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We first formulate a fractional class of explicit Adams–Bashforth (A-B) and implicit Adams–
Moulton (A-M) methods of first- and second-order accuracy for the time-integration of 
C
0Dτ

t u(x, t) = g(t; u), τ ∈ (0, 1], where C
0Dτ

t denotes the fractional derivative in the Caputo 
sense. In this fractional setting and in contrast to the standard Adams methods, an 
extra history load term emerges and the associated weight coefficients are τ -dependent. 
However when τ = 1, the developed schemes reduce to the well-known A-B and A-M 
methods with standard coefficients. Hence, in terms of scientific computing, our approach 
constitutes a minimal modification of the existing Adams libraries. Next, we develop an 
implicit–explicit (IMEX) splitting scheme for linear and nonlinear fractional PDEs of a 
general advection–reaction–diffusion type, and we apply our scheme to the time–space 
fractional Keller–Segel chemotaxis system. In this context, we evaluate the nonlinear 
advection term explicitly, employing the fractional A-B method in the prediction step, 
and we treat the corresponding diffusion term implicitly in the correction step using the 
fractional A-M scheme. Moreover, we perform the corresponding spatial discretization by 
employing an efficient and spectrally-accurate fractional spectral collocation method. Our 
numerical experiments exhibit the efficiency of the proposed IMEX scheme in solving 
nonlinear fractional PDEs.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

The directed movement of cells and microorganisms in response to a diffusible chemical signal is referred to as chemo-
taxis [1]. Historically, the first mathematical model of chemotaxis was proposed by Evelyn Keller and Lee Segel in order to 
investigate the aggregation dynamics of the social amoeba Dictyostelium discoideum [2]. The model consisted of a nonlinear 
parabolic system of partial differential equations and is commonly referred to as the Keller–Segel model.

The Keller–Segel model has been analyzed extensively in the last three decades. A comprehensive review of mathematical 
results on dynamics, existence of solutions, and regularity can be found in the two articles by Horstmann [3,4]. It is well 
known that in one dimension the Keller–Segel model is well-posed globally in time [5–7]. However, several results that 
appeared in the 1990s have demonstrated that in higher dimensions, the Keller–Segel model is well-posed only for “small” 
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initial data [8–10]. In the presence of “large” initial data, the solutions blow up; in other words, they do not remain bounded 
[11,12,5,13]. Corrias and Perthame [14] showed that in d dimensions, the Keller–Segel model is critical in Ld/2, which is to 
say that the “smallness” or “largeness” of the initial data is determined in terms of the Ld/2 norm. Similar conditions were 
derived in [15] for a parabolic-elliptic variation of the Keller–Segel model.

Recent literature has also investigated the influence of substrate heterogeneity on the dynamics of the model. Specifi-
cally, Matzavinos and Ptashnyk [16] have investigated the one-dimensional Keller–Segel model in the context of a random 
heterogeneous domain. In [16], the diffusion and chemotaxis coefficients were assumed to be given by stationary ergodic 
random fields, and the authors applied stochastic two-scale convergence methods to derive the homogenized macroscopic 
equations. Matzavinos and Ptashnyk [16] also present numerical algorithms for approximating the homogenized asymptotic 
coefficients.

The influence of substrate heterogeneity was also investigated in [17–19] by means of fractional calculus [20,21]. Inter-
estingly, Bournaveas and Calvez [17] have shown that the fractional one-dimensional Keller–Segel model exhibits dynamics 
similar to the classical two-dimensional model. In particular, Bournaveas and Calvez [17] have shown that the solutions of 
the fractional Keller–Segel model may blow up in finite time, even in the one-dimensional case. In view of these results, 
the need to develop accurate numerical methods for the fractional Keller–Segel model is apparent.

A variety of numerical methods, originally developed for integer-order PDEs, are currently extended by several authors 
to fractional partial differential equations (FPDEs) [22–25]. Traditionally, there has been a substantial amount of work in de-
veloping finite-difference methods (FDM) for FPDEs. The notion of discretized fractional calculus was originally introduced 
by Lubich [26,27] and was employed by Sanz-Serna [28] in developing a first-order FDM algorithm for partial integro-
differential equations. Since then, a significant amount of work has been devoted to improving the convergence rates of 
FDM schemes (see e.g., [29–32]).

Of particular interest is the work of Diethelm et al. [33,34], who developed and analyzed an Adams–Bashforth type 
method. However, this approach consists of a two-step predictor–corrector method, which differs significantly from the 
standard method, and it additionally requires a considerable modification of existing libraries. Moreover, the rate of conver-
gence is dependent on the range of the fractional order α [35]. Recently, Baffet and Hesthaven have developed high-order 
local schemes, inspired by the multi-step Adams methods, for fractional differential equations in [36].

In addition to FDM schemes, Sugimoto [37] employed a spectral method to solve the fractional Burgers equation, and 
Blank [38] adopted a spline-based collocation scheme for a class of fractional ordinary differential equations (FODEs). Li and 
Xu [39,40] developed a space–time spectral method for a time-fractional diffusion equation with spectral convergence that 
was based on the early work of Fix and Roop [41]. Subsequently, Khader [42] proposed a Chebyshev collocation method for 
a space-fractional diffusion equation, while Piret and Hanert [43] developed a radial basis function method for fractional 
diffusion equations.

The use of spectral methods in FPDEs has been precipitated recently. Various approaches for solving fractional boundary 
value problems have been proposed, including a Chebyshev spectral method [44], a Legendre spectral method [45], and an 
adaptive pseudospectral method [46]. Similarly, spectral methods for fractional initial value problems have been proposed, 
including generalized Laguerre spectral algorithms [47] and Legendre spectral Galerkin methods [48]. It is well known that 
long-time (and/or adaptive) integration using such spectral schemes becomes computationally intractable. To address this 
issue, Xu and Hesthaven [49] and Chen et al. [50] have developed stable multi-domain methods for FPDEs. Moreover, a Jacobi 
tau approximation method has been recently developed by Bhrawy and Zaky for solving multi-term time–space fractional 
PDEs in [51].

