number of (CPU) cores. Despite this issue, we also note that increas-
ing the number of cores matters: it shifts the plateau to a higher number of GPUs.
This is clearly visible by comparing the single-core execution with the 12-core execu-
tion: while the first one reaches the plateau with one GPU, the second one reaches the
plateau with 3 GPUs. The saturation indicates that the bottleneck is in the CPU. In
terms of input tokens, the CPU cores do not provide a sufficient input rate to “feed”
more GPUs.

Figure 5.14 shows the overall strong scaling that also includes the timings of the
code that do not run on the GPU. The best overall scaling measured is 33.8, obtained
with 6 GPUs and 12 cores. This value, however, does not substantially differ from
those obtained by employing 4–5 GPUs with the same number of cores.

Figure 5.15 shows the total time spent on the GPUs and the strong scaling versus
the granularity of the tokens, i.e., the number of packed blocks per token. The total
GPU timings reported in the chart (left) were collected by using the OpenCL events.
The main observation is that the time distribution does not change while increasing
the number of GPUs. A second observation is that 70–75% of the total GPU time
is spent in computing. This means that the evaluation of the right-hand side is
computation-intensive also for the GPUs. The remaining 20–25% of the time is spent

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MULTICORE/GPU SIMULATIONS ON WAVELET ADAPTED GRIDS 533

Fig. 5.15. Distribution of the GPU-time for the different steps (left) and the strong scaling
versus the granularity of the input tokens (in terms of blocks per token) (right).

in transferring the data from and to the CPU in roughly equal parts. It is interesting
to note that the total GPU time increases with the number of GPUs. With one GPU
we obtain a total GPU time of 51.1 seconds, whereas with 6 GPUs the measured GPU
time is 53.2 seconds. This means that we have an overhead cost of 4% for managing
6 GPUs. It is also interesting to note that the heterogeneous execution took a total
time of 127 seconds with 1 GPU and 101 seconds with 6 GPUs. This implies that the
overall GPU usage is 40% for one GPU and 8% for 6 GPUs.

By observing the plot of the strong scaling versus the granularity of the input
tokens (right picture of Figure 5.15), we note that there is an optimal range of blocks
per input token. This range seems to be between 16×16 and 28×28 blocks per token.
The precise optimal number of blocks, however, seems to depend on the particular
number of employed GPUs. We observe a “wiggly” behavior of the strong scaling
with more than 2 GPUs for large token sizes. As the token size increases, the number
of tokens per GPU decreases. With a reduced set of large tokens, it becomes crucial
to have a number of tokens that is a multiple of the number of GPUs. If this is not
the case, drops in the scaling curve are to be expected, as only a fraction of the GPUs
is effectively processing tokens.

We used the PAPI library [10] to measure the FLOPS involved in the shock-bubble
interaction benchmark. In total, it consists of 5700 · 109 floating point operations.
Around 5600·109 of these operations were performed in the computing stage, meaning
that the refinement and compression stages are not computation-intensive as they
took only 1% of the floating point computation. The evaluation of the right-hand
side takes around 5200 · 109 floating point operations, namely, the 92% of the floating
point computation. With 3 GPUs (or more) and a token granularity of 16×16 blocks,
the solver is able to evaluate the right-hand side computing 61.4 million grid points
per second, leading to a maximum performance of 121 GFLOPS (using all the GPUs).
In theory, taking into account that the CPU-GPU (and vice versa) bandwidth of the
machine is around 4–5 GB/s, the solver should process up to 600 million grid points
per second. This rate is reduced to 400 million grid points if one considers that only
70% of the GPU time is spent in computing. We believe that the CPU preparation
of the input tokens, which processes 60 million grid points per second, is the major
bottleneck of the current implementation and limits the output rates in the evaluation
of the right-hand side.

