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ABSTRACT
The Transitional Markov Chain Monte Carlo (TMCMC) is one of the efficient algorithms for performing MCMC

in the context of Bayesian uncertainty quantification in parallel computing architectures. However, the features that
are associated with its efficient sampling are also responsible for its introducing of bias in the sampling. We
demonstrate that the Markov chains of each subsample in TMCMC may result in uneven chain lengths that distort
the intermediate target distributions and introduce bias accumulation in each stage of the TMCMC algorithm. We
remedy this drawback of TMCMC by proposing uniform chain lengths, with or without burn-in, so that the algorithm
emphasizes Sequential Importance Sampling over MCMC. The proposed Bayesian Annealed Sequential Importance
Sampling (BASIS) removes the bias of the original TMCMC and at the same time increases its parallel efficiency.
We demonstrate the advantages and drawbacks of BASIS in modeling of bridge dynamics using finite elements and
a disk-wall collision using discrete element methods.

Nomenclature
MCMC Markov Chain Monte Carlo
SMC Sequetial Monte Carlo
SIS Sequential Importance Sampling
TMCMC Traditional Markov Chain Monte Carlo
BASIS Bayesian Annealed Sequential Importance Sampling

1 Introduction
Bayesian inference relies on the development and implementation of effective sampling techniques for the underlying

probability distributions. Markov Chain Monte Carlo (MCMC) techniques are widely considered as the most effective way
of performing such samplings in high dimensional spaces. Traditional MCMC methods are inefficient in drawing samples
from distributions that are peaked or multimodal. In order to remedy such situations, a large variety of Sequential Monte
Carlo (SMC) and Sequential Importance Sampling (SIS) methods have been developed since some of the early publications
on these subjects [1–4]. Some examples include the Annealed Importance Sampling [5], the Adaptive Metropolis-Hastings
method [6], and the Iterated Batch Importance Sampling Algorithm [7], etc. Among them, [8] proposed the Transitional
Markov Chain Monte Carlo (TMCMC) method with applications on Bayesian inference of structural dynamics problems,
as well as other engineering applications [9]. The fundamental concept of TMCMC is to sequentially update samples drawn
from prior distribution (usually easy to sample from) to the posterior distribution in the Bayesian framework. We remark the
similarity of this concept with the simulated annealing method for optimization [10]. The likelihood function is annealed by
an exponent between 0 and 1 to form the intermediate target distributions that guide the evolution of the samples. Such an
approach can also be found in [11].

TMCMC uses the resampling method to update samples from one intermediate distribution to another. However, having
multiple resampling steps results in a sample degeneracy, with the number of distinct samples decreasing as the number of
steps increases. In order to resolve the degeneracy problem, an MCMC step is conducted after resampling. In this step, the
jth sample may be selected N j times. In TMCMC, the total MCMC length for the jth sample after resampling is proportional
to N j, which is different from the classical SMC approaches. These N j’s may vary significantly across different samples. In
this paper, we show that such uneven chain lengths lead to bias in the resulting posterior sample set that is accumulated from
each resampling step. Such a problem has not been recognized and explicitly studied in spite of its applications in many
engineering problems [12–15]. We propose a simple remedy to this bias by adjusting the uniformity of the length for each
MCMC chain, which found its root in some of the previous studies in SMC [11]. We note that the key sampling feature
of this algorithm is to apply an adaptive annealing schedule to Sequential Importance Sampling. The MCMC part of the
algorithm is only for improving sampling efficiency. As TMCMC has been developed for sampling posterior distributions
in Bayesian inference, we name the improved algorithm as Bayesian Annealed Sequential Importance Sampling (BASIS)
to better reflect these aspects of the method. The proposed algorithm improves the practicality of the original TMCMC for
engineering applications.

The paper is structured as follow: we start with an overview of the originally proposed TMCMC algorithm by [8].
Then, we demonstrate the cause of the bias in the current TMCMC implementation, which is an important theoretical issue.
After that, we test our proposed generalized algorithm, BASIS, on two engineering applications: parameter estimation of a
disk-wall collision model and model updating of a bridge. Finally, we give some concluding remarks regarding the use of
BASIS.

∗Currently at The Institute of Statistical Mathematics, Tokyo, Japan.
†Address all correspondence for this paper to this author.



