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ABSTRACT The stress-free state (SFS) of red blood cells (RBCs) is a fundamental reference configuration for the calibration
of computational models, yet it remains unknown. Current experimental methods cannot measure the SFS of cells without
affecting their mechanical properties, whereas computational postulates are the subject of controversial discussions. Here,
we introduce data-driven estimates of the SFS shape and the visco-elastic properties of RBCs. We employ data from single-
cell experiments that include measurements of the equilibrium shape of stretched cells and relaxation times of initially stretched
RBCs. A hierarchical Bayesian model accounts for these experimental and data heterogeneities. We quantify, for the first time,
the SFS of RBCs and use it to introduce a transferable RBC (t-RBC) model. The effectiveness of the proposed model is shown
on predictions of unseen experimental conditions during the inference, including the critical stress of transitions between tum-
bling and tank-treading cells in shear flow. Our findings demonstrate that the proposed t-RBC model provides predictions of
blood flows with unprecedented accuracy and quantified uncertainties.
SIGNIFICANCE Red blood cells (RBCs) are the dominant constituents of blood and their dynamics is governed by the
visco-elastic properties of their membrane. Existing RBC models rely on the assumption of a stress-free state (SFS) of the
cytoskeleton. This state is arbitrarily selected and current experimental methods cannot measure it directly. Essentially
RBC models are not transferable and their parameters are adapted arbitrarily across flow configurations. Here, we
introduce a transferable RBC (t-RBC) model parameterized by the SFS and the visco-elastic properties of the membrane.
The model is calibrated from single-cell experiments using Bayesian inference. The t-RBC model is shown to reproduce a
wide range of experimental data without further calibration of its parameters.
INTRODUCTION

Red blood cells (RBCs) are vital elements of blood as they
are responsible for the delivery of oxygen to the entire
human body. As they traverse the microcirculature, RBCs
undergo highly non-linear deformations, which are accom-
modated by their visco-elastic properties (2). These pro-
perties are mainly controlled by the structure of their
membrane, composed of a lipid bilayer anchored on a
network of proteins (cytoskeleton) and enclosing a viscous
solvent (hemoglobin). The RBC membrane and the hemo-
globin are both considered incompressible. The cytoskel-
eton and the lipid bilayer of the membrane provide elastic
resistance against local shearing, stretching, and bending.
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Over the last two decades, numerous mathematical models
for the RBC membrane have been proposed, aiming to
explain complex phenomena and complement experimental
studies through parametric exploration and system optimi-
zation (3).

State-of-the-art models of RBCs account for shear defor-
mation of the membrane with respect to a state at which the
membrane has zero in-plane elastic energy, namely the
stress-free state (SFS) (4–9). The existence of a non-spher-
ical SFS was demonstrated by the experimental results of
Fischer (10), who showed that the RBC membrane exhibits
shape memory, and of Dupire et al. (11), who suggested that
shape memory can explain certain dynamical transitions of
cells in shear flow. �Svelc and Svetina (12) suggested an
analysis to compare the deformation of the cytoskeleton
in a micropipette for a given SFS shape with that measured
by experiments (13) but did not infer the SFS from
the experimental data. Furthermore, current experimental
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methods do not allow us to directly measure the SFS of
cells without affecting their mechanical properties (see
section 2.3.3 of Lim et al. (4) and references therein). For
these reasons, previous authors have performed parametric
studies using a predefined SFS. Such calibrations affect
the dynamics of RBCs, and in turn are key factors
when comparing computational and experimental data
(4,6,7,14,15). An ever-increasing amount of evidence
from both experiments and simulations have shown that
the SFS of the membrane skeleton is neither a biconcave
resting shape nor a spherical shell (6,7,15). The consensus
on the SFS is an oblate-like shell, with the same surface
area and a larger volume than the RBC, although the exact
SFS remains elusive (6,7,14).