We used the NVIDIA OpenCL profiler to estimate the performance of the WENO,
HLLE, and SUM kernels. The instruction throughput of the WENO kernels is around
1.2 instructions per cycle, whereas the HLLE and SUM kernels show an instruction

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

534 ROSSINELLI ET AL.

throughput of 0.65 instructions per cycle. The WENO kernels show a performance
of 130 GFLOPS per token and contain 8 floating point divisions per grid point com-
ponent. As we estimate that these kernels have an operational intensity [50] of 3.1
FLOP/Bytes, the performance of these kernels reaches 55% of the maximum attain-
able performance (73 GB/s × 3.1 FLOP/Bytes ≈ 230 GFLOPS). The HLLE kernels
show a performance of 24 GFLOPS per token and contain three divisions per compo-
nent. For this kernel we estimate an operational intensity of 1.9 FLOP/Bytes. This
means that the HLLE kernels reach 17% of the maximum attainable performance.
This relatively poor performance is explained by the substantial number of divergent
branches observed during the execution of these kernels. The SUM kernels show a
performance of 20 GFLOPS per token and have an estimated operational intensity
of 0.3 FLOP/Bytes. This means that the SUM kernels reach 90% of the maximum
attainable computing performance, which is estimated to be 22 GFLOPS.

6. Discussion. We presented an adaptive finite volume solver for multiphase
compressible flows based on fifth-order average interpolating wavelets. The solver is,
to the best of our knowledge, the first of its kind in that it is capable of exploiting
the computing power of modern heterogeneous multicore/multi-GPU machines for
adapted grids. This is achieved by grouping grid points into blocks of fixed size at
different resolutions and using an array of GPUs for the evaluation of the right-hand
side. We optimize the GPU execution by packing blocks into bigger tokens that
are preprocessed by the CPU cores. The preprocessing of the tokens also includes
the time reconstruction of the grid values and the calculation of the ghosts, which
is inherently load unbalanced. Load balance is, however, dynamically achieved by
expressing the preprocessing with task-based parallelism. The preprocessed tokens
are asynchronously enqueued for GPU execution by means of OpenCL events.

Events allow the CPU cores to prepare tokens without waiting for the GPU
processing of previous tokens to be completed. When the preprocessing of all tokens
is ended, the CPU cores extract the values of the output tokens and time-integrate
the corresponding blocks.

The present heterogeneous solver was validated on the shock-tube problem, re-
sulting in the same accuracy as the CPU-only solver. We analyzed the discrepancy
between the heterogeneous and the CPU-only solvers for the simulation of the shock-
bubble interaction, showing that the relative L1 discrepancy of the two solutions is
in the range of 10−7–10−6. As the discrepancy in the solution depends on the chosen
time step, we also reported the discrepancy in the right-hand side. We noted that the
discrepancy was in the range of 10−6–10−5. We also showed the discrepancy in space,
and we noted that the highest values in the discrepancy are located in the proximity
of the shocks. As WENO-based solvers are only first order accurate at the shock
locations, the discrepancy of the heterogeneous solver does not dramatically degrade
the accuracy with respect to the CPU-only solver.

We also analyzed the discrepancy of each individual step of the algorithm, iden-
tifying the WENO reconstruction as the most inaccurate one. We could improve
the WENO operator by switching the computation of three internal variables of the
WENO reconstruction from single to double precision.

We further validated the solver against the previous works on the Meshkov exper-
iment for the simulation of RMI and also provided the same diagnostic for a higher
Mach number test. We showed that the density contours of an RMI simulation per-
formed on the CPU and on CPU+GPU match very well.

The heterogeneous solver results in an overall performance gain of 25X and 34X,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MULTICORE/GPU SIMULATIONS ON WAVELET ADAPTED GRIDS 535

over the CPU-only single-core execution, for two different multicore/multi-GPU ma-
chines. The improvement factors for the part executed on the GPUs on the same
machines are 50X and 102X.

We reported the strong scaling against the number of blocks, number of cores,
number of GPUs, and number of blocks per token. The number of blocks plays a
major role as it dictates the degree of parallelism achievable in the simulation. We
noted that the number of cores is also a crucial parameter for scaling, although the
effect they have on the performance becomes less substantial for more than 8 CPU
cores. This decrease in parallel efficiency is attributed to the nonideal scalability
of the preprocessing of the tokens which includes a considerable number of memory
transfers. This issue limits the effective use of more than 3 GPUs, as the “input
tokens per second” cannot be sufficiently increased to “feed” the array of GPUs. A
way to further improve the performance is to increase the bandwidth of the memory
transfers performed in the preprocessing of the tokens.