2 The Original TMCMC
In the Bayesian framework, the likelihood p(D|θ) represents the probability of observing data D given a set of model

parameters θ. The posterior distribution of θ, p(θ|D), is proportional to the product of the likelihood function and a prior
distribution p(θ):

p(θ|D) =
p(D|θ)p(θ)

p(D)
(1)

where p(D) is the evidence that is used for model selection [16].
The original TMCMC method [8] provides an efficient algorithm to sample from challenging probability density func-

tions (PDFs), such as, peaked or multimodal posterior PDFs. Furthermore, the evidence is estimated as a by-product of
the method, while in classical MCMC methods this requires extra computations. The original formulation of TMCMC
constructs multiple intermediate target distributions as follows:

f j(θ) ∝ p(D|θ)ζ j p(θ) (2)
for j = 1, . . . ,m and 0 = ζ1 < ζ2 < · · ·< ζm = 1

Starting from samples drawn from the prior at stage j = 1, the posterior samples are obtained by updating the prior
samples through m− 2 intermediate target distributions. We denote Θ j = {θ j,k|k = 1, . . . ,N j} as a set of N j samples of θ

distributed as f j(θ), so that Θ j+1 is obtained by:

1. Obtain Θ̃ j+1 by resampling Θ j for N j+1 times with probabilities proportional to Wj = {w j,k|k = 1, . . . ,N j}, where

w j,k =
f j+1(θ j,k)

f j(θ j,k)
= p(D|θ j,k)

ζ j+1−ζ j (3)

i.e., randomly pick a sample from Θ j with probabilities proportional to Wj and add it into the set Θ̃ j+1 (repeat N j+1
times).

2. For each unique sample in Θ̃ j+1, conduct MCMC with length equal to the number of times this sample being repeated.
The proposal PDF for the MCMC step is a Gaussian distribution centered at the sample with covariance equal to
β2COV(Θ j), where COV(Θ j) denotes the sample covariance matrix of Θ j and β is a user-specified scaling factor.
Θ j+1 is the collective samples from this MCMC step.

When ζ j = 1, this procedure stops and the last set of samples Θm is approximately distributed according to the target posterior
PDF, p(θ|D). The evidence is readily obtained from:

p(D)≈
m−1

∏
j=1

(
1

N j

N j

∑
k=1

w j,k

)
(4)

[8] argue that the choice of intermediate steps ζ j should be based on the uniformity of the weights w j,k. This is consistent
with a similar argument used in the Annealed Importance Sampling method [5]. At each stage j, ζ j+1 is chosen such that the
coefficient of variation (CV ) of w j,k is smaller than some preset threshold γCV . [8] suggested γCV = 1 and β = 0.2. Algorithm
1 and Fig. 1 summarize the TMCMC algorithm.

TMCMC can be parallelized very efficiently, which makes it an attractive tool for uncertainty quantifications of large
science and engineering problems (see for example, [17]). A parallelized version of TMCMC is available in the open-source
software Π4U [18]. A MATLAB version of the parallelized TMCMC with improvements suggested in this paper is also
available at http://www.cse-lab.ethz.ch/software/BASIS .

3 Bias in the Original TMCMC
In the original TMCMC algorithm, the MCMC step after resampling is intended to avoid degeneracy, i.e., the reduction

of unique samples after multiple resampling steps. Also, a longer chain length is assigned to more important samples in order
to better explore the important region of the parameter domain. However, the use of non-uniform chain lengths may introduce
bias to the samples. This is a natural result deduced from the well known mixing problem for MCMC sampling [19].



Fig. 1. Summary of the TMCMC algorithm.

Although, in theory, the original resampling scheme in TMCMC converges to the target distribution asymptotically, it fails
in many practical applications due to the error coming from the multiple chains mixing phenomenon of MCMC. In this
section, we demonstrate this theoretical issue though Gaussian posterior distributions.

We consider the likelihood function to be an n-dimensional standard Gaussian distribution, with zero mean and identity
covariance matrix. With a uniform prior, the posterior PDF equals a truncated Gaussian distribution. If we choose a very
broad uniform prior that covers almost all the probability content in the standard Gaussian likelihood, the posterior PDF is
approximately equivalent to the Gaussian likelihood. The evidence is equal to the product of the Gaussian cumulative density
function evaluated inside the uniform distribution domain and the constant value of the uniform distribution. To investigate
how the non-uniform chain length affects the bias, we introduce one more parameter, called the maximum chain length lmax,
to the original TMCMC resampling step. This parameter is included in our BASIS algorithm to generalize TMCMC for
different uses (see Section 4). After assigning chain length to each sample following resampling, if a chain has a length
longer than lmax, the chain is split into multiple chains uniformly such that each chain is shorter than lmax. For example,
if we have a chain with length 28 and lmax = 10, the chain is split into three chains with length 9, 9 and 10. We represent
with lmax = ∞ the original TMCMC algorithm. We note that lmax = 1 gives the extreme case of guaranteed uniform chain
length. Note that lmax also controls the efficiency of parallelization of TMCMC. Since the longest chain length is the limiting
factor of the run time of parallelized TMCMC [18], a smaller lmax implies a more uniform chain length, thus resulting in
more efficient parallelization. In other words, the uniform chain length using small lmax provides a natural work balance in