Several computational studies have performed parametric
investigations to quantify the effect of the SFS on the
response of RBCs, under static and dynamic conditions
(4,6,7,15–17). The SFS calibration shape was shown to
significantly affect predictions of the RBC dynamics in sim-
ple shear flow. In particular, computational findings (6,7)
demonstrated that the SFS alters not only the critical shear
rate separating tumbling and tank-treading RBC dynamics
but also the motion of the RBC membrane at the critical
shear rate. Peng et al. (7) searched for a family of SFSs
that could reproduce at the same time the biconcave resting
shape and the dynamics of single erythrocytes in simple
shear flow. Their findings show that an SFS closer to a
sphere, rather than to a biconcave disk, not only approaches
the experimental critical shear stress but also preserves the
experimentally observed biconcave shape during tank
treading (11). This finding was in contrast to previous
computational studies. As a result, Peng et al. (7) envisioned
that RBC dynamics at low shear rates might enable the
quantification of the SFS.

We complement the aforementioned studies by perform-
ing a data-driven inference of the SFS and its potential
variability in the population of healthy RBCs. We use hier-
archical Bayesian inference to integrate data from multiple
experimental sources and conditions and generate a data-
informed probabilistic RBC model that incorporates
modeling and experimental uncertainties in its predictions
(1). The structure of the model incorporates the variability
(18) of RBCs’ elastic properties. In contrast to the recent
study by Economides et al. (1), where the RBC model
was considered a ‘‘black box’’ with an arbitrary, predefined
SFS, here we perform a global sensitivity analysis for each
quantity of interest. Inert factors are excluded during the
inference process to reduce the computational cost and
avoid numerical artifacts while sampling the posterior dis-
tribution (19). The high computational cost associated
with the Bayesian inference is mitigated by the use of neural
networks (NNs) as emulators of the RBCmodel output. This
approach enables the simultaneous inference of all material
properties in the employed RBC model. In particular, the
SFS (parameterized by its reduced volume), shear (both
2 Biophysical Journal 122, 1–9, April 18, 2023
linear and non-linear components), and bending moduli
are inferred from experimental data of RBCs in equilibrium
(20) and under stretching (21,22). In turn, the membrane
viscosity is inferred from experiments of RBC relaxation af-
ter elongation (23).

Predictions of the fully calibrated model are validated
against experimental data coming from complex flow condi-
tions that were not part of the inference. Specifically, the
calibrated model captures the velocity and elongation of
RBCs flowing in a microtube (24), the tank-treading fre-
quency (TTF), and inclination angle of RBCs in simple
shear flows (25), and, most importantly, the critical shear
stress between the tumbling and tank-treading motion of
RBCs in shear flow (26). Our findings demonstrate, for
the first time, the transferability of the inferred model,
without problem-specific tuning, and its capability to predict
complex flow configurations that were not part of the
inference.
METHODS

RBC model

We model the RBC membrane as a surface whose dynamics evolve accord-

ing to bending resistance of the lipid bilayer, shear and dilation elasticity of

the cytoskeleton, and membrane viscosity. The shear and dilation elasticity

are minimal at the SFS of the RBC, a state that is not known. The resistance

to bending is described by the energy

Ubending ¼ 2kb#H2dA; (1)

where the integral is taken over the membrane, kb is the bending modulus,

and H is the mean curvature of the membrane. The in-plane elastic energy
accounts for the shear and dilation elasticity of the cytoskeleton,

Uin� plane ¼ Ka

2
#
�
a2 þ a3a

3 þ a4a
4
�
dA0

þ m#
�
bþ b1abþ b2b

2
�
dA0; (2)

where the integral is taken over the SFS surface, a and b are the local dila-

tion and shear strain invariants of the membrane, respectively; Ka is the
dilation elastic modulus; m is the shear elastic modulus; and the coefficients

a3, a4, b1, and b2 are parameters that control the non-linearity of the mem-

brane elasticity for large deformations (4).