A characteristic of these spectral approaches has been the use of standard integer-order (polynomial) basis functions. 
Recently, Zayernouri and Karniadakis [52,53] developed spectrally accurate Petrov–Galerkin schemes for both non-delay 
and delay fractional differential equations. These schemes are based on fractional basis functions (i.e., basis functions of 
non-integer order), which are termed Jacobi poly-fractonomials and were introduced in [54,55] as the eigenfunctions of cer-
tain fractional Sturm–Liouville operators. A space–time discontinuous Petrov–Galerkin (DPG) method and a discontinuous 
Galerkin (DG) method for the time–space fractional advection equation were also introduced in [56]. In [57], Jacobi poly-
fractonomials were used to define a new class of fractional Lagrange interpolants. These were subsequently employed to 
numerically solve various FODE and FPDE problems, including multi-term FPDEs, the space-fractional Burgers equation, and 
variable-order problems [57,58].

The main contribution of the present work is to develop a fractional class of explicit Adams–Bashforth (A-B) and implicit 
Adams–Moulton (A-M) methods of first- and second-order accuracy for the time integration of FODEs and FPDEs. Our 
approach seamlessly generalizes the existing family of Adams schemes and requires a minimal modification of the existing 
Adams libraries, i.e., modifying the weights and adding a history calculator. We obtain the history load exactly up to the 
accuracy of the scheme via hyper-geometric functions. Moreover, we develop an implicit–explicit (IMEX) splitting scheme 
for the time–space fractional Keller–Segel chemotaxis system of FPDEs. Even though, the focus of this paper is the fractional 
Keller–Segel system, our IMEX approach is also applicable to other linear and nonlinear FPDEs.

The paper is organized as follows. We first provide some preliminary definitions from fractional calculus in section 2. In 
section 3, we present our general (fractional) explicit Adams–Bashforth and implicit Adams–Moulton methods for perform-
ing time-integration of time-fractional problems. Next, in section 4, we develop a spatial discretization scheme by employing 
a fractional spectral collocation method. In section 5, we introduce our implicit–explicit (IMEX) time-splitting approach and 
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apply it to the nonlinear, fractional Keller–Segel model of chemotaxis. Numerical tests on the convergence of our method 
are presented in section 6. Finally, conclusions and remarks are made in section 7.

2. Definitions

Before defining the problem, we provide some preliminary definitions of fractional calculus following [20,21]. The left-
sided Riemann–Liouville integral of order µ ∈ (0, 1) is defined as

(xL
I µ

x ) f (x) = 1
#(µ)

x∫

xL

f (s)ds
(x − s)1−µ

, x > xL . (1)

The corresponding inverse operator of (1), i.e., the left-sided fractional derivative of order µ, is then defined as

(xL
Dµ

x ) f (x) = d
dx

(xL
I 1−µ

x f )(x) = 1
#(1 − µ)

d
dx

x∫

xL

f (s)ds
(x − s)µ

, x > xL . (2)

An alternative approach in defining fractional derivatives is to begin with the left-sided Caputo derivative of order µ ∈ (0, 1), 
which is defined as

( C
xL

Dµ
x f )(x) = (xL

I 1−µ
x

df
dx

)(x) = 1
#(1 − µ)

x∫

xL

f ′(s)ds
(x − s)µ

, x > xL . (3)

The definitions of the left-sided fractional derivatives of both Riemann–Liouville and Caputo type are linked by the following 
relationship, which can be derived by a direct calculation

(RL
xL

Dµ
x f )(x) = f (xL)

#(1 − µ)(x − xL)µ
+ ( C

xL
Dµ

x f )(x). (4)

3. Explicit and implicit time-integration

We first consider a fractional-order problem of the form

C
0Dτ

t u(t) = g(t; u), τ ∈ (0,1], t ∈ (0, T ], (5)

u(x,0) = u0,

where g(t; u) could, in general, involve a spatial operator subject to some appropriate boundary conditions. By the definition 
of the Caputo fractional derivative, we have

C
0Dτ

t u = 1
#(1 − τ )

t∫

0

∂u
∂s ds

(t − s)τ
= Hk(t) + C

tk
Dτ

t u, (6)

where Hk(t) = 1
#(1−τ )

∫ tk
0

∂u
∂s ds

(t−s)τ . Moreover,

C
tk

Dτ
t u = C

tk
Dτ

t (u − uk + uk) = C
tk

Dτ
t (u − uk) = RL

tk
Dτ

t (u − uk), (7)

since (u − uk) vanishes at t = tk and using (4). Next, by substituting (7) and (6) into (5), we obtain

RL
tk

Dτ
t u(t) = g(t; u) − Hk(t), τ ∈ (0,1], t ∈ (0, T ]. (8)

Applying the inverse operator RL
tk

I τ
t (·) to (8) and evaluating at t = tk+1, we obtain:

uk+1 − uk =
[

RL
tk

I τ
t g(t; u) − H k

]∣∣∣
t=tk+1

, τ ∈ (0,1], (9)

where H k = RL
tk

I τ
t (Hk) will be referred to as the history load term in what follows.

In the next section, we introduce fractional generalizations of the Adams–Bashforth (A-B) and Adams–Moulton (A-M) 
methods through, respectively, an explicit and an implicit extrapolation of the term RL

tk
I τ

t g(t; u).
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Table 1
τ -dependent coefficients of the generalized (fractional) Adams–Bashforth method.