ALGORITHM 1: Original TMCMC
Input: Define likelihood function p(D|θ) and prior distribution p(θ); set parameters β and γCV , number of samples

N j for each stage j (usually same for all stages) and maximum number of stages Nmax.
Output: Θ f inal — a set of posterior samples approximating p(θ|D), S — an estimation for the evidence p(D).
Draw initial sample set Θ1 = {θ1,k|k = 1, . . . ,N1} from p(θ);
Initialize ζ1← 0, S← 1 and j← 1;
repeat

Choose ζ j+1 such that CV of w j,k < γCV and ζ j+1 ≤ 1;
Calculate w j,k with the chosen ζ j+1;

S← S · 1
N j

∑
N j
k=1 w j,k;

for k = 1, . . . ,N j+1 do
θ̃ j+1,k← draw a sample from Θ j with probabilities ∝ w j,k;

end
for each unique sample in {θ̃ j+1,k|k = 1, . . . ,N j+1} do

Perform MCMC with length equal to the number of copies of the unique sample;
[*BASIS adds an upper bound lmax to the chain length]
Add resulting samples into Θ j+1;

end
j← j+1;

until ζ j = 1;
Θ f inal ←Θ j;
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length from 1 to ∞. The black lines represent results directly after resampling and before MCMC (solid line – mean value; dashed lines – one
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parallelization.

3.1 3D standard Gaussian posterior
In order to demonstrate the statements made above, we consider a 3D standard Gaussian likelihood with uniform prior

between -5 to 5 in each dimension. We enforce only one annealing step, i.e., ζ2 = 1, in order to focus on a single resampling
step of the TMCMC algorithm. We vary lmax to be 1, 10, 20 and ∞, and the proposal size parameter for the MCMC step β

to be from 0.1 to 1 with interval 0.1. We investigate the accuracy of the resulting estimates for the mean, standard deviation
and correlation among all dimensions by running each setup for 1000 times. Figure 2 to 5 show the results with error bars.

The mean and correlation estimates for different values of lmax are consistently accurate with no bias. Also, there is
no significant change on the acceptance rate for the MCMC step as lmax varies. However, there is clear bias induced in
the standard deviation by the increase of lmax. The bias increases as β2 increases, i.e., the proposal PDF is broader. In the
original TMCMC algorithm, this bias is accumulated in each stage. Since the evidence is estimated using samples from all
intermediate stages in TMCMC, the final estimation will have a significant error accumulated from each stage. To visualize
the error, we run the same problem setup using the TMCMC algorithm with adaptively chosen ζ j (varying lmax and β2). We
use 1000 samples for each stage and γCV = 1. We run each parameter setup for 200 times to collect statistics. We define
the ln(Evidence) residuals as the difference between the log-evidence computed from TMCMC and the actual log-evidence.
Figure 6 shows that an increase of lmax leads to a clear bias for the evidence estimate. Note that the acceptance rate and
number of stages in TMCMC are consistent for all values of lmax.

The original TMCMC algorithm often has relatively short Markov chains as it is limited by the number of samples
required by the user. It is possible that the sample set obtained after resampling is not distributed close to the target inter-
mediate distribution f j(θ). More importantly, it is unlikely that the samples from different chains are well mixed in this
situation. Hence, the short Markov chains are not at the stationary state. [20] modified the TMCMC for application on finite
fault earthquake source inversion by adding a long burn-in period to the Markov chains. As a result, an improvement is ob-
served along with some other modifications proposed in the paper. This approach is also suggested in [21] although the bias
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problem is not discussed there. Here, we run the same problem setup as shown above using TMCMC with various burn-in
period ranging from 0 to 50. We use 1000 samples for each stage and γCV = 1. We run each parameter setup for 100 times
to collect statistics of the results. Figure 7 compares results between lmax = 1 and lmax = ∞ (original TMCMC). The results
show that a longer burn-in period reduces the bias for lmax = ∞ as each chain converges to the stationary distribution (see [19]
and [22] for discussions on multiple Markov chains convergence). On the other hand, the burn-in period does not affect the
already good convergence for lmax = 1. Note that for lmax = 1, the parallelism efficiency is improved. In contrast, the burn-in
period introduces extra computational efforts and there is no rigorous way to choose the length of a burn-in period. Hence,
it is more beneficial to remove the bias using more uniform chain length, e.g., lmax = 1.
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3.2 Higher dimensional, bi-modal and unidentifiable Gaussian posterior
To further verify the claims in the previous section, we compare results from the lmax = 1 and lmax = ∞ using various

types of more challenging posterior distributions. First, we consider n dimensional standard Gaussian likelihoods, where
n = 2,5,7,10. We choose n dimensional uniform distributions as the prior. The range for each dimension is the same
(between -5 and 5). We use γCV = 1, 1000 samples for n = 2 and 5 and 2000 samples for n = 7 and 10. No burn-in period is
considered in this case. We run each parameter setup for 100 times to collect statistics of the results. Figure 8 shows that the
reduction of the bias from using lmax = 1 is consistently observed in different dimensional spaces. Note that it is expected
to observe a decrease of acceptance rate and an increase of the number of stages when dimension increases. This is because
the prior space is relatively larger with respect to the importance region of the likelihood in a higher dimensional space.