The membrane is discretized into a triangle mesh composed of Nv

vertices with positions ri, velocities vi, and mass m, i ¼ 1; 2; .; Nv,

evolving according to Newton’s law of motion. The bending energy

described by Eq. 1 is discretized following J€ulicher (27) and Bian et al.

(28), and the in-plane energy is computed as described in Lim et al. (4).

The forces arising from these energy terms are formed by the negative

gradient of the energy with respect to the particle positions. The membrane

viscosity is modeled through pairwise forces between particles sharing an

edge in the triangle mesh. The viscous force exerted by particle j to particle
i is given by (29)

fviscij ¼ � g
�
vij , eij

�
eij; (3)

where g is the friction coefficient, vij ¼ vi � vj, and eij is the unit vector

between ri and rj. The membrane viscosity depends linearly on the frictionffiffiffip

coefficient, hm ¼ g 3=4. Finally, the constraints of preserving the area of

the membrane and the volume of the cytosol are enforced through energy

penalization terms,
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Uarea ¼ kA
ðA � A0Þ2

A0

;Uvolume ¼ kV
ðV � V0Þ2

V0

;

where A0 and V0 are the area and volume of the cell at rest and A and V

are the area and volume of the cell, respectively. The coefficients kA and

kV are chosen empirically with values that are large enough to enforce the

conservation of the membrane area and volume of the RBC. More details

on the discretization of the energies are presented in the supporting

material.

The SFS of the RBC is parameterized by its reduced volume v; i.e., the
volume of the SFS relative to that of a sphere with same area as the SFS.

Following Lim et al. (4), the SFS is obtained by minimizing the energy of

a membrane with bending resistance, shear, and dilation elastic energy

with a sphere as reference state. The area of the SFS is constrained to

that of a healthy RBC and the volume is parameterized by the reduced vol-

ume v (ratio of the volume with respect to that of a sphere with the same

area). With v ranging from 0.65 to unity, this procedure results in bicon-

cave shapes, oblates, and spheroids at low, intermediate, and high reduced

volume, respectively (Fig. 1). We note that the value of this reduced vol-

ume is chosen arbitrarily in RBC models and accordingly affects their

dynamics.

The parameters governing the RBCmechanics comprise the reduced vol-

ume of the SFS v, the shear modulus m, the shear-hardening coefficient b2,

the bending modulus kb, and the membrane viscosity hm. These parameters

are calibrated from experimental datasets that we introduce in the next sec-

tions. The remaining parameters of the model are chosen as follows: the

dilation elastic modulus is set to Ka ¼ m; the non-linear coefficients in

the shear energy formulation are set to a3 ¼ � 1, a4 ¼ 8, and b1 ¼
0:7 (4); and the area and volume of the cells are fixed to A0 ¼
135 mm2 and V0 ¼ 94 mm3, respectively (20).
Heterogeneous data and a probabilistic model for
the RBC: transferable RBC

We link seven experimental datasets measured from three experimental

conditions with the computational model using a hierarchical statistical

framework. The first dataset corresponds to the measurements of the diam-

eter D, maximal thickness hmax, and minimal thickness hmin of single cells

at equilibrium, as reported by Evans and Fung (20). The second and third

datasets are measurements of the two principal diameters of RBCs

stretched by two micro-beads. The micro-beads are attached to the mem-

brane at two opposite sides of the cell’s rim and are pulled by forces of

magnitude Fext in opposite directions. The two largest principal diameters

of the cells, Dax and Dtr , are reported by Mills et al. (21) and Suresh et al.

(22) against the stretching force magnitude Fext. The remaining datasets

were collected by Hochmuth et al. (23) from initially stretched RBCs re-

laxing to their equilibrium shape. The datasets consist in the ratio of the
FIGURE 1 SFS shapes of different reduced volumes v (indicated below
two principal diameters of the cells, Dax=Dtr measured at constant time

intervals.