β j J = 0 J = 1 J = 2

β AB
0

1
#(1+τ )

1
#(1+τ ) + 1

#(2+τ )
1

#(1+τ ) + 3/2
#(2+τ ) + 1

#(3+τ )

β AB
1 0 −1

#(2+τ )
−2

#(2+τ ) + −2
#(3+τ )

β AB
2 0 0 1/2

#(2+τ ) + 1
#(3+τ )

3.1. Fractional Adams–Bashforth method

In this method, we apply a time-extrapolation of the right-hand side g(t; u) to the interval [tk, tk+1] in terms of standard 
Lagrange interpolants and using “past” grid points in the following manner:

g(t; u) ≈
J∑

j=0

g(tk− j; u)L j(t), (10)

where gk− j = g(tk− j; u(tk− j, x)) and

L j(t) =
N∏

i=0
i≠ j

t − tk−i

tk− j − tk−i
. (11)

Hence, we obtain

RL
tk

I τ
t g(t; u) ≈ 1

#(τ )

tk+1∫

tk

∑ J
j=0 gk− j L j(s)ds

(tk+1 − s)1−τ

= (&t)τ
J∑

j=0

β AB
j gk− j,

where β AB
j are the τ -dependent coefficients given in Table 1. Hence, we obtain the fractional A-B method as

uk+1 − uk

(&t)τ
=

J∑

j=0

β AB
j gk− j − 1

(&t)τ
H k . (12)

3.2. Fractional Adams–Moulton method

We can alternatively “interpolate” g(t; u) between tk and tk+1 in terms of the following Lagrange interpolants

g(t; u) ≈
J∑

j=0

g(tk+1− j; u)L j(t), (13)

where gk+1− j = g(tk+1− j; u(tk+1− j, x)) and

L j(t) =
N∏

i=0
i≠ j

t − tk+1−i

tk+1− j − tk+1−i
. (14)

Therefore, we obtain

RL
tk

I τ
t g(t; u) ≈ 1

#(τ )

tk+1∫

tk

∑ J
j=0 gk+1− jL j(s)ds

(tk+1 − s)1−τ

= (&t)τ
J∑

j=0

β AM
j gk+1− j,
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Table 2
τ -dependent coefficients of the generalized (fractional) Adams–Moulton method.

β j J = 0 J = 1 J = 2

β AM
0

1
#(1+τ )

1
#(2+τ )

1
2#(2+τ ) + 1

#(3+τ )

β AM
1 0 1

#(1+τ ) − 1
#(2+τ )

1
#(1+τ ) + −2

#(3+τ )

β AM
2 0 0 −1

2#(2+τ ) + 1
#(3+τ )

where the coefficients β AM
j are τ -dependent and are given in Table 2. Hence, we obtain the generalized A-M method as

uk+1 − uk

(&t)τ
=

J∑

j=0

β AM
j gk+1− j − 1

(&t)τ
H k . (15)

Remark 3.1. We note that the generalized A-B and A-M methods, given in (12) and (15), respectively, share the same history 
load H k . Moreover, H k = 0 when the temporal fractional order τ = 1; hence, we recover the standard A-B and A-M methods.

3.3. Computation of the history load H k

We recall that the history load term is given by H k = RL
tk

I τ
t (Hk), where

Hk(t) = 1
#(1 − τ )

tk∫

0

∂u
∂s ds

(t − s)τ
= 1

#(1 − τ )

k−1∑

j=0

t j+1∫

t j

∂u
∂s ds

(t − s)τ
.

In order to approximate ∂u
∂s in [t j, t j+1], we employ two interpolation methods to approximate the solution u(t, ·).

3.3.1. Linear interpolation of u(t, ·)
The linear interpolation of u leads to a second-order approximation of the solution in [t j, t j+1] and leads to

Hk(t) ≈ Hk
I (t) = 1

#(1 − τ )

k−1∑

j=0

(
u j+1 − u j

&t
)

t j+1∫

t j

ds
(t − s)τ

= 1
#(2 − τ )

k−1∑

j=0

(
u j+1 − u j

&t
)G I

j(t),

where G I
j(t) = (t − t j)

1−τ − (t − t j+1)
1−τ . Hence,

H k(t) ≈ H k
I (t) = 1

#(2 − τ )

k−1∑

j=0

(
u j+1 − u j

&t
)RL

tk
I τ

t

(
G I

j(t)
)
.

By evaluating both sides at tk+1, we obtain the corresponding history load as

H k ≈ H k
I = 1

#(τ )#(2 − τ )

k−1∑

j=0

(
u j+1 − u j

&t
)

[ tk+1∫

tk

(tk+1 − s)τ−1(s − t j)
1−τ ds

−
tk+1∫

tk

(tk+1 − s)τ−1(s − t j+1)
1−τ ds

]
,

which can be written as

H k ≈ H k
I = 1

#(τ )#(2 − τ )

k−1∑

j=0

(
u j+1 − u j

&t
)
[

Ak, j − Ak, j+1

]
, (16)
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where Akj =
∫ tk+1

tk
(tk+1 − s)τ−1(s − t j)

1−τ ds. The latter is obtained analytically in terms of the following hypergeometric 
functions:

Akj =
{

− (&t)τ
τ (tk − t j)

1−τ
[
− τ + (τ − 1)2 F1(1,1,1 + τ , &t

tk+1−t j
)
]
, 0 ≤ j < k

−(&t)(τ − 1)π csc(πτ ), j = k.
(17)

Therefore, the history load H k
I is computed exactly in terms of Akj up to the discretization accuracy of the first derivative 

of the solution, i.e., u j+1−u j
&t .

3.3.2. Quadratic interpolation of u(t, ·)
According to standard approximation theory, a third-order approximation of u(t, ·) in [t j, t j+1] yields

u(t, ·) ≈ u j+1(
t − t j

t j+1 − t j
)(

t − t j−1

t j+1 − t j−1
) + u j(

t − t j+1

t j − t j+1
)(

t − t j−1

t j − t j−1
)

+ u j−1(
t − t j+1

t j−1 − t j+1
)(

t − t j

t j−1 − t j
),

where by taking the first partial derivative with respect to time we obtain

∂u
∂t

≈
(∂u

∂t

)
|t=t j+1/2 +

(∂2u
∂t2

)
|t=t j+1/2(t − t j+1/2).

The latter expression yields a higher-order approximation of ∂u
∂t to be employed in the calculation of the history load. 