Next, we consider a bi-modal likelihood composed by two 2D Gaussian distributions:

Peak 1: mean = (−3.5,0) and covariance matrix = 1.0 × 2D identity matrix
Peak 2: mean = (3.5,0) and covariance matrix = 0.5 × 2D identity matrix

The final bi-modal likelihood is constructed as a weighted sum of the two Gaussian distributions, with weights 0.7 and 0.3
for peak 1 and 2, respectively. A uniform prior between -7 and 7 is chosen for all dimensions. We use γCV = 1 and vary the
number of samples per stage to be 200, 500 and 1000. No burn-in period is considered in this case. We run each parameter
setup for 100 times to collect statistics of the results. Figure 9 to 12 show that there is bias induced in the standard deviation
by using lmax = ∞, thus, the evidence estimation is inaccurate as demonstrated in Fig. 9. The results are insensitive to
the number of samples per stage. Note that because the two peaks are designed to be well separated from each other, the
posterior samples from TMCMC is well clustered into two peaks. Hence, we can compute the corresponding mean, standard
deviation and correlation for each peak.

Finally, we approximate an unidentifiable posterior using a 6D zero-mean Gaussian distribution with no correlation
between all dimensions. The variance of dimension one (equals 2.0) is 10 times of the other dimensions (equals 0.2).
Dimension one is considered as unidentifiable comparing to the other dimensions because of its significantly larger variance.
A uniform prior between -10 and 10 is chosen for all dimensions. We use γCV = 1 and vary the number of sample to be
100, 500 and 1000. No burn-in period is considered. Figure 13 to 15 show that the evidence estimates are sensitive to the
β2 value. This is because when β2 is too small, the samples cannot explore the unidentifiable region well enough in each
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TMCMC stage. Hence, small β value shall be avoided when unidentifiable region is expected in the posterior distribution.
Also, the standard deviation estimates have a slight bias for the lmax = ∞ case. The bias is not very significant because the
likelihood is relatively peaked in all dimension except in dimension one. This issue will be revisited in the bridge example
in Section 4.2.

3.3 Stage-wise convergence of TMCMC
In the previous examples, the number of prior samples is large enough to cover all important regions of the likelihood

function. Hence, lmax = 1 is enough to explore the domain to obtain an accurate estimate of the evidence. In practice,
the likelihood function may be very narrow with respect to the chosen prior. We hypothesize that the resampling step
is introducing significant bias in each TMCMC stage for this case, especially in the first few stages. The burn-in period
becomes very important to correct the bias. Here, we choose to study a single Gaussian likelihood function and a uniform
prior as this gives an analytical form for the intermediate evidence functions Fj =

∫
p(D|θ)ζ j p(θ)dθ. This allows us to study

the stage-wise convergence of TMCMC.
Given an 1D Gaussian likelihood with mean µ and variance σ2 and a uniform prior between −a and a, one can derive:

Fj =
1

2a
√

ζ j
(2πσ

2)
1−ζ j

2 erf

(
a−µ

σ

√
ζ j

2

)
(5)

where erf(·) denotes the error function. This can be generalized to high dimension Gaussian likelihood with diagonal
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Dashed lines represent lmax = 1 and solid lines represent lmax = ∞, i.e., the original TMCMC algorithm.
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Fig. 12. Estimates for correlation and the weights’ ratio between the two Gaussian distributions when running different TMCMC with bi-modal
Gaussian likelihoods. Dashed lines represent lmax = 1 and solid lines represent lmax = ∞, i.e., the original TMCMC algorithm.

covariance matrix and uncorrelated prior in each dimension. In this study, we choose a 3D Gaussian likelihood with mean
1 and variance 0.04 for each dimension independently and a uniform prior between -5 and 5 for each dimension. We run
TMCMC with different burn-in settings, each for 100 times to collect statistics of the evidence estimates. In all cases, more
than 80% out of the 100 runs are completed with 8 stages. We focus our analysis on those cases in order to obtain a consistent
conclusion on the stage-wise convergence. Figures 16, 17, 18 and 19 show results for no burn-in, 20 steps burn-in at the first
2 stages, 50 steps burn-in at the first 2 stages and 20 steps burn-in at all stages, respectively.