We assume that each dataset is one realization of the random variable ya;i
(called observable), where a denotes the experimental conditions (equilib-

rium, stretching, or relaxation) and i is the index of the dataset (we drop the
indices in the remaining of this section to lighten the notations). The

transferable RBC (t-RBC) model relates the computational model and its

parameters to the probability distribution of the observable. The structure

of the t-RBC model, represented as a directed acyclic graph (DAG), is

shown on Fig. 2. We distinguish the parameters of the computational model,

w ¼ ðv;m;kb;b2;hmÞ, from those of the error model (explained below), such

as the standard deviation s. In addition, we introduce the hyper-parameter

c, which is further discussed below.

The hierarchical structure of the t-RBC model represents two levels of

uncertainty. First, the computational parameters wi for each dataset i are

drawn from a distribution parameterized by the hyper-parameter c,

pðwijcÞ, representing the variability of the cells’ properties. This variability
is due to the origin of the cells (from different donors), the age of the cells,

and the different experimental conditions. Second, for each dataset, the

observable is assumed to be normally distributed around the output of the

computational model. This second level of uncertainty reflects the measure-

ment errors and the inaccuracy of the computational model. The measure-

ment errors are modeled separately for each experimental condition, with

parameters as shown in Fig. 2. We note that, in the case of the relaxation

experiment, we introduced an intermediate variable, tc, which is the relax-

ation time of the cell. This addition simplifies the inference procedure as the

initial shape of the RBC in experiments is unknown. Instead, we assume

that tc depends on the RBC parameters only and is independent on the initial

shape of the cell. This assumption allows us to estimate tc from the compu-

tational model with an arbitrary initial stretched shape. The data are then

modeled as an exponential decay with rate t� 1
c and additional parameters

contained in wz. The exact dependencies between the random variables

are detailed in the supporting material.
Offline surrogate of the computational model

The evaluation of the computational model for each experimental condition

(cell equilibration, stretching, and relaxation), although relatively fast

thanks to the high-performance implementation in Mirheo (30), remains

computationally costly for performing Bayesian inference of the t-RBC

model presented above. Instead, we replace the computational model dur-

ing the Bayesian inference with an offline surrogate.

The surrogate is formed by three NNs, one for each experimental condi-

tion, that takes as input the computational parameters w (and the stretching

force magnitude Fext for the stretching case) and outputs the observable of

the computational model (ðD; hmin; hmaxÞ for the equilibration case,

ðDax;DtrÞ for the stretching case, and tc for the relaxation case). Each NN

is composed of three hidden layers of 32 neurons and hyperbolic tangent
each shape). All shapes are axi-symmetric around the horizontal axis.
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FIGURE 2 Structure of the t-RBC model, pre-

sented as a DAG. Rectangular and circular nodes

are observed and unobserved quantities, respec-

tively. The arrows represent the causal links be-

tween variables. Rounded rectangles are repeated

depending on the number of datasets for each

case. Shaded nodes are not part of the inference

and are used to predict configurations that were

not used during the inference phase.
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activation gates. The training data were generated for 50,000 samples uni-

formly distributed in the input space of the surrogate. The corresponding

observable values were then computed with the procedure described in

Fig. 3 using the computational model. The NN parameters were then trained

on these samples (split into 80%and 20% training andvalidation sets, respec-

tively) to minimize the mean squared error between the NNs and the compu-

tationalmodel outputs. The trainingwas performedwith theAdamoptimizer

and we used early stopping to avoid over-fitting. The prediction accuracy of

the surrogate is shown in the supporting material.
RESULTS AND DISCUSSION

Bayesian inference

We infer the parameters of the RBC model from the com-
bined experimental datasets using hierarchical Bayesian
inference. The posterior distribution of the parameters is
sampled using Bayesian annealed sequential important sam-
pling (BASIS) (31), an unbiased version of transitional Mar-
kov chain Monte-Carlo (TMCMC) (32). This sampling
method does not rely on the gradient of the model with
respect to the parameters. In this situation, regions of con-
stant likelihood lead to poor sampling (33). In turn, we elim-
inate the parameters that are inert for the respective
experimental condition. We performed a sensitivity analysis
of the model output with respect to the parameters in the
supporting material. The results indicate that the combina-
tion of the three experimental cases chosen in this study
are complementary for the inference of the cell parameters:
the equilibrium shape is sensitive to v and FvK (where
FvK ¼ mA0=4pkb is the Föppl-von Kármánn number), the
stretched cell diameters vary mainly with m and b2 (and v
and FvK at low stretching forces), and the relaxation charac-
teristic time is sensitive to m and hm.