Therefore,

Hk(t) ≈ Hk
I I (t) = 1

#(1 − τ )

k−1∑

j=1

t j+1∫

t j

[(
∂u
∂s

)
|s=t j+1/2 +

(
∂2u
∂s2

)
|s=t j+1/2(s − t j+1/2)

]
ds

(t − s)τ

+ 1
#(1 − τ )

t1∫

0

(
∂u
∂s

)
|s=t1/2ds

(t − s)τ

where we employed the previously obtained lower-order approximation in [0, t1] corresponding to j = 0. Hence,

Hk
I I (t) = 1

#(1 − τ )

k−1∑

j=0

(u j+1 − u j

&t

) t j+1∫

t j

ds
(t − s)τ

+ 1
#(1 − τ )

k−1∑

j=1

(∂2u
∂s2

)
|s=t j+1/2

t j+1∫

t j

(s − t j+1/2)ds

(t − s)τ

= Hk
I (t) + 1

#(τ )#(2 − τ )

k−1∑

j=1

(u j+1 − 2u j + u j−1

(&t)2

)
G I I

j (t), (18)

in which the first term is associated with the linear representation of u(t) and the second term in (18) denotes the correc-
tion for obtaining a higher-order accuracy. Moreover, G I I

j (t) is given by

G I I
j (t) = −&t

2

[
(t − t j)

1−τ + (t − t j+1)
1−τ

]
+ 1

2 − τ

[
(t − t j)

2−τ − (t − t j+1)
2−τ

]
(19)

Accordingly, the corresponding load vector is obtained as

H k ≈ H k
I I = RL

tk
I τ

tk+1 Hk
I I (t)

= RL
tk

I τ
tk+1 Hk

I (t) + 1
#(τ )#(2 − τ )

k−1∑

j=1

(u j+1 − 2u j + u j−1

(&t)2

)
RL
tk

I τ
tk+1G I I

j (t) (20)

which can be written as
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Table 3
Fractional Adams–Bashforth time-integration of the C

0Dτ
t u(t) = f (t) subject to homogeneous initial conditions. (Upper table): fractional A-B ( J = 0), where 

the exact solution is uext = tτ , (middle table): fractional A-B ( J = 1), where uext = t1+τ , and (lower table): fractional A-B ( J = 2), where uext = t2+τ . Here, 
the simulation time is T = 1 and f (t) = #(1+τ+ J )

#(1+τ+ J−τ ) t J , where J = 0, 1, and 2, respectively.

Fractional A-B, J = 0, (H k ≈ H k
I )

&t τ = 1/10 Order τ = 1/2 Order τ = 9/10 Order

1/8 0.823385 0.43 0.388225 0.88 0.261049 1.00
1/16 0.613304 0.55 0.211394 0.92 0.129804 1.00
1/32 0.416202 0.70 0.111384 0.96 0.064746 1.00
1/64 0.255626 0.82 0.057415 0.98 0.032357 0.999
1/128 0.144731 0.90 0.029210 0.99 0.016188 0.998

Fractional A-B, J = 1, (H k ≈ H k
I I )

&t τ = 1/10 Order τ = 1/2 Order τ = 9/10 Order

1/8 0.229075 1.65 0.0517457 1.91 0.029365 1.975
1/16 0.073136 1.83 0.013736 1.96 0.000747 1.993
1/32 0.020521 1.90 0.003527 1.978 0.001876 1.998
1/64 0.005516 1.91 0.000895 1.984 0.000469 1.999
1/128 0.001473 1.93 0.000226 1.998 0.000117 2.00

Fractional A-B, J = 2, (H k ≈ H k
I I )

&t τ = 1/10 Order τ = 1/2 Order τ = 9/10 Order

1/8 0.088115 2.72 0.017732 2.92 0.010759 2.92
1/16 0.013366 2.76 0.002345 2.99 0.001423 2.98
1/32 0.001969 2.78 0.000294 3.05 0.000180 3.02
1/64 0.000286 2.90 0.000035 3.12 0.000022 3.09
1/128 0.000038 2.91 4.06 × 10−6 3.20 2.60 × 10−6 3.22

H k ≈ H k
I I = H k

I

+ 1
#(τ )#(2 − τ )

k−1∑

j=1

(u j+1 − 2u j + u j−1

(&t)2

)[
−&t(Ak, j + Ak, j+1)

2
+ Bk, j − Bk, j+1

2 − τ

]
, (21)

where Bkj =
∫ tk+1

tk
(tk+1 − s)τ−1(s − t j)

2−τ ds. The latter is computed exactly in terms of the following hypergeometric func-
tion:

Bkj =

⎧
⎪⎪⎨

⎪⎪⎩

− (&t)τ
τ

(tk−t j)
3−τ

(tk+1−t j)

[
2 F1(1,3,1 + τ , &t

tk+1−t j
)
]
, 0 ≤ j < k

− (&t)τ π
2 (−2 + τ )(τ − 1) csc(πτ ), j = k.

(22)

Finally, we note that Bkj is constructed only once.

3.4. Numerical tests for the fractional A-B and A-M methods

In Table 3, we examine the performance of the fractional A-B scheme at different values of J = 0, 1, and 2, and for 
different temporal orders τ . The equation C

0Dτ
t u(t) = f (t) is solved subject to homogeneous initial conditions. In the upper 

table, we present the fractional A-B method with J = 0 and H k ≈ H k
I . The exact solution in this case is given by uext = tτ . 

In the middle table, we present the fractional A-B method with J = 1 and H k ≈ H k
I I , considering uext = t1+τ . In the lower 

table, we demonstrate the performance of the fractional A-B method when J = 2, H k ≈ H k
I , and uext = t2+τ . The simulation 

time is T = 1 in all cases, and all errors are computed using the L∞ norm at the final simulation time. The specified 
exact solutions correspond to the forcing terms f (t) = #(1+τ+ J )

#(1+τ+ J−τ ) t J for J = 0, 1, and 2, respectively. These specific choices 
of exact solutions are made to illustrate the minimal smoothness requirements in each case. Interestingly, we observe a 
“τ -independent” first-, second-, and third-order of accuracy when J = 0, 1, and 2 respectively. In other words, the numerical 
evidence suggests that the fractional A-B method not only generalizes the standard A-B method, but it also preserves the 
traditional order of accuracy of the A-B methods originally developed for integer-order systems.

