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ABSTRACT

We present a high performance computing framework for mul-
tiphase, turbulent flows on structured grids. The computational
methods are validated on a number of benchmark problems such
as the Taylor-Green vortex that are extended by the inclusion of
bubbles in the flow field. We examine the effect of bubbles on the
turbulent kinetic energy dissipation rate and provide extensive data
for bubble trajectories and velocities that may assist the develop-
ment of engineering models. The implementation of the present
solver on massively parallel, GPU enhanced architectures allows for
large scale and high throughput simulations of multiphase flows.
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1 INTRODUCTION

Multiphase, turbulent flows are of great significance in numerous
industrial applications including nuclear reactors, oil wells and
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cloud cavitation in pumps. The prediction of such flows has re-
lied traditionally on reduced-order models, scaling arguments or
statistical correlations. However, real-world problems usually in-
volve a broad range of spatio-temporal scales which can not be
captured accurately with reduced-order methods. Moreover, flow
features are three-dimensional (3D) in nature and therefore require
advanced techniques applied in direct numerical simulation (DNS)
to capture the whole range of scales. In turn DNS may provide
data that enhances insight and guides the development of improved
engineering models for multiphase flows.

DNS of multiphase flows are particularly challenging as they are
faced with the problem of accurate interface tracking. The DNS of
three-dimensional multicomponent flows was pioneered by Bunner
and Tryggvason [8]. Effects on the lift coefficient due to bubble
deformation in vertical shear flow has been shown by the same
authors in [9].

Lu et al. [28] examine how the injection of bubbles in channel
flow can affect turbulence. They conclude that introducing bub-
bles close to the walls of low Reynolds number flows can induce
a significant decrease of the drag coefficient, claiming that bubble
deformability vastly affects turbulence. This was verified in [29],
where it is shown that the lateral migration of a bubble strongly
depends on its ability to deform. In [6] the authors compare the
energy dissipation in turbulent channel flow cases with and with-
out bubbles, showing that the presence of bubbles causes higher
dissipation rates. Prakash et. al [37] present an experimental water
tunnel approach where energy spectra and velocity fluctuations are
examined for varying flow conditions that correspond to single- and
multiphase flow. Similar comparisons for homogeneous isotropic
turbulence can be found in [7], where the results are based on a spec-
tral cascade model that allows for closure of the Reynolds-Averaged
Navier-Stokes (RANS). Feng and Bolotnov [14] study bubble in-
duced turbulence through the interaction of turbulent eddies with
a single bubble using a level set approach; bubble deformability is
again found to lead to increased turbulence intensity.

In this work we present results for an incompressible, multi-
phase flow solver working on structured grids with a finite volume
discretization. Pressure coupling is achieved through the SIMPLE
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method [16, 34] and the volume-of-fluid (VOF) method with piece-
wise linear reconstruction of the interface is used to solve the advec-
tion equation of the volume fraction [2]. The surface tension force
is computed using a novel technique for the curvature estimation.
We employ our method to simulate two flow cases: a Taylor-Green
vortex modified by the presence of air bubbles and a plunging water
jet with air entrainment. Both of these applications result in com-
plex turbulent multiphase flow patterns for which few numerical
results exist in the literature. Existing experimental results are used
to assess our presented results.

The outline of this paper is as follows: Section 2 presents a short
description of the governing equations, followed by an overview of
the numerical algorithm used by our solver. Section 3 describes Cu-
bism, the parallel framework used to implement our flow solver. The
applications are described in Section 4; finally Section 5 concludes
our work.

2 MODEL

A two-component incompressible flow is described by the Navier-
Stokes equations for the mixture velocity » and pressure p
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and the advection equation for the volume fraction a
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with the mixture density p = (1—a)p;1 +apz, dynamic viscosity y =
(1—a)p1 +apy and gravitational acceleration g. The surface tension
force is defined as f; = ok Va with the surface tension coefficient
o and interface curvature k.