The parameters of the t-RBC model are sampled as
described in the supporting material using the Korali frame-
work (34). The resulting posterior distribution of the RBC
4 Biophysical Journal 122, 1–9, April 18, 2023
parameters, pðwnewjdÞ, is shown on Fig. 4, with correspond-
ing mean, median, maximal likelihood (ML) and maximal a
posteriori (MAP) values reported in Table 1. All distribu-
tions have a clear peak with relatively high uncertainties
around the MAP, due to the heterogeneity of the datasets.

The inferred shear modulus has a mean at m ¼ 4:99

mN m� 1, which is within the range of values used in previ-

ous studies: 6:3 mN m� 1 (35,36), 2:42 mN m� 1 (37),

4:5 mN m� 1 (38). Similarly, the inferred bending modulus
is consistent with the values used in previous studies

(kb ¼ 2:4� 10� 19J (35), (36), 1:43� 10� 19J (37),

3:0� 10� 19J (38)). In addition, the inferred membrane vis-
cosity is close to that found in W€alchli et al. (39)
ð0:63Pa s mmÞ and in Hochmuth et al. (23) ð0:6 �
0:8Pa s mmÞ. The parameter b2 is found higher than in
Lim et al. (4). However, the cell deformations were most
likely smaller in the latter study than in the cell-stretching
experiments that were used for the inference.

The inferred reduced volume of the SFS has a mean
around v ¼ 0:94, which suggests that the SFS is more
likely an oblate than the biconcave shape, based on these
experimental datasets. This value is close to those used in
previous studies (v ¼ 0:95 (5), v ¼ 0:96 (9), (7,8),
v ¼ 0:997 (6)). Furthermore, the range of values obtained
from the Bayesian inference agrees with the conclusions
of Lim et al. (4), who showed that 0:925% v% 0:976 to
reproduce the stomatocyte-discocyte-echinocyte (SDE)
sequence observed when changing the bending properties
of the lipid bilayer of the membrane. Similarly, Geekiyan-
age et al. (40) concluded that the reduced volume of the
SFS is around v ¼ 0:94 to obtain the SDE sequence. We
note that the result of Lim et al. (4) was obtained with pre-
defined values of the mechanical properties of the mem-
branes, whereas in the current work the mechanical
properties of the membranes are inferred together with the



FIGURE 3 Sequence of simulations used to compute the output of all experiments for a set of parameters w. (1) Generation of the SFS mesh, needed by all

subsequent simulations. (2) Generation of the equilibrium shape. (3) Stretching of the equilibrated cell. (4) Relaxation of the stretched cell. To see this figure

in color, go online.
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SFS reduced volume. Furthermore, the studies that inferred
the SFS reduced volume based on the SDE sequence did not
consider the dynamics of the RBCs in dynamic flow condi-
tions (4,40),

The inferred parameters are then tested against the exper-
imental datasets used for the inference. Fig. 5 shows the pre-
dictions of the t-RBC model for one dataset for each
experimental condition. The parameters used for the predic-
tions are sampled from the probability distribution pðwijdÞ,
where d contains the seven datasets used for the inference.
In all cases, the experimental data lie inside the credible in-
tervals given by the t-RBC model.
Model generalization