Based on the results we wish to make the following remarks:

1. A larger evidence estimation error in the early stages
2. The error is independent of the annealing step size ζ j+1−ζ j, which may be an evidence of the success of the automatic

step size choice in TMCMC
3. Adding burn-in in early stages reduces error in later stages

Note that the results between using 20 steps burn-in and 50 steps burn-in for the first 2 stages are similar. This indicates that
20 steps burn-in is long enough in this case. It is not obvious from the figures that adding burn-in only in the early stages can
have significant improvement toward the evidence estimation. Table 1 shows the accuracy of the final evidence estimate for
different burn-in setting. One can observe a significant reduction in the mean and standard deviation of estimation error after
adding burn-in to the first 2 stages only. As a result, for problems that involve computationally costly likelihood evaluation,
adding burn-in only in the early stages is an efficient alternative to improve the performance of the TMCMC as compared
to adding burn-in for all stages. Furthermore, note that the bias for the lmax = ∞ case is not significant as compared to our
studies in the previous sections. This is because when the posterior distribution is very peaked at the optimal values, the bias
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Fig. 14. Mean estimates of running different TMCMC with approximately unidentifiable Gaussian likelihoods (six dimensions: D-1, . . ., D-6).
Dashed lines represent lmax = 1 and solid lines represent lmax = ∞, i.e., the original TMCMC algorithm.

coming from the standard deviation estimation becomes negligible (further discussion in the next section).

4 Applications
In this section, we investigate the bias problem of the original TMCMC algorithm (lmax = ∞) and compare its results

with those obtained using lmax = 1 in two applications: (1) calibrating the force-displacement model for a Discrete Element
Method (DEM) on simulations of disk-wall collision [23], and (2) parameter estimation of a high fidelity model of a bridge
[24]. The setup of both problems follows the protocol outlined in [18].

4.1 Parameter estimation of a disk-wall collision model
We simulate the collision of a steel disk with a steel wall using DEM [23]. Figure 20 shows an example of the simulation

scenario. We calibrate four parameters in a force-displacement model specified by a normal and tangential force based
on a non-linear model [25, 26]: kt and µ are the tangential spring stiffness and the friction coefficient of the material,
respectively; αn and γn are the exponential term and the dissipative constant, respectively, that describe the nonlinear nature
of the viscoelastic force-displacement law. Two extra parameters σ2

1 and σ2
2 are used to model the additive noise for both

normal and tangential velocity data, respectively. The data set and the likelihood formulation are described in [23]. Table 2
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Fig. 16. Testing stage-wise evidence convergence of TMCMC using 3D Gaussian likelihood with uniform prior. No burn-in in all stages.

lists the ranges of the independent uniform priors for all parameters in this model.
We perform Bayesian uncertainty quantification for model calibration using lmax = 1 and lmax = ∞ with different number

of samples per stage and burn-in period settings. Each setting is repeated 100 times in order to obtain representative statistics
on the resulting estimations. The algorithm parameters β and γCV are set to the suggested values 0.2 and 1, respectively.
Table 3 and 4 show the mean (E) and coefficient of variation (CV ) of the six model parameters and the log-evidence value
from runs with lmax = ∞ and lmax = 1, respectively. According to our study with the Gaussian likelihoods, the case of 20-step
burn-in for all stages with 4000 samples with lmax = 1 can be taken as a reference for converged results, and the results are
consistent for both lmax = 1 and lmax = ∞. For the case of lmax = ∞, the log-evidence value converges to around 16.66 as
the number of samples per stage increases from 2000 to 8000 with no burn-in period. This is clear bias comparing to the
reference value of 17.28 with a low CV value of 0.68%. Note that when a burn-in period is added, the bias is significantly
reduced. On the other hand, for lmax = 1, the log-evidence estimations are converging to the reference value as the number
of samples per stage increases without any burn-in period. Note that by adding burn-in period to only the early stages for
the 2000 samples case, there is already a significant improvement in the log-evidence estimation (relative to the low CV
value). Figure 21 shows an example of the posterior samples taken from one run of the reference case with lmax = 1. One
can observe two unidentifiable parameters and a bi-modal parameter in the posterior distribution. The other three parameters
are not very peaked at the optimal values. In this case, the bias from the original TMCMC algorithm is more obvious. In the
next example, we show that the bias becomes irrelevant when the posterior distribution is very peaked around some optimal
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Fig. 17. Testing stage-wise evidence convergence of TMCMC using 3D Gaussian likelihood with uniform prior. 20 steps of burn-in for each
Markov chain in the first two stages only.
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Fig. 18. Testing stage-wise evidence convergence of TMCMC using 3D Gaussian likelihood with uniform prior. 50 steps of burn-in for each
Markov chain in the first two stages only.
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Fig. 19. Testing stage-wise evidence convergence of TMCMC using 3D Gaussian likelihood with uniform prior. 20 steps of burn-in for each
Markov chain in all stages.

values.