We observed that the optimal range of blocks per token is between 16× 16 and
28 × 28 blocks. For more than 2 GPUs, the choice of suboptimal ratios of blocks
per token can lead to a performance penalty of almost 30%. By profiling the GPU-
computation we noticed that the computing time is around 75%, and the time spent in
transferring the data is around 25%. This means that the evaluation of the right-hand
side is computationally bounded even when executed on the GPUs.

7. Conclusion and future work. We have presented a state-of-the-art wavelet-
adaptive finite volume solver for compressible flows suitable for execution on hetero-
geneous computing environments using OpenCL. We developed a methodology to
overcome the implementation hurdles of wavelet-based adaptivity on multicore CPUs
by means of wavelet blocks and task-based parallelism. We discussed the accuracy
issues raised by using single precision computation on GPUs for the Sod shock-tube,
the shock-bubble interaction, and the RMI and reported the performance improve-
ment achieved by executing the computation-intensive part of the solver on the GPUs.
These reports indicate that the results from GPU-assisted simulation are very com-
petitive with those of multicore CPUs in terms of accuracy and that the computation-
intensive part of the solver can be performed 50 to 100 times faster on the discussed
compute nodes.

Future works include the extension of the present method to three dimensions
and the simulation of bluff-body flows and cavitation-induced bubble collapse.

Appendix A. Biorthogonal wavelets are used to construct a multiresolution
analysis (MRA) of the quantities of interest, and they are combined with finite dif-
ference/volume approximations to discretize the governing equations. Biorthogonal
wavelets are a generalization of orthogonal wavelets, and they can have associated
scaling functions that are symmetric and smooth [12]. Biorthogonal wavelets intro-
duce two pairs of functions: φ,ψ for the synthesis and φ̃, ψ̃ for analysis. Given a signal
in the physical space, the functions φ̃, ψ̃ are used in the forward wavelet transform to
compute the wavelet coefficients. The functions φ,ψ are used in the inverse wavelet
transform to reconstruct the signal in the physical space from the wavelet coefficients.
The functions φ,ψ, φ̃, ψ̃ introduce four refinement equations:

φ(x) =
∑

m

hS
mφ(2x+m), ψ(x) =

∑

m

gSmφ(2x+m),(A.1)

φ̃(x) =
∑

m

hA
mφ̃(2x+m), ψ̃(x) =

∑

m

gAmφ̃(2x+m).(A.2)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

536 ROSSINELLI ET AL.

For the case of average interpolating wavelets, φ̃(x) = T (x/2)/2, ψ(x) = −T (x) +
T (x − 1), where T is the “top-hat” function. Because of their average-interpolating
properties, the functions ψ̃ and φ are not known explicitly in analytic form [15]. The
analysis filters hA

m, gAm are used in the fast wavelet transform (FWT), whereas the
synthesis filters hS

m, gSm are used in the inverse FWT.
The forward wavelet transform computes two types of coefficients: the scaling {clk}

and detail coefficients {dlk}. From the scaling and detail coefficients of f obtained in
the forward transform, we can reconstruct f as follows:

f =
∑

k

c0kφ
0
k +

L∑

l=0

∑

k

dlkψ
l
k,(A.3)

where φl
k = φ(2lx− k) and ψl

k(x) = ψ(2lx− k).
If f is uniformly discretized in space with cell averages {fi}, we can find {c0k} and

{dlk} by first considering the finest scaling coefficients to be cLk = fk and then perform
the full FWT by repeating the step

clk =
∑

m

hA
2k−mcl+1

m , dlk =
∑

m

gA2k−mcl+1
m(A.4)

for l from L− 1 to 0. To reconstruct {fi} we use the inverse FWT, which repeats the
following step for l from 0 to L− 1:

cl+1
k =

∑

m

hS
2m−kc

l
m +

∑

m

gS2m−kd
l
m.(A.5)