2.1 Numerical algorithm

We use a finite volume discretization based on the SIMPLE method
for pressure coupling [16, 34]. The advection equation is solved
using the VOF method with piecewise linear reconstruction [2]. The
key computational challenge of multiphase flows is the tracking or
capturing of the interfaces between phases in the flow field and com-
puting the surface tension force. A number of approaches suggest
heterogeneous models [27], combining a level-set method for the
resolved interfaces with a Lagrangian treatment of smaller bubbles
and drops [30, 31]. A hybrid technique [40] resolves the interfaces
with the VOF method and the smaller details with a homogeneous
mixture approach. One drawback of such approaches is that they
rely on criteria for switching between the models and suffer from
inconsistencies in the intermediate regimes. Techniques such as
Adaptive Mesh Refinement (AMR) have been shown to perform
well in cases of isolated interfaces [35]. However, the refinement
is not beneficial in regions with a uniform distribution of smaller
bubbles.

We refer to [36] for a detailed review of the previous approaches
for numerical models of surface tension. According to the review,
the method of height functions [35] is the state-of-the-art method
commonly used for computing the surface tension force in the
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Figure 1: Line segments of the interface (black lines) and po-
sitions of particles from two selected cells for a circle at reso-
lutions of 0.59, 0.84, 1.19 and 1.68 cells per radius. The parti-
cles are connected by lines (blue and orange) and the central
particle is highlighted by a thicker edge.
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Figure 2: Curvature error for a sphere depending on the
number of cells per radius by Basilisk [3] —e— in compar-
ison to the present method

context of VOF methods. Here we combine the standard VOF for-
mulation with a novel technique for the interface curvature esti-
mation [24]. We demonstrate better accuracy at low resolutions
than the open-source solver Basilisk [3] implementing the method
of height functions. Our method allows for solving the transport
problems with bubbles and drops at low resolutions up to one cell
per radius. Therefore, we apply the same algorithm across various
scales on a uniform mesh.

2.2 Curvature estimation

We use the piecewise linear reconstruction of the interface obtained
from the discrete volume fraction field [2]. The interface curvature
is estimated in each cell independently using the polygons from a
5% 5 X 5 stencil.

In two dimensions, the reconstructed interface is a set of line
segments. The curvature in one cell is computed by fitting a circular
arc to the interface. The circular arc is represented as a string of con-
nected particles x;, i = 1,..., N which evolve until equilibration
under constraints and forces attracting them to the interface. The
constraints maintain a prescribed distance hj, between the particles
and a uniform angle between them. This implies that the particles
belong to a circular arc and, therefore, their configuration can be
described by three parameters: position of the central particle p,
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the orientation angle ¢ and the bending angle 6:
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where e(¢) = cos& ex +sinf ey and ¢ = (N — 1)/2 is the central
particle. The attraction force on a particle at position x is computed
as f(x) = xp(x) — x, where x(x) is the nearest point on the
interface. Furthermore, we apply an under-relaxation to the force
and modify the force by replacing the nearest line segment with a
circular arc passing through its endpoints and having the curvature
known from the previous iteration of the optimization algorithm.
Initially the central particle is placed at the line segment at which
we estimate the curvature and particles are oriented along the line
segment. The iterative optimization algorithm computes corrections
of parameters x, ¢ and 6 from the forces. For instance, the angle ¢
is corrected by

ag= gy By 0% O ;
qﬁ—;fz-(9¢ ;w%, %)

where f; = f(x;). The same correction is applied to 8, and p is
corrected by the force acting on the central particle so that Ap = fe.

In three dimensions, the reconstructed interface is a set of pla-
nar polygons. We follow the definition of the mean curvature of
a surface and estimate the curvature of the interface at each poly-
gon as the arithmetic mean over multiple cross sections by planes
perpendicular to the polygon. A plane section of the interface is
again a set of line segments to which we apply the above procedure.
We use N = 9 particles per cross section and two planes per cell
which results in 18 particles to estimate the curvature in one cell.
The algorithm requires multiple iterations but needs to be applied
only in cells containing the interface. The current implementation
takes about 20% of the runtime for the considered problems with
further potential for optimization.