In a similar fashion, we examine the performance of the fractional A-M scheme with different values of J and for 
different choices of τ in Table 4. We keep the setting as in Table 3 to experimentally observe the order accuracy associated 



8 M. Zayernouri, A. Matzavinos / Journal of Computational Physics 317 (2016) 1–14

Table 4
Fractional Adams–Moulton time-integration of the C

0Dτ
t u(t) = f (t) subject to homogeneous initial conditions. (Upper table): fractional A-M ( J = 0), where 

the exact is solution uext = tτ , (middle table): fractional A-M ( J = 1), where uext = t1+τ , and, (lower table): fractional A-M ( J = 2), where uext = t2+τ . Here, 
the simulation time is T = 1 and f (t) = #(1+τ+ J )

#(1+τ+ J−τ ) t J , where J = 0, 1, and 2, respectively.

Fractional A-M, J = 0, (H k ≈ H k
I )

&t τ = 1/10 Order τ = 1/2 Order τ = 9/10 Order

1/8 0.566053 1.82 0.186798 1.32 0.146284 1.19
1/16 0.1602418 1.51 0.074632 1.15 0.063814 1.09
1/32 0.056163 1.28 0.033644 1.07 0.029979 1.04
1/64 0.022971 1.15 0.016002 1.03 0.014544 1.02
1/128 0.010352 1.07 0.007710 1.02 0.007161 1.01

Fractional A-M, J = 1, (H k ≈ H k
I I )

&t τ = 1/10 Order τ = 1/2 Order τ = 9/10 Order

1/8 0.051728 2.09 0.037242 2.06 0.031385 2.05
1/16 0.012254 2.02 0.008879 2.03 0.007565 2.02
1/32 0.003004 1.97 0.002171 2.01 0.001859 2.01
1/64 0.000765 1.93 0.000537 2.006 0.000465 2.007
1/128 0.000200 1.94 0.000134 2.00 0.000114 2.00

Fractional A-M, J = 2, (H k ≈ H k
I I )

&t τ = 1/10 Order τ = 1/2 Order τ = 9/10 Order

1/8 0.012274 3.00 0.010341 2.94 0.009544 2.92
1/16 0.001528 2.95 0.001351 2.88 0.001260 2.82
1/32 0.000197 2.93 0.000184 2.83 0.000177 2.70
1/64 0.000026 2.91 0.000026 2.78 0.000027 2.57
1/128 3.45 × 10−6 2.90 3.74 × 10−6 2.74 4.57 × 10−6 2.43

with different J ’s. Again, we observe a τ -independent first- and second-order of accuracy when J = 0 and 1. However, our 
results show a τ -dependent accuracy of less than third order when J = 2 in contrast to the fractional A-B scheme. This 
simply highlights the need for a higher-order approximation of the history term, which turns out to be inefficient in terms 
of computation cost. We remark that the numerical experiments discussed in this section where chosen so that the J -th 
derivative of the exact solution for J = 0, 1, and 2 vanishes at t = 0 respectively in each of the methods tested.

4. Spatial discretization via fractional spectral collocation method

In this section, we discuss the spatial discretization of the fractional PDEs that we solve in sections 5 and 6; see equations 
(34) and (38). In order to efficiently discretize the spatial terms, we employ a fractional spectral collocation method (FSCM), 
recently developed in [57], which is based on the spectral theory of fractional Sturm–Liouville problems (FSLP), developed 
in [54]. To this end, we define a set of interpolation points {xi}N

i=1 on which the corresponding Lagrange interpolants are 
constructed. Moreover, we require the residual to vanish on the collocation points, which coincide with the interpolation 
points {xi}N

i=1.

4.1. Fractional Lagrange interpolants (FLIs)

We represent the solution at time tk in terms of non-polynomial fractional basis functions, known as Jacobi poly-
fractonomials, which are the explicit eigenfunctions of the FSLP of first kind, given by

(1)P µ
n (x) = (1 + x)µ P−µ,µ

n−1 (x), x ∈ [−1,1], (23)

where P−µ,µ
n−1 (x) denotes the Jacobi polynomial of degree n − 1 and parameters −µ and µ. The left-sided fractional deriva-

tive of (23) is given analytically as

−1D µ
x

(
(1)P µ

n ( x )
)

= #(n + µ)

#(n)
Pn−1( x ), (24)

where Pn−1( x ) denotes a Legendre polynomial of order n − 1. In our FSCM spatial discretization, we represent the solution 
at the time tk via the following poly-fractonomial nodal expansion as

uN(x, tk) =
N∑

j=1

uN(x j, tk)hµ
j (x), (25)

where the functions hµ
j (x) denote the fractional Lagrange interpolants; these are all of fractional order (N + µ − 1) and are 

constructed using the aforementioned interpolations points −1 = x1 < x2 < · · · < xN = 1 as:
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hµ
j (x) =

( x − x1

x j − x1

)µ N∏

k=1
k≠ j

( x − xk

x j − xk

)
, 2 ≤ j ≤ N − 1. (26)

Because of the homogeneous Dirichlet boundary conditions in (34) and (38), we only construct hµ
j (x) for j = 2, 3, · · · , N

when the order ν of the fractional diffusion term is such that ν ∈ (0, 1), and we set uN (−1) = 0. Moreover, when ν ∈ (1, 2), 
there are only (N − 2) fractional Lagrange interpolants hµ

j (x), j = 2, 3, · · · , N − 1, since we impose uN (±1) = 0.

