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Outline

1. Independent Control and Path Planning of 
artificial bacterial flagella

2. Artificial bacterial flagella swimming in 
blood



Artificial Bacterial Flagella (ABF)

[VB

ΩB] = [𝒜 ℬ
ℬ 𝒞] [FB

TB] Stokes flow. 
Re ≈ 10−4 ≪ 1 ⇒
Magnetic torque: T = m × B

ODE model

·q =
1
2

q ⊗ Ω̂,
·x = V,

VB = ℬTB,
ΩB = 𝒞TB .

Regime 1 Regime 2

Regime 1 Regime 2



Different geometries allow independent control
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The geometry governs the response to 
the rotation frequency of the magnetic 
field



Swimming different distances along a direction
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Alternate the magnetic field rotation frequency:

ωc,1

ωc,2

tt1 t2
Velocity matrix: 


(signed) distance made by swimmer : , 


where  (clockwise) or  (anti-clockwise) 





Uij = vi(ωc,j)

i di = ∑
j

Uijtjsj = Uijbj

sj = − 1 sj = + 1

⇒ b = U−1d

Constraint: All swimmers are subjected to the same magnetic field



Gathering swimmers to a target

1. Gather on a plane

2. Gather on a line

3. Gather at the target

In 3 dimensions: 3 steps to 
reach the target k1

k3

k2



Independent control in free space
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Reinforcement Learning

• positions  

• orientations 

x − xG
q

State
rt =

nB

∑
i=1

xi(t − 1) − xG
i 2

− xi(t) − xG
i 2

− KΔt

Reward

Terminal reward has bonus 


if 

Kf

xi(T) − xG
i 2

≤ Lmax

Policy

Environment

Initial conditions

Action
Magnetic field frequency of rotation 

Magnetic field orientation

ω



Independent control in free space: RL
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Independent control with a background flow

u∞(r) =
A cos ax sin by sin cz
B sin ax cos by sin cz
C sin ax sin by cos cz

Taylor-Green stationary flow
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Blood Model

Shear Energy





    with respect to 

    stress-free shape:

Es =
Kα

2 ∮ (α2 + a3α3 + a4α4) dA0 + μ∮ (β + b1αβ + b2β2) dA0

Lim et al. 2008. Soft Matter, 4.

Area and Volume penalization


 ,      
EA = kA
(A − A0)2

A0
EV = kV

(V − V0)2

V0
Fedosov, et al. 2010. Biophysical Journal, 98(10), 2215–2225.

Dissipation forces


  
fvisc
i = − ∑

j

γ (vij ⋅ eij) eij

Fedosov, et al. 2010. Biophysical Journal, 98(10), 2215–2225.

Bending Energy


  
Eb = 2κb ∮ (H − H0)2 dA

Jülicher, F. 1996. Journal de Physique II, 6(12), 1797–1824.



Solvent Model

Newton motion

   
·ri = vi,

·vi =
1
mi

fi,

Bounce Back on the membrane


   v(t + dt) = 2vRBC(tcollision) − v(t)

Dissipative Particle Dynamics interactions


   


fC
ij = aw(rij)eij,

fD
ij = − γwD(rij)(eij ⋅ vij) eij,

fR
ij = σξijwR(rij)eij

hydrostatic pressure

viscosity

fluctuations



ABFs swimming in blood
Ht = 10 %

Ht = 20 %
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ABF catching a circulating cancerous cell
Controlled to stay near the center of the pipe
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Summary
Uncontrolled

Controlled

• Reinforcement learning is a good tool 
for independent control of multiple 
swimmers under a uniform magnetic 
field


• Artificial bacterial flagella can navigate 
in blood efficiently if the magnetic 
torque is high enough


• Opens the road to optimize the design of 
single and swarms of swimmers  