The role of particles in our method is only for computing the cur-
vature given a piecewise linear reconstruction of the interface. This
is in contrast to other methods using particles to capture interfaces.
We note that there are two techniques that are called Particle Level
Sets in the literature. The Particle Level Set technique introduced
by Enright and Fedkiw [12] that solves the advection equations
on a grid and particles are added to improve the subgrid scale res-
olution. The Lagrangian Particle Level Set introduced by Hieber
and Koumoutsakos [21], solves the level set equations consistently
on remeshed particles and it has also been extended to particle-
wavelet level sets by Bergdorf and Koumoutsakos [5]. These are
also different from solving the advection equation on particles using
Smoothed Particle Hydrodynamics [1]. Such methods compute the
surface tension using derivatives of fields represented on particles
which limits their accuracy at low resolutions due to the particle
distortion. We note that the Lagrangian Particle Level Set avoids
this distortion by remeshing techniques that allow for accurate
derivative calculations.

Figure 1 illustrates the equilibrium configurations of particles at
resolutions below two cells per radius. Our algorithm outperforms
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the commonly used method of height functions [3, 35] at low reso-
lutions as shown in Figure 2. The algorithm estimates the curvature
with the relative error below 0.1 even at low resolutions up to one
cell per radius. This enables multiphase flow simulations over a
large range of spatial scales. We also provide a visual web-based
demonstration of the method! and a reference implementation in
Python 2.

3 SOFTWARE DESIGN

Our multiphase flow solver is based on an open-source, structured
grid library Cubism [10], which has been demonstrated to exhibit
excellent scaling on large scale systems [17, 18, 39]. The present
work extends Cubism by integrating coroutines [26] which allow
for a strict separation of the user code from the structured grid
framework. This separation minimizes the exposure of user code
and significantly simplifies the implementation of complex applica-
tions that make use of Cubism.

3.1 Implementation

The Cubism library divides the grid into small compute blocks to
increase parallel granularity. The size of the blocks is chosen such
as to optimize temporal and spatial locality on the target architec-
ture. The current implementation of the solver utilizes the Message
Passing Interface (MPI) library to distribute the compute blocks to
parallel processors. Figure 3 shows the rank-level organization of
the software. User code operates on compute blocks which may
enqueue communication requests into a buffer that is maintained
by Cubism. When a block issues a communication request, it will
suspend its execution flow and return control to the caller. This
functionality is implemented with coroutines [26]. User code is
further divided into stages which usually correspond to different
compute kernels, such as advection or diffusion operators. These
kernels are stencil based and involve communication of halo cells
for blocks adjacent to subdomain boundaries. In our current im-
plementation, each rank processes compute stages sequentially
for each block. A stage may partially complete and yield control
to the caller if synchronization of messages is required at some
point. In such a case, the state of the block is stored in the per-
block instance of the suspended stage. Our current implementation
does not account for compute-transfer (C/T) overlap. We enable
C/T overlap by dividing blocks on a rank into boundary blocks
(message-bound) and interior blocks that do not require commu-
nication. A queue of communication requests is then created by
first processing the list of boundary blocks, which then suspend
due to outstanding messages. This C/T scheme is currently under
development. The communication queue is part of a synchronizer
class which coordinates message exchange between ranks using
point-to-point routines or collective operations depending on the
message type. Asynchronous routines are used for point-to-point
communication such that interior blocks can be processed to hide
communication overhead. Once the outstanding messages have
been exchanged, the synchronizer passes control back to the blocks
with suspended stages which become active again to finalize their
work. In general, a stage implemented in user code operates on

Visual demonstration: https://cselab.github.io/hydro/grid html
Reference implementation: https://cselab.github.io/hydro/curv.py
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Figure 3: Separation of user code from Cubism. User code is mapped to compute blocks which may enqueue communication
requests in a queue managed by Cubism. Communication tasks are dequeued by a synchronizer object which coordinates
message exchange between ranks through MPI or issues calls to external libraries.
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Figure 4: User code is mapped to compute blocks and executed sequentially. Utilization of coroutines allows for the suspension
of a compute block enabling C/T overlap by asynchronous execution. Green stages indicate completion, orange stages are in
suspended state and red indicates currently executed stages. Gray stages are pending.

one or multiple fields, which are a subset of the data required to
describe the problem. Density or velocity are examples of scalar or
vector fields, respectively. This abstraction of the problem allows
us to write modular user code which is mapped to the compute
blocks on a rank. Individual blocks can be seen as independent
work packages. It is therefore straightforward to implement new
operators without the need to modify any code in Cubism.