A.1. Active scaling coefficients. Using the full FWT, we can decompose uni-
formly discretized functions into scaling and detail coefficients, resulting in an MRA
of our data. We can now exploit the scale information of the MRA to obtain a com-
pressed representation by keeping only the scaling coefficients that carry significant
information. This is done by thresholding the detail coefficients:

f≥ε =
∑

k

c0kφ
0
k +

∑

l

∑

k:|dk|≥ε

dlkψ
l
k,(A.6)

where ε is the compression threshold used to truncate relatively insignificant terms
in the reconstruction. Active scaling coefficients therefore consist of the scaling co-
efficients clk needed to compute dlk (such that |dlk| ≥ ε) as well as the coefficients at
coarser levels needed to reconstruct clk. The pointwise error introduced by this thresh-
olding is bounded by ε. Each scaling coefficient has a physical position; therefore, the
compression results in an adapted grid K, where each grid node is an active scaling
coefficient.

A.2. Ghosts. We can solve the fluid flow equations on K by applying standard
finite-volume (or finite-difference) schemes on the active coefficients. One way to
simplify these operations is to first create a local, uniform resolution neighborhood
around a grid point and then apply the corresponding finite-volume scheme on it. In
order to do this, we need to temporarily introduce artificial auxiliary grid points, the
so-called ghosts. In providing the ghosts required around a grid point, finite-volume
schemes can be viewed as (nonlinear) filtering operations in a uniform resolution
frame. Formally,

(A.7) F ({clk′}k′∈Z)k =

ef−1∑

j=sf

clk+jβ
l
j , βl

j function of {clm},

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MULTICORE/GPU SIMULATIONS ON WAVELET ADAPTED GRIDS 537

Fig. A.1. Graph of the contributions for the reconstruction of the ghost gA, with a resolution
jump of 1 for the case of third-order B-spline wavelets (left) and third-order average interpolating
wavelets (right). The arrows, and their associated weights, denote contributions from the grid points
to the ghosts gA and gB. Both wavelets need the secondary ghost gB to evaluate gA, but average-
interpolating wavelets are more efficient as the evaluation of gB does not depend on gA (i.e., there
is no loop in the graph).

where {sf , ef − 1} is the support of the filter in the index space and ef − sf is the
number of nonzero filter coefficients {βj}. We need to ascertain that for every grid
point k in the adapted set K, its neighborhood [k− sf , k+ ef − 1] is filled with either
other points k′ in K or ghosts g. By using ghosts we are now able to apply the filter
F to all points k in K. A ghost is constructed from the active scaling coefficients as
a weighted average gli =

∑
l

∑
j wijlclj , where the weights wijl are provided by the

refinement equations (A.4). It is convenient to represent the construction of a ghost
as gi =

∑
j wijpj , where i is the identifier for the ghost and j represents the identifier

for the source point pj which is an active scaling coefficient in the grid. Calculation
of the weights {wij} is done by traversing a graph associated with the FWT and the
inverse wavelet transform (Figure A.1).

This operation can be computationally expensive for several reasons: first, if
the graph contains loops, we need to solve a linear system of equations to compute
{wij}. Figure A.1 (left) shows this issue for a two-resolution grid associated with the
third-order B-spline wavelets. According to the one-level inverse wavelet transform,
the evaluation of the ghost gA simply consists of a weighted average of the points
{c0−3, c

0
−2, c

0
−1, gB}, where gB is a secondary ghost. The value of gB is obtained from

the points {c10, c11, c12, gA}, according to the one-level FWT. As gA depends on gB and
vice-versa, one has to solve the following linear system to find gA:

(A.8)

(A.9)

gA =
1

4
c0−3 +

3

4
c0−2 +

3

4
c0−1 +

1

4
gB,

gB =
3

4
c10 +

3

4
c11 −

1

4
c12 −

1

4
gA.

For any order of B-spline wavelets, one can find gA by introducing a vector of ghost
values g and having gA as the first component of g, i.e., gA = eT1 · g. The remaining
components are secondary ghosts involved in the calculation of gA. It holds that

g = Wghosts · g +Wpoints · k,(A.10)

where the matrices Wghosts and Wpoints are specific to the wavelet type, and k is a
vector containing all the grid point values involved in the reconstruction of gA. The
entry (Wghosts)ij contains the weight that the ghost gi receives from the ghost gj ,
whereas the entry (Wpoints)ij contains the weight that gi receives from the point pj .
The ghost gA can be found with an expensive matrix inversion:

gA = eT1 · (I−Wghosts)
−1Wpoints · k.(A.11)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

538 ROSSINELLI ET AL.

Another reason that makes the evaluation of the ghosts costly is related to the reso-
lution jump, i.e., the difference in resolution across two adjacent wavelet blocks. The
number of secondary ghosts involved in the reconstruction of gA, and therefore the
cost of inverting (I−Wghosts), grows exponentially with the resolution jump.