4.2 Model updating of a bridge
This example involves parameter estimation of a high fidelity finite element model of the Metsovo bridge based on

modal data [24]. We calibrate five model parameters, which represent the modulus of elasticity (normalized by a set of
predetermined nominal values) of five subdivided structural components (Fig. 22). θ1 and θ2 denote the two pier components
of the bridge, while θ3 to θ5 denote the structural components of the deck. An extra parameter σ is used in the model, which
denotes the standard deviation of an additive Gaussian noise to the finite element model simulation. A uniform prior is used
for all parameters, with range 0.2 to 2 for θ1 to θ5 and 0.00001 to 1 for σ. The algorithm parameters β and γCV are set to the
suggested values 0.2 and 1, respectively. 1000 samples are used in each annealing stage.

Table 5 shows the mean (E) and coefficient of variation (CV ) of the six model parameters and the log-evidence value



Table 1. Total evidence error of TMCMC using 3D Gaussian likelihood with uniform prior (statistics from 100 runs).

Cases

TMCMC estimate – Actual evidence

lmax = 1 lmax = ∞

Mean Std. Dev. Mean Std. Dev.

Burn-in = 0
−0.495 1.163 −0.583 0.874

[All stages]

Burn-in = 20
−0.190 0.668 −0.180 0.679

[First 2 stages]

Burn-in = 50
−0.169 0.761 −0.270 0.710

[First 2 stages]

Burn-in = 20
−0.010 0.281 −0.118 0.421

[All stages]

Table 2. Boundaries for the independent uniform priors of all parameters in the force-displacement model.

Parameter Min. Max.

µ 0.05 0.2

αn 0.15 1.35

γn 0.1 15.0

kt 0.1 ·104 15.0 ·104

σ2
1 0.0 1 ·10−3

σ2
2 0.0 1 ·10−3

Table 3. Estimates of ln(Evidence), mean (E) and coefficient of variation (CV ) of each parameter for the disk-wall collision example with
lmax = ∞. Numbers in parenthesis are coefficient of variation for each estimate calculated from 100 trials. All TMCMC runs take 7 – 9 stages
to finish.

(lmax = ∞)
No burn-in

20-step burn-in

[All stages]

2000 samples, 4000 samples, 8000 samples, 2000 samples, 4000 samples

Eµ 0.106 (0.97%) 0.106 (0.62%) 0.106 (0.41%) 0.106 (0.45%) 0.106 (0.35%)

CVµ 6.03% (7.75%) 6.06% (6.09%) 6.09% (3.57%) 5.97% (4.53%) 6.02% (3.16%)

Eαn 0.471 (5.67%) 0.471 (4.81%) 0.468 (3.32%) 0.464 (3.64%) 0.466 (2.24%)

CVαn 15.37% (24.92%) 16.43% (23.49%) 17.13% (16.30%) 18.37% (18.90%) 18.17% (13.68%)

Eγn 7.649 (19.01%) 7.727 (14.57%) 7.625 (10.49%) 7.547 (9.39%) 7.558 (5.81%)

CVγn 50.01% (20.26%) 51.21% (17.79%) 53.32% (12.10%) 55.35% (12.57%) 54.89% (7.96%)

Ekt 1.01e+4 (6.85%) 1.00e+4 (5.64%) 1.00e+4 (3.39%) 9.89e+3 (4.92%) 9.91e+3 (3.37%)

CVkt 27.34% (30.37%) 29.23% (22.32%) 29.57% (13.26%) 30.88% (17.46%) 30.76% (12.13%)

Eσ1 5.22e-4 (18.94%) 5.29e-4 (12.27%) 5.18e-4 (8.67%) 5.13e-4 (7.31%) 5.15e-4 (4.94%)

CVσ1 48.82% (25.44%) 49.95% (15.46%) 52.44% (10.89%) 53.68% (8.74%) 53.72% (6.30%)

Eσ2 3.69e-4 (23.01%) 3.60e-4 (15.54%) 3.46e-4 (12.28%) 3.25e-4 (9.82%) 3.17e-4 (7.32%)

CVσ2 69.16% (19.85%) 73.38% (12.00%) 74.94% (9.36%) 79.54% (5.77%) 81.65% (4.30%)

ln(Evid.) 16.539 (3.12%) 16.651 (1.96%) 16.660 (1.42%) 17.140 (1.39%) 17.216 (0.99%)



Fig. 20. Simulation of a disk impacting at an inclined surface [18].