Figure 4 illustrates this algorithm based on the asynchronous
point-to-point communication example outlined above. Blocks are
processed sequentially, starting with blocks that are adjacent to
subdomain boundaries. If a block is required to suspend execution
due to communication, it will return control to the caller which
then starts to process the next block. Successfully completed stages
are highlighted in green, whereas stages in suspended states are
highlighted in orange and the currently executing stage is shown
in red. Stages not yet processed are indicated in light gray. The
interface of the synchronizer class is not limited to the MPI library
only. External libraries can also communicate with the synchronizer

in a similar way. Our current implementation utilizes this extended
interface to solve large linear systems through the Hypre library
[13, 22] (namely, the conjugate gradient solver for the Poisson
equation and GMRES for the convection-diffusion equation) as well
as for I/O through the HDFS5 library.

The granularity introduced by the compute blocks also enables
thread-level parallelism (TLP) that can be combined with MPI for
a hybrid execution model. In this case, the schematic in Figure 4
would allow for multiple blocks with active stages (marked with
red color). Our implementation currently does not exploit TLP but
is planned to be added in a future release.

Moreover, user functions are designed to operate on a particular
compute block passed as an argument, see Figure 4. This design
paradigm allows for flexible optimizations of individual stages that
evaluate a computational pattern on a block. In particular, it enables
specific programming models that can be applied to exploit data
level parallelism using tools such as Intel’s ISPC compiler or GPU
architectures, for example.
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Figure 5: Strong and weak scaling on Piz Daint for the bench-
mark described in Section 3.2.

3.2 Scaling and memory requirements

We demonstrate strong and weak scaling of our solver based on
a Taylor-Green vortex in liquid water extended with air bubbles.
The scaling analysis is performed on Piz Daint at the Swiss Na-
tional Supercomputing Center (CSCS) and is shown in Figure 5.
The measurement of the strong scaling is performed on a single
node using a mesh with 963 cells and a block size of 8% cells, re-
sulting in 1728 blocks. The strong scaling efficiency decreases with
core count due to an increased usage of the memory subsystem.
The analysis of weak scaling is performed with a constant problem
size of 963 cells per node with 12 ranks. The solver is run on up to
2197 nodes with a weak scaling efficiency of 80 %. We expect the
weak scaling efficiency to further improve with the deployment of
the C/T overlap scheme outlined in the previous section. The mem-
ory footprint scales linearly with the number of cells and amounts
to 8 KiB per cell. A typical problem size for production runs consists
of a mesh size with 3843 cells solved on 288 nodes on Piz Daint,
which results in a overall memory footprint of 1.5 GiB per node.

4 APPLICATIONS
4.1 Taylor-Green vortex with bubbles

The Taylor-Green vortex is a classical benchmark for testing the ca-
pabilities of flow solvers to perform DNS of homogeneous turbulent
flows. Here we present simulations that augment the classical flow
field with a gaseous phase. The velocity is initialized in a periodic
domain [0, 27]* as vy = sinx cosy cosz, vy = —cosx siny cosz
and v, = 0. The gaseous phase is represented by 890 spherical
bubbles of diameter d = 0.2 placed at random positions resulting in
the average volume fraction of 1.4 %. The parameters of the problem
are the Reynolds number Re = p;/p1 = 1600, the Weber number
We = pd/o = 2, density ratio p2/p; = 0.01 and viscosity ratio
u2/p1 = 0.01. The spatial resolution required for the numerical
simulations is determined from the single-phase flow by comparing
the energy dissipation rate with reference data [42] as shown in
Figure 9a. We use two mesh sizes of 2563 and 384.