4.2. Spatial differentiation matrices Dσ and D1+σ , σ ∈ (0, 1)

We note that FLIs satisfy the Kronecker delta property hµ
j (xk) = δ jk at interpolation points, and they vary as a poly-

fractonomial between the interpolation points. With each FLI, we associate fractional differentiation matrices Dσ and D1+σ , 
σ ∈ (0, 1), which are obtained as follows:

Dσ
i j = 1

(x j + 1)µ

N∑

n=1

β
j

n

n−1∑

q=⌈σ−µ⌉
bnq (xi + 1)q+µ−σ (27)

and

D1+σ
i j = 1

(x j + 1)µ

[ N∑

n=1

β
j

n

n−1∑

q=⌈σ−µ⌉
bnq(q + µ − σ ) (xi + 1)q+µ−σ−1

]
, (28)

in which ⌈σ − µ⌉ denotes the integer ceiling of σ − µ, and

bnq = (−1)n+q−1(
1
2
)q

(
n − 1 + q

q

)(
n − 1 + µ
n − 1 − q

)
#(q + µ + 1)

#(q + µ − σ + 1)
. (29)

We remark that the coefficients are obtained only once through the following poly-fractonomial expansion

N∏

k=1
k≠ j

( x − xk

x j − xk

)
=

N∑

n=1

β
j

n P−µ,µ
n−1 (x) (30)

and can be computed efficiently since the Jacobi polynomials P−µ,µ
n−1 (x) are orthogonal with respect to the weight function 

w(x) = (1 − x)−µ(1 + x)µ . Hence, taking the polynomial p j(x) = ∏N
k=1
k≠ j

(
x−xk
x j−xk

)
, the coefficients β j

n are given exactly by the 

following Gauss–Lobatto–Jacobi quadrature rule:

β
j

n = 1
λn

1∫

−1

w(x)p j(x)P−µ,µ
n−1 (x)dx (31)

= 1
λn

Q∑

q=1

ωq p j(xq)P−µ,µ
n−1 (xq),

where {xq}Q
q=1 and {ωq}Q

q=1 are the associated quadrature points and weights corresponding to the Jacobi weight w(x); 
moreover, λn denotes the orthogonality constant of the Jacobi poly-fractonomials given by λn = 2

2k−1
#(n−µ)#(n+µ)

(n−1)!#(n) . We re-

mark that the coefficients β j
n are given exactly by the Gauss–Lobatto–Jacobi quadrature rule when Q ≥ (N − 1) + 3/2.

Remark 4.1. When σ = µ (the interpolation parameter), the above differentiation matrices are simply obtained as

Dµ
i j = 1

(x j + 1)µ

N∑

n=1

#(n + µ)

#(n)
β

j
n Pn−1( xi ) (32)

and

D1+µ
i j = 1

(x j + 1)µ

N∑

n=2

β
j

n

[#(n + µ)

#(n)

n
2

P 1,1
n−2( xi )

]
. (33)
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Table 5
Convergence study of the spatial operators. Here, uext(x) = (21/6(1 + x)4+1/3 − (1 + x)4+1/2).

µ = 1/10

N RL
−1I µ

x u(x) = f (x) RL
−1Dµ

x u(x) = f (x) RL
−1D1+µ

x u(x) = f (x) RL
−1D1+µ

x u(x) − u(x) = f (x)

3 0.0143673 0.0175926 3.88583 0.368123
7 0.0000103311 0.0000106009 0.0000947525 0.000594943

11 2.31 × 10−8 2.306 × 10−8 4.18 × 10−7 2.27 × 10−6

µ = 1/2

N RL
−1I µ

x u(x) = f (x) RL
−1Dµ

x u(x) = f (x) RL
−1D1+µ

x u(x) = f (x) RL
−1D1+µ

x u(x) − u(x) = f (x)

3 0.043334 0.102084 0.866727 0.346067
7 0.00009786 0.0000794 0.0002552 0.00141853

11 1.54 × 10−6 9.1 × 10−7 5.8 × 10−6 0.00002033

µ = 9/10

N RL
−1I µ

x u(x) = f (x) RL
−1Dµ

x u(x) = f (x) RL
−1D1+µ

x u(x) = f (x) RL
−1D1+µ

x u(x) − u(x) = f (x)

3 0.0528279 0.209984 0.423576 0.263411
7 0.000078243 0.0000256864 0.000969232 0.00179444

11 3.81 × 10−6 7.43 × 10−7 0.0000430498 0.0000925764

As the collocation/interpolation points, the roots of −1Dµ
x [(1)Pµ

M(x)] that represent the (fractional) critical points of the 
Jacobi poly-fractonomial functions lead to the fastest rates of convergence and minimal condition number of the resulting 
system.

In order to demonstrate the spectral accuracy of the corresponding spatial discretization, we have performed a con-
vergence study of the spatial operators for the following three differential problems: RL

−1I µ
x u(x) = f (x), RL

−1Dµ
x u(x) = f (x), 

RL
−1D1+µ

x u(x) = f (x), and RL
−1D1+µ

x u(x) − u(x) = f (x). In each problem the reaction term f (x) was chosen so as the exact 
solution is given by uext(x) = (21/6(1 + x)4+1/3 − (1 + x)4+1/2). The accuracy of the method for each problem is shown in 
Table 5.

5. Fractional-order splitting scheme: semi-discrete form

We consider a time–space fractional PDE of the form:

0Dτ
t u(x, t) = (N σ

x + Lα
x )u(x, t) + F (u), x ∈ [−1,1], (34)

u(x,0) = h(x),

u(±1, t) = 0,

where τ , σ ∈ (0, 1], α ∈ (1, 2]. Moreover, N σ
x u represents a nonlinear (e.g., convective) differential operator. Lα

x denotes 
a linear (e.g., diffusive) operator, and F (u) is the corresponding reaction term. Equation (34) should be compared with 
equation (38) in the following section. In the semi-discrete form, we evaluate the nonlinear and reaction terms “explicitly” 
by employing the fractional explicit A-B method, see (12), while we treat the corresponding diffusion term “implicitly” using 
the fractional A-M scheme in (15) as

u(x, tk+1) − u(x, tk)

(&t)τ
=

J∑

j=0

β AB
j

[
N σ

x u(x, tk− j) + F (u(x, tk− j))
]

(35)

+
J∑

j=0

β AM
j Lα

x u(x, tk+1− j) − H k

(&t)τ
.