Table 4. Estimates of ln(Evidence), mean (E) and coefficient of variation (CV ) of each parameter for the disk-wall collision example with
lmax = 1. Numbers in parenthesis are coefficient of variation for each estimate calculated from 100 trials. All TMCMC runs take 7 – 9 stages
to finish. Bolded values are the reference to compare the other results with (including Tab. 3).

(lmax = 1)
No burn-in

20-step burn-in

[First 3 stages] [All stages]

2000 samples, 4000 samples, 8000 samples, 2000 samples, 4000 samples

Eµ 0.106 (2.42%) 0.106 (1.82%) 0.106 (1.60%) 0.106 (0.80%) 0.106 (0.17%)

CVµ 5.91% (20.97%) 5.87% (18.16%) 5.90% (15.44%) 5.94% (8.59%) 5.96% (1.84%)

Eαn 0.470 (9.60%) 0.463 (10.20%) 0.467 (7.01%) 0.463 (5.12%) 0.463 (1.56%)

CVαn 14.77% (46.97%) 16.11% (43.29%) 16.18% (29.80%) 18.52% (25.03%) 19.09% (8.02%)

Eγn 7.744 (28.58%) 7.461 (27.18%) 7.543 (20.86%) 7.534 (14.29%) 7.508 (4.17%)

CVγn 46.92% (43.02%) 52.95% (40.80%) 52.63% (29.68%) 55.51% (18.11%) 56.25% (5.12%)

Ekt 9.94e+3 (12.82%) 1.01e+4 (8.69%) 9.87e+3 (9.83%) 9.88e+3 (5.70%) 9.93e+3 (1.77%)

CVkt 28.07% (45.02%) 27.20% (37.62%) 30.07% (34.68%) 30.81% (20.72%) 30.69% (6.59%)

Eσ1 5.39e-4 (25.08%) 5.29e-4 (23.74%) 5.15e-4 (20.26%) 5.09e-4 (14.69%) 5.08e-4 (3.33%)

CVσ1 45.56% (42.67%) 48.83% (36.29%) 51.02% (27.35%) 54.01% (21.84%) 54.99% (3.75%)

Eσ2 3.97e-4 (36.14%) 3.65e-4 (29.15%) 3.43e-4 (26.43%) 3.30e-4 (18.65%) 3.15e-4 (4.85%)

CVσ2 62.30% (35.51%) 70.93% (32.78%) 78.84% (35.88%) 80.02% (15.42%) 82.63% (2.93%)

ln(Evid.) 16.832 (4.31%) 17.030 (4.16%) 17.176 (2.75%) 17.210 (1.56%) 17.28 (0.68%)

from runs with lmax = 1 and lmax = ∞ and with different burn-in period settings. The estimations are obtained from the mean
results after 20 repeated runs with the coefficient of variation of the estimate in the parentheses. In this study, no analytical
solution is available for comparison. According to our study with the Gaussian likelihoods, the cases of 20-step burn-in for
all stages with lmax = 1 can be taken as a reference for converged results, and the results are consistent for both lmax = 1 and
lmax = ∞ with relatively small CV values. These results are also consistent with the findings in [18].

This example has a very peaked posterior distribution, where almost all of the parameters have CV around or less than
1%. Therefore, the bias from the lmax = ∞ case does not have a significant influence in this case. Because lmax = ∞ is more
efficient for searching the high probability region (longer chain for largely resampled samples), it outperforms the lmax = 1
case in this particular example. Note that by adding burn-in to early stages only, the result is significantly improved in terms
of the variation among the 20 repeated runs.
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Fig. 21. Posterior samples for one case of the disk-wall collision example. Upper diagonal: projection of the posterior samples in all pairs
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5 Conclusions
We demonstrate that the original TMCMC algorithm proposed by [8] leads to bias in the estimates of the evidence and

the posterior distribution, and show a practical solution depending on the properties of the actual applications. We show that
this error emanates from the resampling step, which involves an MCMC step that is atypical to the classical SMC approaches.
In the original resampling step, MCMC steps are performed with chain length equal to the number of times that a sample is
resampled at a given intermediate stage. The variability in the chain lengths leads to bias depending on the proposal PDF.
The problem is resolved by using a uniform chain length for all Markov chains or adding burn-in to all chains for better
mixing behavior. However, this solution reduces the sampling efficiency for peaked posterior distributions. In terms of
computational concern, using a uniform chain length is a better solution because it does not add extra computations, and also
it improves the efficiency of parallelism due to an inherently better work balance. Hence, we improve the algorithm by adding
two parameters: maximum chain length lmax and burn-in per chain nburn. These extra parameters allow users to tune between
TMCMC and the classical SMC approaches. We name this improved algorithm as Bayesian Annealed Sequential Importance
Sampling (BASIS) to better reflect the characteristics of the method. The example of disk-wall collision simulation verifies
our solution to the bias.