Figure A.1 (right) shows the evaluation of gA with the use of third-order average
interpolating wavelets. By virtue of their interpolating property, the ghost recon-
struction is straightforward and leads to efficient reconstruction formulæ. Since the
evaluation of gB does not involve gA, we have

(A.12) gA = −1

8
c0−2 + c0−1 +

1

8

(
1

2
c10 +

1

2
c11

)
.

The extension to two dimensions is straightforward due to the separability of the
two-dimensional FWT and inverse FWT. In this work we used fifth-order average
interpolating wavelets, which have similar efficient reconstruction formulæ but involve
more points.

A.3. Dynamic grid adaptation. In order to accurately and efficiently solve
the flow equations, the grid has to be readapted as the flow variables evolve. This is
done by coarsening some regions and refining some others. To readapt the grid we
need to threshold the finest detail coefficients of K; therefore, we perform a one-level
FWT at all the grid points. Based on the thresholds ≤ εcompress and ≥ εrefine, we can
then decide where to coarsen and where to refine the grid.

Acknowledgments. We would like to thank Hauke Kreft, from the IT Service
Group in the Department of Computer Science of ETH Zurich, for the priceless help
in installing OpenCL and various GPUs on different computers. We would like also
to thank Dr. Oliver Byrde and Teodoro Brasacchio, from the Brutus cluster support
team at ETH Zurich, for the invaluable help and support in using the heterogeneous
compute nodes employed in this work. We would like also to thank Dr. Serban
Georgescu (Fujitsu) and Dr. Michael Bergdorf (D. E. Shaw research) for their precious
suggestions and discussion throughout the course of this work.

REFERENCES

[1] J. M. Alam, N. K.-R. Kevlahan, and O. V. Vasilyev, Simultaneous space-time adaptive
wavelet solution of nonlinear parabolic differential equations, J. Computat. Phys., 214
(2006), pp. 829–857.

[2] D. A. Bader, V. Agarwal, and S. Kang, Computing discrete transforms on the Cell Broad-
band Engine, Parallel Computing, 35 (2009), pp. 119–137.

[3] A. Bagabir and D. Drikakis, Mach number effects on shock-bubble interaction, Shock Waves,
11 (2001), pp. 209–218.

[4] M. Bergdorf and P. Koumoutsakos, A Lagrangian particle-wavelet method, Multiscale
Model. Simul., 5 (2006), pp. 980–995.

[5] M. J. Berger and J. Oliger, Adaptive mesh refinement for hyperbolic partial differential
equations, J. Comput. Phys., 53 (1984), pp. 484–512.

[6] M. Bernaschi, L. Rossi, R. Benzi, M. Sbragaglia, and S. Succi, Graphics processing unit
implementation of lattice Boltzmann models for flowing soft systems, Phys. Rev. E, 80
(2009), 066707.

[7] R. D. Blumofe and C. E. Leiserson, Scheduling multithreaded computations by work stealing,
J. ACM, 46 (1999), pp. 720–748.

[8] T. Brandvik and G. Pullan, Acceleration of a 3D Euler solver using commodity graphics
hardware, in Proceedings of the 46th AIAA Aerospace Sciences Meeting, American Institute
of Aeronautics and Astronautics, Reston, VA, 2008, AIAA-2008-607.

[9] M. Brouillette, The Richtmyer-Meshkov instability, Ann. Rev. Fluid Mech., 34 (2002),
pp. 445–468.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MULTICORE/GPU SIMULATIONS ON WAVELET ADAPTED GRIDS 539

[10] S. Browne, J. Dongarra, N. Garner, G. Ho, and P. Mucci, A portable programming
interface for performance evaluation on modern processors, Int. J. High Perform. Comput.
Appl., 14 (2000), pp. 189–204.

