Journals 2022

2022
M. Chatzimanolakis, P. Weber, and P. Koumoutsakos, “Vortex separation cascades in simulations of the planar flow past an impulsively started cylinder up to Re = 100 000,” Journal of Fluid Mechanics, vol. 953, 2022. Publisher's VersionAbstract
Direct numerical simulations of the flow past an impulsively started cylinder at high Reynolds numbers (25k–100k) reveal an intriguing portrait of unsteady separation. Vorticity generation and vortex shedding entails a cascade of separation events on the cylinder surface that are reminiscent of Kelvin–Helmholtz instabilities. Primary vortices roll up along the cylinder surface as a result of instabilities of the initially attached vortex sheets, followed by vortex eruptions, creation of secondary vorticity and formation of dipole structures that are subsequently ejected from the surface of the cylinder. We analyse the vortical structures and their relationship to the forces experienced by the cylinder. This striking cascade of vortex instabilities may serve as reference for reduced-order models of flow separation and as guide for flow control of separated flows at high Reynolds numbers.
Vortex separation cascades in simulations of the planar flow past an impulsively started cylinder up to Re = 100 000
S. Cantero-Chinchilla, et al., “Robust optimal sensor configuration using the value of information,” Structural Control and Health Monitoring, 2022. Publisher's VersionAbstract

Sensing is the cornerstone of any functional structural health monitoring technology, with sensor number and placement being a key aspect for reliable monitoring. We introduce for the first time a robust methodology for optimal sensor configuration based on the value of information that accounts for (1) uncertainties from updatable and nonupdatable parameters, (2) variability of the objective function with respect to nonupdatable parameters, and (3) the spatial correlation between sensors. The optimal sensor configuration is obtained by maximizing the expected value of information, which leads to a cost-benefit analysis that entails model parameter uncertainties. The proposed methodology is demonstrated on an application of structural health monitoring in plate-like structures using ultrasonic guided waves. We show that accounting for uncertainties is critical for an accurate diagnosis of damage. Furthermore, we provide critical assessment of the role of both the effect of modeling and measurement uncertainties and the optimization algorithm on the resulting sensor placement. The results on the health monitoring of an alu- minum plate indicate the effectiveness and efficiency of the proposed methodology in discovering optimal sensor configurations.