In general, we suggest using lmax = 1 and nburn = 0 (the same resampling scheme used in [7, 11]). When the number
of prior samples is not large enough to represent the important space well, e.g., high dimensional problems, nburn > 0 is
suggested. One drawback of setting lmax = 1 is that it reduces the explorative capability of the sampling algorithm. As a
result, a large amount of samples is needed when the posterior distribution is very peaked. In this case, our results from the
bridge example suggest using lmax = ∞ and nburn > 0. In practice, this is often the case when the posterior distribution is
expected to be peaked with respect to the prior domain. We note that one should not sacrifice accuracy of the distribution in
each stage for exploration power. When computational power is allowed, the most accurate implementation is to use lmax = 1
with nburn > 0. This method leads to extra computational effort and the choice of the burn-in period is a difficult problem



Fig. 22. Subdivided structural components of the Metsovo bridge [18].

Table 5. Estimates of ln(Evidence), mean (E) and coefficient of variation (CV ) of each parameter for the bridge example with lmax = 1 and
lmax = ∞. Numbers in parenthesis are coefficient of variation for each estimate calculated from 20 trials. All runs take 12 – 17 stages to
finish. Bolded values are the reference to compare the other results with.

lmax = 1 lmax = ∞

No burn-in
20-step burn-in 20-step burn-in

No burn-in
20-step burn-in 20-step burn-in

[First 4 stages] [All stages] [First 4 stages] [All stages]

Eθ1 1.006 (10.46%) 1.015 (0.85%) 1.014 (0.06%) 1.015 (0.38%) 1.015 (0.42%) 1.014 (0.09%)

CVθ1 1.67% (56.20%) 0.91% (19.04%) 1.07% (2.27%) 1.04% (11.48%) 1.09% (11.69%) 1.06% (3.53%)

Eθ2 1.124 (11.83%) 1.021 (0.78%) 1.019 (0.03%) 1.019 (0.42%) 1.019 (0.28%) 1.019 (0.06%)

CVθ2 1.45% (46.87%) 0.92% (22.67%) 0.97% (2.34%) 0.95% (11.80%) 1.01% (10.13%) 1.01% (3.10%)

Eθ3 1.020 (4.02%) 1.011 (0.42%) 1.010 (0.02%) 1.010 (0.20%) 1.011 (0.15%) 1.010 (0.05%)

CVθ3 0.84% (58.93%) 0.51% (19.41%) 0.53% (2.57%) 0.52% (11.93%) 0.54% (10.51%) 0.53% (3.51%)

Eθ4 1.043 (8.73%) 1.002 (0.69%) 1.001 (0.03%) 1.001 (0.29%) 1.002 (0.32%) 1.001 (0.07%)

CVθ4 1.35% (43.98%) 0.78% (19.68%) 0.89% (2.55%) 0.85% (13.81%) 0.89% (13.11%) 0.88% (3.74%)

Eθ5 1.000 (4.95%) 1.010 (0.36%) 1.009 (0.02%) 1.009 (0.15%) 1.009 (0.13%) 1.009 (0.03%)

CVθ5 0.84% (54.26%) 0.43% (25.99%) 0.44% (2.89%) 0.45% (10.16%) 0.47% (10.13%) 0.44% (4.46%)

Eσ 0.024 (34.46%) 0.010 (3.99%) 0.010 (0.20%) 0.010 (1.74%) 0.010 (1.20%) 0.010 (0.38%)

CVσ 3.39% (39.08%) 4.83% (17.27%) 5.07% (3.07%) 5.17% (8.74%) 5.16% (10.73%) 5.10% (3.61%)

ln(Evid.) 656.726 (9.45%) 796.451 (0.48%) 799.219 (0.09%) 792.387 (0.74%) 796.099 (0.31%) 798.182 (0.13%)

in itself. To improve computational efficiency, we show in our examples that adding burn-in period to only the early stages
already results in significant improvement for the accuracy of the estimations. Our final implementation of the algorithm
also includes parameters to control the number of stages to add burn-in. In conclusion, BASIS fuses the resampling schemes
in the original TMCMC and the classical SMC approaches using the lmax parameter, and we demonstrate a rule of thumb to
choose lmax depending on the property of the practical applications.

Ongoing work includes studying the effect of using a proposal PDF, instead of the prior, for the initial samples, as well
as using better MCMC proposals, such as including gradient and Hessian information. A Matlab version of the BASIS with
parallelization support can be downloaded from http://www.cse-lab.ethz.ch/software/BASIS .
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