We recall from Remark 3.1 that the corresponding history load terms in the A-B and A-M methods are identical. Next, we 
split (35) in the following fashion: (i) in the prediction step, we keep the nonlinear and reaction terms to explicitly obtain 
an “intermediate” solution up(x, tk+1) while ignoring the diffusion term:

up(x, tk+1) − u(x, tk)

(&t)τ
=

J∑

j=0

β AB
j

[
N σ

x u(x, tk− j) + F (u(x, tk− j))
]

− H k

(&t)τ
, (36)

and (ii) in the correction step, we include the diffusion term to implicitly solve for the (corrected) solution at the new 
time-step tk+1 as
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u(x, tk+1) − up(x, tk+1)

(&t)τ
=

J∑

j=0

β AM
j Lα

x u(x, tk+1− j). (37)

Here, we choose the order of discretization (i.e., J ) in the prediction A-B and correction A-M steps to be the same (i.e., 
J = 3).

In the following, we employ the splitting scheme of (36) and (37) in the context of the time- and space-fractional 
Keller–Segel chemotaxis system.

5.1. Fractional Keller–Segel chemotaxis system

We consider the following time–space fractional Keller–Segel model:

C
0Dτ

t u(x, t) = −Kc−1Dµ
x

[
u −1Dβ

x C (x, t)
]
+ K −1D1+σ

x u + f (x, t; u), (38)

u(x,0) = h(x),

u(±1, t) = 0,

in which τ , σ , µ, and β ∈ (0, 1). Equation (38) is coupled to the following elliptic fractional (in space) equation of order 
γ ∈ (1, 2):

Ke−1Dγ
x C (x, t) = −u(x, t) (39)

C (−1, t) = 0
∂C

∂x

∣∣∣∣
x=−1

= 0

The corresponding fully discretized problem is obtained by collocating (38) on the collocation points {xi}N
i=1 and employing 

the differentiation matrices in (32) and (33) as

u⃗p(tk+1) − u⃗(tk)

(&t)τ
= − Kc

J∑

j=0

β AB
j

[
Dµ

(
diag{u⃗(tk− j)}Dβ C⃗ (tk− j)

)
+ f (u⃗(tk− j))

]

+ K
J∑

j=0

β AM
j D1+µ u⃗(tk+1− j) − H⃗ k

(&t)τ
, (40)

where u⃗ denotes the solution vector at the interpolation points and diag{u⃗(tk− j)} represents a diagonal matrix whose 
entries are the components of the solution vector u⃗ at the time step tk− j . In order to decouple (38), at each time-step tk
we use (25) to obtain

Ke−1Dγ
x C (x, tk) = −u(x, tk) = −

N∑

j=1

u(x j, tk)h
µ
j (x)

= −
N∑

j=1

u(x j, tk)
1

(x j + 1)µ

N∑

n=1

β
j

n(1 + x)µ P−µ,µ
n−1 (x)

= −
N∑

j=1

(
u(x j, tk)

(x j + 1)µ

N∑

n=1

β
j

n
(1)Pµ

n (x).

Since (1)Pµ
n (−1) = 0, we directly obtain −1Dβ

x C (x, t) by applying the inverse operator i.e., a fractional integration of order 
η = γ − β ∈ (0, 1) as

−1Dβ
x C (x, t) = − 1

Ke

N∑

j=1

(
u(x j, tk)

(x j + 1)µ

N∑

n=1

β
j

n−1I η
x

[
(1)Pµ

n (x)
]

(41)

where −1I η
x

[
(1)Pµ

n (x)
]

is derived exactly as

−1I η
x

[
(1)Pµ

n (x)
]

= #(n + µ)

#(n + µ + η)
(1 + x)η+µ P−µ−η , µ+η

n−1 (x). (42)



12 M. Zayernouri, A. Matzavinos / Journal of Computational Physics 317 (2016) 1–14

Table 6
IMEX simulation of Keller–Segel chemotaxis system subject to homogeneous initial/boundary conditions. The parameter values used are given by µ = σ =
β = 4/7, γ = 1 + 4/7, also K = 10−3 and Ke

Kc
= 10−4. We consider the exact solution to be uext(t, x) = sin(t3+1/2)(21/6(1 + x)4+1/3 − (1 + x)3+1/2) with the 

simulation time T = 2.

&t τ = 1/10 Order τ = 1/2 Order τ = 9/10 Order

1/16 0.38225007 1.93 0.38074322 1.70 0.50777938 1.82
1/32 0.10051565 2.06 0.11783198 2.0 0.14348360 2.14
1/64 0.02416292 2.06 0.02946394 2.10 0.03259522 2.21
1/128 0.00580067 2.03 0.00687303 2.18 0.00699726 2.35
1/256 0.0014200 1.97 0.00151012 2.36 0.00137238 2.8
1/512 0.00036249 * 0.00029442 * 0.00019696 *

Table 7
IMEX simulation of Keller–Segel chemotaxis system subject to homogeneous initial/boundary conditions. The parameter values used are given by µ = σ =
β = 4/7, γ = 1 + 4/7, K = 10−3, and Ke

Kc
= 10−4. We consider the exact solution to be uext (t, x) = tτ sin(t) exp(−2t)[21/6(1 + x)4+1/3 − (1 + x)3+1/2], where 

τ ∈ (0, 1) is the temporal derivative order and the simulation time T = 2π .