Contrary to the one-at-a-time approach, a commonly used
practice for validating RBC models (35,41,42), we test the
predictive accuracy of the calibrated RBC model in config-
urations that were not seen during the inference. The poste-
rior distribution of the parameters was inferred using simple
experimental conditions where only one or two parameters
had a significant effect on the output in each case. Here,
the calibrated model is validated in complex dynamic situa-
tions, where multiple parameters affect the output, as shown
in parametric studies found in the literature (details below).
In particular, we test the model prediction on five quantities:
the TTF, inclination angle, and threshold shear stress for
tumbling-to-tank-treading transition of RBCs in simple
shear flow, the elongation of RBCs flowing through a micro-
tube, and their respective velocity against the applied pres-
sure gradient. The TTF and inclination angle are known to
be significantly affected by the membrane viscosity (43).
The threshold shear stress for tumbling-to-tank-treading
transition depends on the SFS (6,7), and the length of flow-
ing RBCs in microtubes depends on the bending stiffness of
the membrane (44). We emphasize that it is crucial to esti-
mate the prediction capabilities of the model on data coming
from conditions not seen during the inference phase to test
the transferability of the model.

The following cases are substantially more expensive in
terms of computations than those used to calibrate the model
(each evaluation takes at least 24 h on a single P100 graphics
processing unit). Therefore, instead of propagating the pos-
terior distribution of the parameters through the computa-
tional model, we evaluate each quantity of interest with
the mean estimates of the posterior distribution.
RBC in a circular microtube

Single RBCs flowing in straight microtubes adopt a steady
parachute-like shape. The cell length l and velocity vx
depend on the flow rate and the radius R of the tube. A pres-
sure difference Dp between the ends of the tube causes the
solvent and the cell to flow. The tube has a length L[R
large enough that the cells reach an equilibrium shape
before the measurements. The length and velocity of the
cells, l and vx, were recorded for different pressure gradients
Vp ¼ Dp=L experimentally for R ¼ 3:30 mm (24) and
R ¼ 3:35 mm (45). Simulations of this system are per-
formed with the current calibrated model (using the mean
FIGURE 4 Posterior distribution of the RBC pa-

rameters pðwnewjdÞ. Only the marginal distribu-

tions are shown since the variables are

independent. To see this figure in color, go online.
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TABLE 1 Statistics on the posterior distribution of the

parameters based on all the experimental datasets

Mean Median ML MAP standard deviation

v 0.94 0.95 0.96 0.96 0.04

m 4.99 4.68 4.60 4.60 2.24

kb 2.10 1.85 1.46 1.46 0.93

b2 1.84 1.73 1.69 1.69 0.82

hm 0.69 0.62 0.66 0.66 0.46

The parameters m, kb, and hm are expressed in mN m� 1, 1� 10� 19, and

Pa s mm, respectively.
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of the posterior distributions) for R ¼ 3:30 mm (see sup-
porting material for details). The simulations show a good
agreement with the experimental data (Fig. 6). The vari-
ability of the cell lengths in the experiments could be attrib-
uted to the variability in the mechanical properties of the
cells but also to that of the cell sizes.
RBC in a linear shear flow

Single RBCs suspended in a linear shear flow exhibit rich
dynamics. At low shear rates, the cells tumble (rotate in a
rigid-like motion). Increasing the shear rate above a
threshold value causes the cell membrane to tank tread:
the cell adopts an elongated shape forming an angle q

with the flow direction, whereas the membrane rotates
around the cell with a frequency f (the TTF). Below
we present predictions of the t-RBC model for the incli-
nation angle, the TTF, and the critical shear stress for
tumbling to tank-treading transition. These predictions
were obtained for a fixed cytosol viscosity (see Support-
ing Material). However, we remark that this quantity is
known to depend on the hemoglobin concentration,
which varies notably with the age of the cells, and it
may be of importance to model this variation in further
research (46).
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Inclination angle

Measurements of inclination angles of tank-treading RBCs
in simple shear flows have been reported by Fischer and
Korzeniewski (25). The inclination angle q obtained with
the calibrated RBCmodel (with the mean estimate of the pa-
rameters) is shown against the shear rate _g on Fig. 7. The
model predictions are within the values observed experi-
mentally. In particular, for a solvent viscosity h ¼
23:9 mPa s, the model captures the trend of the experi-
mental data; i.e., an increase of q with _g followed by a
decrease of q above a critical shear rate. This trend is
less pronounced at the lower solvent viscosity h ¼
10:7 mPa s, both experimentally and in the simulations.