Robust optimal sensor configuration using the value of information
Y. Gal, P. Koumoutsakos, F. Lanusse, G. Louppe, and C. Papadimitriou, “Bayesian uncertainty quantification for machine-learned models in physics,” Nature Reviews Physics , 2022. Publisher's Version Bayesian uncertainty quantification for machine-learned models in physics.pdf
P. R. Vlachas, G. Arampatzis, C. Uhler, and P. Koumoutsakos, “Multiscale simulations of complex systems by learning their effective dynamics,” Nat Mach Intell, 2022. Publisher's VersionAbstract
Predictive simulations of complex systems are essential for applications ranging from weather forecasting to drug design. The veracity of these predictions hinges on their capacity to capture effective system dynamics. Massively parallel simulations predict the system dynamics by resolving all spatiotemporal scales, often at a cost that prevents experimentation, while their findings may not allow for generalization. On the other hand, reduced-order models are fast but limited by the frequently adopted linearization of the system dynamics and the utilization of heuristic closures. Here we present a novel systematic framework that bridges large-scale simulations and reduced-order models to learn the effective dynamics of diverse, complex systems. The framework forms algorithmic alloys between nonlinear machine learning algorithms and the equation-free approach for modelling complex systems. Learning the effective dynamics deploys autoencoders to formulate a mapping between fine- and coarse-grained representations and evolves the latent space dynamics using recurrent neural networks. The algorithm is validated on benchmark problems, and we find that it outperforms state-of-the-art reduced-order models in terms of predictability, and large-scale simulations in terms of cost. Learning the effective dynamics is applicable to systems ranging from chemistry to fluid mechanics and reduces the computational effort by up to two orders of magnitude while maintaining the prediction accuracy of the full system dynamics. We argue that learning the effective dynamics provides a potent novel modality for accurately predicting complex systems.
Multiscale simulations of complex systems by learning their effective dynamics
J. Lipkova, B. Menze, B. Wiestler, P. Koumoutsakos, and J. Lowengrub, “Modelling glioma progression, mass effect and intracranial pressure in patient anatomy,” J. R. Soc. Interface, vol. 19, no. 188, 2022. Publisher's VersionAbstract
Increased intracranial pressure is the source of most critical symptoms in patients with glioma, and often the main cause of death. Clinical interventions could benefit from non-invasive estimates of the pressure distribution in the patient's parenchyma provided by computational models. However, existing glioma models do not simulate the pressure distribution and they rely on a large number of model parameters, which complicates their calibration from available patient data. Here we present a novel model for glioma growth, pressure distribution and corresponding brain deformation. The distinct feature of our approach is that the pressure is directly derived from tumour dynamics and patient-specific anatomy, providing non-invasive insights into the patient's state. The model predictions allow estimation of critical conditions such as intracranial hypertension, brain midline shift or neurological and cognitive impairments. A diffuse-domain formalism is employed to allow for efficient numerical implementation of the model in the patient-specific brain anatomy. The model is tested on synthetic and clinical cases. To facilitate clinical deployment, a high-performance computing implementation of the model has been publicly released.
Modelling glioma progression, mass effect and intracranial pressure in patient anatomy
J. Bae and P. KOUMOUTSAKOS, “Scientific multi-agent reinforcement learning for wall-models of turbulent flows,” Nature Communications, vol. 13, 2022. Publisher's VersionAbstract

The predictive capabilities of turbulent flow simulations, critical for aerodynamic design and weather prediction, hinge on the choice of turbulence models. The abundance of data from experiments and simulations and the advent of machine learning have provided a boost to turbulence modeling efforts. However, simulations of turbulent flows remain hindered by the inability of heuristics and supervised learning to model the near-wall dynamics. We address this challenge by introducing scientific multi-agent reinforcement learning (SciMARL) for the discovery of wall models for large-eddy simulations (LES). In SciMARL, discretization points act also as cooperating agents that learn to supply the LES closure model. The agents self- learn using limited data and generalize to extreme Reynolds numbers and previously unseen geometries. The present simulations reduce by several orders of magnitude the computa- tional cost over fully-resolved simulations while reproducing key flow quantities. We believe that SciMARL creates unprecedented capabilities for the simulation of turbulent flows.

Scientific multi-agent reinforcement learning for wall-models of turbulent flows
P. R. Vlachas, J. Zavadlav, M. Praprotnik, and P. Koumoutsakos, “Accelerated Simulations of Molecular Systems through Learning of Effective Dynamics,” J. Chem. Theory Comput. vol. 18, no. 1, pp. 538-549, 2022. Publisher's VersionAbstract
Simulations are vital for understanding and predicting the evolution of complex molecular systems. However, despite advances in algorithms and special purpose hardware, accessing the time scales necessary to capture the structural evolution of biomolecules remains a daunting task. In this work, we present a novel framework to advance simulation time scales by up to 3 orders of magnitude by learning the effective dynamics (LED) of molecular systems. LED augments the equation-free methodology by employing a probabilistic mapping between coarse and fine scales using mixture density network (MDN) autoencoders and evolves the non-Markovian latent dynamics using long short-term memory MDNs. We demonstrate the effectiveness of LED in the Müller–Brown potential, the Trp cage protein, and the alanine dipeptide. LED identifies explainable reduced-order representations, i.e., collective variables, and can generate, at any instant, all-atom molecular trajectories consistent with the collective variables. We believe that the proposed framework provides a dramatic increase to simulation capabilities and opens new horizons for the effective modeling of complex molecular systems.
Accelerated Simulations of Molecular Systems through Learning of Effective Dynamics