[11] I. L. Chern, J. Glimm, O. McBryan, B. Plohr, and S. Yaniv, Front tracking for gas-
dynamics, J. Comput. Phys., 62 (1986), pp. 83–110.

[12] A. Cohen, I. Daubechies, and J. C. Feauveau, Biorthogonal bases of compactly supported
wavelets, Comm. Pure Appl. Math., 45 (1992), pp. 485–560.

[13] M. O. Domingues, S. M. Gomes, O. Roussel, and K. Schneider, An adaptive multiresolution
scheme with local time stepping for evolutionary PDEs, J. Comput. Phys., 227 (2008),
pp. 3758–3780.

[14] M. O. Domingues, S. M. Gomes, O. Roussel, and K. Schneider, Space-time adaptive mul-
tiresolution methods for hyperbolic conservation laws: Applications to compressible Euler
equations, Appl. Numer. Math., 59 (2009), pp. 2303–2321.

[15] D. L. Donoho, Smooth wavelet decompositions with blocky coefficient kernels, in Recent Ad-
vances in Wavelet Analysis, Academic Press, New York, 1993, pp. 259–308.

[16] B. Einfeldt, On Godunov-type methods for gas dynamics, SIAM J. Numer. Anal., 25 (1988),
pp. 294–318.

[17] E. Elsen, P. LeGresley, and E. Darve, Large calculation of the flow over a hypersonic
vehicle using a GPU, J. Comput. Phys., 227 (2008), pp. 10148–10161.

[18] P. N. Glaskowsky, NVIDIA’s Fermi: The First Complete GPU Computing Architecture,
Tech. report, NVIDIA, Santa Clara, CA, 2009.

[19] J. W. Grove, Applications of front tracking to the simulation of shock refractions and unstable
mixing, Appl. Numer. Math., 14 (1994), pp. 213–237.

[20] J. F. Haas and B. Sturtevant, Interaction of weak shock-waves with cylindrical and spherical
gas inhomogeneities, J. Fluid Mech., 181 (1987), pp. 41–76.

[21] T. R. Hagen, K. A. Lie, and J. R. Natvig, Solving the Euler equations on graphics processing
units, Computational Science - ICCS 2006, 3994 (2006), pp. 220–227.

[22] A. Harten, Adaptive multiresolution schemes for shock computations, J. Comput. Phys., 115
(1994), pp. 319–338.

[23] B. Hejazialhosseini, D. Rossinelli, M. Bergdorf, and P. Koumoutsakos, High order
finite volume methods on wavelet-adapted grids with local time-stepping on multicore ar-
chitectures for the simulation of shock-bubble interactions, J. Comput. Phys., 229 (2010),
pp. 8364–8383.

[24] R. L. Holmes, J. W. Grove, and D. H. Sharp, Numerical investigation of Richtmyer-Meshkov
instability using front tracking, J. Fluid Mech., 301 (1995), pp. 51–64.

[25] M. Hopf and T. Ertl, Hardware accelerated wavelet transformations, in Proceedings of
EG/IEEE TCVG Symposium on Visualization, IEEE, Washington, DC, 2000, pp. 93–103.

[26] X. Y. Hu, B. C. Khoo, N. A. Adams, and F. L. Huang, A conservative interface method for
compressible flows, J. Comput. Phys., 219 (2006), pp. 553–578.

[27] T. Ishihara, T. Gotoh, and Y. Kaneda, Study of high-Reynolds number isotropic turbulence
by direct numerical simulation, Ann. Rev. Fluid Mech., 41 (2009), pp. 165–180.

[28] G. S. Jiang and C. W. Shu, Efficient implementation of weighted ENO schemes, J. Comput.
Phys., 126 (1996), pp. 202–228.

[29] I. C. Kampolis, X. S. Trompoukis, V. G. Asouti, and K. C. Giannakoglou, CFD-based
analysis and two-level aerodynamic optimization on graphics processing units, Comput.
Methods Appl. Mech. Engrg., 199 (2010), pp. 712–722.