Tank treading frequency

Fig. 8 shows the dimensionless TTF, 4pf = _g, of a tank-
treading RBC suspended in a linear shear flow (with solvent
viscosity h ¼ 28:9 mPa s) for various shear rates _g. The
t-RBC model predictions are performed with the mean esti-
mate of the parameters. Despite the complex dependency of
the TTF on the computational parameters, the t-RBC model
shows a good agreement with the TTF experimental data re-
ported by Fischer (47). Furthermore, the biconcave shape of
the cell is preserved in the tank-treading simulations, as
observed experimentally (11) (see Fig. S2). However, we
note that the biconcavity of the cell during tank treading
is only reported qualitatively in experiments, and quantita-
tive experimental data could help in further improving the
calibration of the model.

Tumbling to tank-treading transitions in linear shear flow

RBCs in a linear shear flow undergo different regimes de-
pending on the shear rate _g and solvent viscosity (49). At
large shear rates, the cell orientation oscillates around a
steady anglewhile themembrane rolls, or tank treads, around
FIGURE 5 Forward predictions of the t-RBC

model on the single-cell experiments. Top: proba-

bility distribution of the diameter (left), minimal

thickness (middle), and maximal thickness (right)

of an equilibrated cell. The symbols and error

bars denote the measurements and corresponding

standard deviations reported by Evans and Fung

(20), respectively. Bottom left: cell diameters

against the stretching force magnitude. Mean pre-

diction (dashed line) and experimental data from

Mills et al. (21) (symbols). The shaded regions

denote the 50%, 75%, 90%, and 99% credible in-

tervals of the predictions. Bottom right: ratio of

the cell diameters z ¼ Dax=Dtr against time of an

initially stretched RBC. The symbols are the exper-

imental data from Hochmuth et al. (23). To see this

figure in color, go online.



FIGURE 6 RBC flowing in a straight circular

microtube of radius R ¼ 3:3 mm. Left: velocity

of the cell vx against the applied pressure gradient

Vp. Experimental data from Tomaiuolo et al. (24)

(triangles) and simulation results (circles). Right:

length of the RBC l against the velocity vx. Ex-
perimental data from Tomaiuolo et al. (24) and

Hochmuth et al. (45) (squares and triangles, respec-

tively) and simulation results (open circles). Error

bars in the experiments indicate the standard devi-

ation. To see this figure in color, go online.
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the cell. In contrast, RBCs rotate as a rigid object, or tumble,
when the shear rate is below a critical value. The critical shear
stress t ¼ _gh has been measured experimentally by Abkar-
ian et al. (48) and Fischer and Korzeniewski (26) for different
solvent viscosity h. We performed numerical simulations
with the calibrated model at different shear rates for several
viscosity values h. For a given solvent viscosity, the flow
regime of the cell (tumbling or tank treading) was reported
for several shear rates. The highest and lowest shear rates at
which the RBC tumbles and tank treads, respectively, are re-
ported in Fig. 8. Themodel predictions are in good agreement
with experimental data. As in the experimental data, the crit-
ical shear stress decreases sharply for solvent viscosity below
30 mPa s and reaches a plateau above that viscosity. Note
that we show only the transitions for the discocytes in the
data from Fischer and Korzeniewski (26). The data points
marked with crosses at h ¼ 23:9 mPa s are from cells
that previously underwent shape transitions, possibly modi-
fying their mechanical properties. This observation probably
explains the deviations between the shear stress obtained
from experiments and that obtained from the simulations at
this particular viscosity.
Limitations of the study