Figure 8 presents three snapshots of our simulation, visualizing
the bubble shapes and the vorticity magnitude. Initially all bubbles
have the same size and larger bubbles form due to coalescence of
smaller bubbles.
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Figure 6: Near-wall coalescence of two bubbles. The bubble
shapes at two time instants by the present method (left) com-
pared to the experiment [41] (right).
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Figure 7: Coalescence of bubbles with satellite formation.
The bubble shapes at two time instants by the present
method (left) compared to the experiment [43] (right).
Reprinted from [43] with the permission of AIP Publishing,.

Bubble coalescence is driven by the surface tension force which
tends to restore a spherical shape of the newly formed bubble,
leading to an abrupt increase in the kinetic energy [41]. For the
purpose of validation, we have performed additional simulations
of individual coalescence events using our multiphase flow solver
and present the shapes of bubbles in comparison to experimental
data: coalescence of two bubbles near a solid wall [41] in Figure 6
and the formation of a satellite bubble [43] in Figure 7. Our solver
also agrees well with experimental data for the bubble dynamics in
electrochemical cells [20] where coalescence of bubbles plays an
important role.

During the evolution of the Taylor-Green vortex, the number
of bubbles reported in Figure 10b reduces by a factor of three in
the considered time frame. Multiple coalescence events happening
simultaneously appear as fluctuations of the energy dissipation
rate reported in Figure 9b where the blue shade corresponds to
the standard deviation computed over a window of width 0.5. The
amplitude of the fluctuations increases for a higher rate of the
coalescence events represented by the slope in Figure 10b.
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Figure 8: Taylor-Green vortex. Snapshots of the flow field with bubble surfaces (gray) and vorticity magnitude (increasing
values from blue to red) at various time instants ¢ = 0, 10 and 20.
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Figure 10: Taylor-Green vortex. (a-b) The x-trajectory of one bubble and the number of bubbles over time on mesh 2563 -----
and 3843 . (c) Configurations of bubbles at ¢ = 0 (black shades) and t = 20 (orange shades). Circles represent positions and
the equivalent radius of bubbles from region %n <z< %n projected on the z-plane.




HPC Framework for Multiphase, Turbulent Flows

Independence on the mesh size is also verified for the trajectories
of individual bubbles as shown in Figure 10a for one bubble start-
ing at position (3.44, 4.45, 3.77). Sudden jumps in the trajectory
correspond to coalescence with other bubbles.

At the considered gas volume fraction of 1.4%, the presence of
bubbles does not affect the energy dissipation rate, while it increases
the enstrophy by about 10% for the first half of the simulation, as
shown in Figure 9c. This is expected as the vorticity is generated
on the bubbles.

The initial and final locations of bubbles presented in Figure 10c
suggest that the bubbles migrate towards the centers of the vortices.
This effect has also been investigated by [15] in the two-dimensional
case.

4.2 Plunging jet with air entrainment

A liquid jet is injected at a distance from the interface separating
a liquid column and a layer of air. The jet passes through the air
dragging it deeper into the water column and causes the air en-
trainment generating bubbles on the interface [25]. This problem
has been investigated experimentally in [4, 11, 19, 33, 38] and nu-
merically in [38, 40]. The numerical study in [38] was presented for
a two-dimensional axisymmetric domain using a mixture model
and level-set approaches. A more recent three-dimensional numer-
ical study [40] reported a good agreement with the experiments
from [38] at the initial stages of the jet penetration but the accuracy
of the method at lower resolutions was not sufficient to describe
the smaller bubbles after equilibration. Moreover, their hybrid algo-
rithm involved semi-empirical criteria for switching between the
mixture model and resolved interfaces.

For our numerical simulations, we use parameters from the ex-
perimental work [4]. The jet nozzle is represented as a square of
side 6.0 mm on the top boundary with a prescribed liquid velocity
of 3.78 m/s. The distance between the nozzle tip and the interface is
30 mm. The liquid density and dynamic viscosity are that of water
and the surface tension coefficient is that for water/air interfaces.
The gas/liquid density and dynamic viscosity ratios are both set to
0.01. In contrast to the experiment which is done in a large tank,
the simulation domain is surrounded by free-slip walls and has a
height of 400 mm and a square cross section of width 100 mm. To
ensure that the total volumetric flux is zero, outlet boundaries are
positioned in the region between 10 and 20 mm below the interface.
We perform the simulations on a mesh of size N X 4N x N with
N =128 and N = 256.