[30] N. K.-R. Kevlahan and O. V. Vasilyev, An adaptive wavelet collocation method for
fluid-structure interaction at high Reynolds numbers, SIAM J. Sci. Comput., 26 (2005),
pp. 1894–1915.

[31] R. LeVeque, Finite Volume Methods for Hyperbolic Problems, Cambridge University Press,
Cambridge, UK, 2002.

[32] J. Liandrat and P. Tchamitchian, Resolution of the 1D regularized Burgers equation using
a spatial wavelet approximation, Tech. report 90-83, 1CASE, NASA Contractor Report
18748880, 1990.

[33] X. D. Liu, S. Osher, and T. Chan, Weighted essentially nonoscillatory schemes, J. Comput.
Phys., 115 (1994), pp. 200–212.

[34] E. E. Meshkov, Instability of a shock wave accelerated interface between two gases, NASA
Tech. Trans., 1970.

[35] F. Miniati and P. Colella, Block structured adaptive mesh and time refinement for hybrid,
hyperbolic plus n-body systems, J. Comput. Phys., 227 (2007), pp. 400–430.

[36] A. Munshi, The OpenCL specification, version 1.0, Khronos Group Std., Beaverton, OR, 2009.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

540 ROSSINELLI ET AL.

[37] Nvidia, NVIDIA CUDA Compute Unified Device Architecture: Programming guide, NVIDIA,
Santa Clara, CA, 2007.

[38] A. Prosperetti and G. Tryggvason, eds., Computational Methods for Multiphase Flow,
Cambridge University Press, Cambridge, UK, 2007, Ch. 3.

[39] L. Qianlong and O. V. Vasilyev, A Brinkman penalization method for compressible flows in
complex geometries, J. Comput. Phys., 227 (2007), pp. 946–966.

[40] J. J. Quirk and S. Karni, On the dynamics of a shock-bubble interaction, J. Fluid Mech., 318
(1996), pp. 129–163.

[41] R. D. Richtmyer, Taylor instability in shock acceleration of compressible fluids, Commun.
Pure Appl. Math., 13 (1960), pp. 297–319.

[42] D. Rossinelli, M. Bergdorf, G.-H. Cottet, and P. Koumoutsakos, GPU accelerated sim-
ulations of bluff body flows using vortex particle methods, J. Comput. Phys., 229 (2010),
pp. 3316–3333.

[43] D. Rossinelli, M. Bergdorf, B. Hejazialhosseini, and P. Koumoutsakos, Wavelet-based
adaptive solvers on multi-core architectures for the simulation of complex systems, in Euro-
Par ’09: Proceedings of the 15th International Euro-Par Conference on Parallel Processing,
Springer-Verlag, Berlin, Heidelberg, 2009, pp. 721–734.

[44] O. Roussel, K. Schneider, A. Tsigulin, and H. Bockhorn, A conservative fully adaptive
multiresolution algorithm for parabolic PDEs, J. Comput. Phys., 188 (2003), pp. 493–523.

[45] R. Saurel and R. Abgrall, A simple method for compressible multifluid flows, SIAM J. Sci.
Comput., 21 (1999), pp. 1115–1145.

[46] C. E. Scheidegger, J. L. D. Comba, R. D. da Cunha, and N. Corporation, Practical CFD
simulations on programmable graphics hardware using SMAC, Computer Graphics Forum,
24 (2005), pp. 715–728.

[47] K. Schneider and O. V. Vasilyev, Wavelet methods in computational fluid dynamics, Ann.
Rev. Fluid Mech., 42 (2010), pp. 473–503.

[48] C. Tenllado, J. Setoain, M. Prieto, L. Pinuel, and F. Tirado, Parallel implementation of
the 2D discrete wavelet transform on graphics processing units: Filter bank versus lifting,
IEEE Trans. Parallel Distributed Systems, 19 (2008), pp. 299–310.

[49] E. F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics, Springer-Verlag,
Berlin, 1999.

[50] S. Williams, A. Waterman, and D. Patterson, Roofline: An insightful visual performance
model for multicore architectures, Commun. ACM, 52 (2009), pp. 65–76.

[51] J. H. Williamson, Low-storage Runge-Kutta schemes, J. Comput. Phys., 35 (1980), pp. 48–56.