To minimize the computational cost of inference, we have
fixed several parameters to specific values. Specifically,
the membrane model assumes zero spontaneous curvature
(Eq. 1), which typically results from differences in mono-
layer compositions found in-vivo. However, discocytes, as
shown in Figure 2.45 of Lim et al. (4), have been found to
exhibit a spontaneous curvature close to zero and we there-
fore ignored the spontaneous curvature in the current work.
Similarly, the area and volume of the RBCs exhibit a distri-
bution that reflects the variability and aging of the cells.
Although it is possible to include these variations in the sta-
tistical model, doing so would increase the complexity of
the model and the computational cost for inference. For
similar reasons, we fixed the ratio Ka=m as in Economides
et al. (1). Although this choice is arbitrary, the current model
accurately predicts various flow conditions. The value of
these parameters should ideally be inferred from additional
experimental data and can be the subject of future research.
CONCLUSIONS

We introduce a t-RBC model that quantifies the visco-elastic
membrane parameters and the SFS of healthy RBCs through
Bayesian inference. The t-RBCmodel takes into account the
cell heterogeneity, the measurement errors, and the compu-
tational model inaccuracies. The model parameters were
calibrated on seven datasets comprising measurements of
RBC dimensions at equilibrium, RBC elongation under
stretching forces, and RBC relaxation time. The posterior
distribution of the parameters has a relatively large standard
deviation that possibly reflects the variability of mechanical
properties among RBCs. The reduced volume of the SFS
takes values that suggest that the cytoskeleton of RBCs, in
its unstressed state, has an oblate shape. The calibrated shear
modulus, bending modulus, and viscosity of the membrane
were found to be in good agreement with previous studies,
and we provide uncertainty on these parameters.

The calibrated model accurately predicts complex, sin-
gle-cell dynamics and agrees well with experimental data
that were not used during the inference phase. In particular,
the calibrated model accurately predicts the velocity and
FIGURE 7 Mean inclination angle of tank-

treading RBCs in a linear shear flow against the

shear rate _g. The triangles are data from Fischer

and Korzeniewski (25) and the empty circles are

the simulation predictions obtained with the mean

parameters of the posterior distributions. The left

and right figures correspond to solvent viscosities

h ¼ 10:7 mPa s and h ¼ 23:9 mPa s, respec-

tively. To see this figure in color, go online.
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FIGURE 8 Left: TTF (normalized by the angular

frequency of a sphere in a shear flow) of the RBC in

a linear shear flow against the shear rate _g, with a

solvent viscosity h ¼ 28:9 mPa s. Experimental

data from Fischer (47) (dots) and simulation results

with the mean parameters (open circles). Right:

critical shear stress t ¼ _gh of the tumbling to

tank-treading transition against the solvent viscos-

ity h. Experimental data from Fischer and Korze-

niewski (26) (triangles and crosses) and Abkarian

et al. (48) (circles), simulation results (bars). The

crosses correspond to cells that underwent shape

transitions due to chemicals. To see this figure in

color, go online.
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length of cells flowing in narrow tubes, the inclination angle,
and TTF of tank-treading cells in linear shear flows and the
critical shear stress of the tumbling to tank-treading motion
of RBCs in linear shear flows. We emphasize that the afore-
mentioned quantities highly depend on the visco-elastic
properties of the RBC model, as demonstrated in numerous
parametric studies in the literature. The transferability of the
proposed t-RBC model makes it a candidate of choice for
predicting the dynamics of RBCs in previously unseen
flow configurations that involve large deformations and/or
complex dynamics. In addition, the variability of the in-
ferred parameters can be used to provide a more realistic
description of blood flows with many cells, each cell having
parameters drawn from the posterior density. This approach
would model the heterogeneity of the cells in blood. The
samples from the posterior density of the parameters are
available online, together with the code used to produce
the results of this study (50).
SUPPORTING MATERIAL

Supporting Material can be found online at https://doi.org/10.1016/j.bpj.

2023.03.019.
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