Figure 11 shows a snapshot of vorticity magnitude and the bub-
ble shapes from the simulation compared to an image from the
experiment done with the jet height of 43 mm (versus 30 mm in
the simulation). As seen from the evolution of the kinetic energy of
the mixture in Figure 12a, on the coarse mesh the simulation has
reached a steady state. On the fine mesh a longer evolution would
be needed which, however, was not done due to the computational
cost. We observe a qualitative match for the shape of the jet and the
distribution of the bubble size: bubbles near the axis move down
along with the jet and on the outer side the bubbles rise towards the
interface. A quantitative comparison, however, reveals differences
from the experiment. The jet penetration depth (Figure 12b) is the
same on both meshes but is overpredicted by a factor of 2.5. One
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Figure 11: The isosurface of volume fraction (gray) and the
vorticity magnitude (increasing values from blue to red)
from the simulation on the fine mesh (left) compared to the
experiment [4] (right).

explanation for this is that the experiment considers the jet in a
large tank while in the simulation, the liquid volume is surrounded
by free-slip walls. Another explanation for the discrepancy is the
sensitivity of the penetration depth to the boundary conditions.
For instance, as reported in the experiment, changing the impact
velocity by 5% (for instance, by increasing the jet height) would
change the penetration depth by 50%. The situation may improve
with a more accurate treatment of the nozzle currently represented
as a square area on the top boundary with a prescribed constant
velocity.

From the simulation data, we extract the shapes and locations of
bubbles and measure the distribution of the equivalent radius from
their volume. We first triangulate the isosurfaces of the gas vol-
ume fraction with the marching cubes algorithm and then separate
the connected components. All components which have a volume
smaller than one computational cell are excluded from the evalu-
ation. Figure 12c shows a good agreement with the experimental
data [4].

We compare the velocity of selected bubbles rising on the outer
side with experimental data [32] for the terminal velocity of a
single bubble rising in clean viscous liquids. The selected bubbles
are shown in Figure 13a. The velocity measured for the selected
bubbles is about 30% higher than the terminal velocity as presented
in Figure 13b. Note, however, that one can not expect an exact match
with the terminal velocity due to the influence of surrounding
bubbles and the bulk flow. This comparison serves the purpose
of showing that even at low resolutions a reasonable accuracy is
observed. Meanwhile, the numerical algorithm was verified with a
finite volume solver Basilisk [3, 35] for a single rising bubble in the
two-dimensional case shown in Figure 13c.
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and fine mesh
mesh —e— compared to the experiment [4] --&-- .
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Figure 13: Plunging jet. (a) The isosurface of volume fraction
with four selected bubbles highlighted by red circles. Their
shapes at two time instants 0.013 s apart are shown in blue
and orange. (b) The vertical velocity of the selected bubbles
on the fine mesh o and the terminal velocity of bubbles ris-
ing in an infinite tank [32] . (c) The shape of a rising
bubble in two dimensions from Case 1 of [23] produced by
Basilisk [3] and the present method

5 CONCLUSION

We present an HPC framework for DNS of multiphase turbulent
flows with a new method for tracking interfaces on structured grids.
The proposed numerical method for multiphase flows uses a novel

compared to the experiment [4] --4--. (c) The distribution of the average bubble radius on the fine

technique for curvature estimation which improves the accuracy
at low resolutions. Therefore, the same algorithm can be applied
across various spatial scales. We have demonstrated its potential to
resolve finer scales than commonly found in other studies. Future
work will be devoted to further validation and more detailed analy-
sis of the influence of bubbles on turbulent flows. The framework is
based on the Cubism library extended using the concept of corou-
tines to improve the flexibility in the communication sequence as
required by the numerical algorithm. Future improvements will
support an execution model exploiting thread-level parallelism and
enable optimizations using accelerators and vectorization. More-
over, the compute-transfer overlap will be implemented and further
improved by simultaneous execution of independent stages.
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