&t τ = 1/10 Order τ = 1/2 Order τ = 9/10 Order

1/16 0.00090994 1.18 0.01015426 1.77 0.03877761 2.04
1/32 0.00040271 2.02 0.002987301 2.35 0.00939105 2.25
1/64 0.00009962 2.41 0.00058501 2.37 0.00196767 2.11
1/128 0.00001880 2.48 0.00011303 2.20 0.00045476 2.03
1/256 3.37 ×10−6 2.43 0.00002458 2.12 0.00011098 2.03
1/512 6.26 ×10−7 * 5.63 ×10−6 * 0.00002702 *

We note that the enforcement of ∂C/∂x = 0 at x = −1 is guaranteed by the construction of the fractional Lagrange inter-
polants in (25). Hence, by plugging (42) into (41), we obtain at each time step tk the coupling term −1Dβ

x C (x, tn) in (40)
as

−1Dβ
x C (x, t) = − 1

Ke

N∑

j=1

(
u(x j, tn)

(x j + 1)µ

N∑

n=1

β
j

n
#(n + µ)

#(n + µ + η)
(1 + x)η+µ P−µ−η,µ+η

n−1 (x). (43)

Next, by evaluating −1Dβ
x C (x, t) at the spatial collocation points {xi}N

i=1, we explicitly obtain the i-th entry of Dβ C⃗ at the 
time-step tk as

−1Dβ
x C (xi, tk) = 1

Ke

N∑

j=1

{Iη}i ju(x j, tk), (44)

or equivalently in the matrix-vector product form,

Dβ C⃗ = 1
Ke

Iηu⃗(tk). (45)

Here, Iη represents the “fractional integration matrix” the entries of which are obtained as

{Iη}i j = − 1
(x j + 1)µ

N∑

n=1

β
j

n
#(n + µ)

#(n + µ + η)
(1 + xi)

η+µ P−µ−η,µ+η
n−1 (xi). (46)

We note that Iη is constructed only once and is used in each time-step. By virtue of (45), the splitting method is decoupled 
in the prediction step as

u⃗p(tk+1) − u⃗(tk)

(&t)τ
= − Kc

Ke

J∑

j=0

β AB
j

[
Dµ

(
diag{u⃗(tk− j)} Iηu⃗(tk− j)

)
+ f (u⃗(tk− j))

]

− H⃗ k

(&t)τ
, (47)

which is followed by the corresponding correction step as

u⃗(tk+1) − u⃗p(tk+1)

(&t)τ
= K

J∑

j=0

β AM
j D1+µ u⃗(tk+1− j). (48)
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6. Numerical tests

We have examined the IMEX splitting method by solving the system of equations (38) and (39). The results of two 
distinct numerical experiments are shown in Tables 6 and 7. In both experiments, σ = β = 4/7 and γ = 1 +4/7. In addition, 
we have chosen K = 10−3 and Kc

Ke
= 10−4. We remark that the parameter regime in these experiments is consistent with 

various applications of the Keller–Segel model where Ke is usually much larger than Kc and K [59]. The source term in (38)
has been chosen so that the exact solutions are (i) uext(t, x) = sin(t3+1/2)(21/6(1 + x)4+1/3 − (1 + x)3+1/2) in Table 6 and (ii) 
uext(t, x) = tτ sin(t) exp(−2t)[21/6(1 + x)4+1/3 − (1 + x)3+1/2] in Table 7.

While the spectral accuracy of the spatial discretization has been already tested in Table 5, here we keep the poly-
fractonomial order N = 16 and perform a time-grid refinement. In this simulation, we employ the A-B and A-M methods 
corresponding to J = 1, which leads to an observable second-order of accuracy in time. Our experiment showed that em-
ploying higher-order A-B and A-M methods, corresponding to J = 2, would not help increase the accuracy. This can be 
explained by the splitting error introduced by the method.

7. Summary and discussion

In this work, we generalized the first- and second-order accurate standard Adams schemes to a fractional class of explicit 
Adams–Bashforth (A-B) and implicit Adams–Moulton (A-M) methods for time-fractional problems. In this approach, we 
obtained the corresponding weight coefficients as τ -dependent, which reduced to the well-known A-B and A-M methods 
with standard coefficients when τ = 1. In addition, we obtained the history load exactly up to the accuracy of the scheme 
via hyper-geometric functions. We remark that most of the existing finite-difference methods for fractional differential 
equations are designed around an implicit discretization of linear FODEs/FPDEs. The use of these methods in the context of 
IMEX methods leads to at most first-order accuracy for general nonlinear problems, in which explicit treatment is needed. 
In contrast, our approach consistently provides the proper explicit and implicit Adams schemes, preserving their first-order 
(for J = 0) and second-order (for J = 1) accuracy.

We further remark that in the case J = 0 our scheme appears to require only a τ -th order Caputo derivative in order 
for the method to be first order accurate. Similarly, as our numerical experiments indicate, second order convergence is 
attained by our scheme when the exact solution has a (1 + τ )-th order Caputo derivative.

Another important aspect of the present work is that our generalized family of Adams schemes can be easily imple-
mented on top of existing libraries by modifying the standard weights and adding a new history calculator. This is in 
contrast to previous attempts to generalize these types of schemes for the fractional case [33,34]. Indeed previous general-
izations consisted of two-step predictor–corrector methods, which differ significantly from the classical Adams schemes and 
require a considerable modification of existing libraries.

In this paper, we employed our generalized A-B and A-M methods to further develop an implicit–explicit (IMEX) splitting 
scheme for linear and nonlinear FPDEs. We particularly examined the fractional Keller–Segel chemotaxis system, in which 
the nonlinear advection term was evaluated explicitly by employing the fractional A-B formulation in the prediction step, 
and then, the diffusion term was treated implicitly in the correction step using the corresponding fractional A-M method. 
In order to discretize the spatial operator, a spectrally-accurate fractional spectral collocation method was employed.

The focus of the paper has been on the development of the numerical schemes and the numerical experimentation 
that was indicative of the efficiency of the scheme. In future work, we aim to carry out the theoretical study including error 
estimates and stability analysis of the present IMEX schemes. In addition, we aim to employ a strategy for treating data near 
the lower integration limit in the time-fractional derivative in order to obtain higher-order schemes. Further improvement 
of the presented schemes would make it possible to formulate more efficient methods to compute the history load term 
Hk in each time-step to achieve higher efficiency. This has the potential to further generalize the schemes developed in this 
paper to higher-order methods.
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