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We propose a hierarchical Bayesian framework to systematically integrate heterogeneous data for
the calibration of force fields in Molecular Dynamics (MD) simulations. Our approach enables
the fusion of diverse experimental data sets of the physico-chemical properties of a system at
different thermodynamic conditions. We demonstrate the value of this framework for the robust
calibration of MD force-fields for water using experimental data of its diffusivity, radial distribution
function, and density. In order to address the high computational cost associated with the hierar-
chical Bayesian models, we develop a novel surrogate model based on the empirical interpolation
method. Further computational savings are achieved by implementing a highly parallel transitional
Markov chain Monte Carlo technique. The present method bypasses possible subjective weightings
of the experimental data in identifying MD force-field parameters. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4967956]

I. INTRODUCTION

Recent advances in high performance computing have
enabled Molecular Dynamics (MD) simulations to become
an effective “computational microscope” for understanding
living organisms and for the design of new materials.1 The
calibration of force-field parameters is a critical aspect of
the predictive capabilities of MD simulations. A fundamental
problem in such calibrations is that the data are obtained from
different types of experiments (e.g., neutron magnetic reso-
nance and cryo-scanning tunneling microscope) or quantum
mechanical calculations.2,3 Furthermore, the data may repre-
sent different thermodynamical states as well as molecular and
bulk level properties of the system under consideration. The
identification of force-field parameters can be cast as a single
or multi-objective optimisation problem to reproduce differ-
ent kinetic and thermodynamic measurements. However, the
use of heterogeneous data often leads to inconsistent results
that may be attributed to the uncorrelated physical proper-
ties expressed by the data as well as to the various sources
of uncertainties, such as measurement noise and modeling
inadequacy.

The modeling inadequacy reflects that all functional forms
of MD potentials and their respective simulation protocols
are incapable to capture simultaneously all thermodynamic
properties. Hence, one may find large discrepancies in the
identified parameter values across calibrations based on the
different data. One example is the water-carbon interaction
parameters. There is extensive literature on choosing the quan-
tities to calibrate when parameterizing water force-fields.4–6
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However, even when using the exact same water model, one
can find drastically different values for the oxygen-hydrogen
interaction parameters depending on the measurement selected
for the calibration. It is evident that the force-fields parameters
hinge upon the type of measurements while the combination
of different experimental data is largely treated empirically.

One approach for calibrating systematically the parame-
ters based on heterogeneous data is to use multi-objective opti-
mization.7–9 A drawback in these approaches is the rather arbi-
trary weighing of each data set. The weights are empirically
chosen to represent the relative contribution of each data set.
Furthermore, multi-objective optimization approaches only
report sets of Pareto-optimal force-field parameter values,
without quantifying their uncertainties.

Here we propose a fusion of heterogeneous data using a
hierarchical Bayesian framework for the calibration and uncer-
tainty quantification of MD force-field parameters. Similar
hierarchical models have been used for accounting cross-
experiment uncertainty.10,11 In this study, the contribution of
each data set to the calibration is handled through the evidence
(marginal likelihood) in the Bayesian framework. The evi-
dence incorporates a trade-off between data-fitting and infor-
mation gain from each experimental data set and guards against
over-fitting. This approach weighs the contribution from each
data set based on its training error sensitivity to the parameter
values.

A hierarchical Bayesian analysis requires a large number
of function evaluations, which implies a significant compu-
tational cost when applied to MD simulations. To alleviate
the computational cost, we develop an efficient approxima-
tion scheme that combines the use of a two-level surrogate
model, based on the Empirical Interpolation Method (EIM),12

with an efficiently parallelized13 Transitional Markov Chain
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Monte Carlo (TMCMC) method.14 We validate our pro-
posed methodology for the calibration of MD force-field
parameters of water molecules. We use experimental mea-
surements of three properties: (1) diffusivity (a kinematic
property), (2) density (a macroscopic physical property), and
(3) radial distribution function (RDF) (a microscopic structural
property). These data are used to calibrate the Lennard-Jones
potential parameters and the Coulombic partial charges of the
water model.

This paper is structured as follows: In Section II, we
present the mathematical formulation for the hierarchical
Bayesian framework. In Section III, we describe the construc-
tion of the two-level EIM surrogate. In Section IV, we illustrate
the MD model and the setup of the TMCMC to be used with
the EIM surrogate. We present our inference results in Section
V and conclude in Section VI.

II. HIERARCHICAL BAYESIAN FRAMEWORK
FOR HETEROGENEOUS DATA

In the Bayesian framework,15 calibration and uncertainty
quantification of parameters ~θ of a modelM imply the compu-
tation of the posterior distribution (p(~θ |D,M)) of ~θ given a set
of dataD. The posterior distribution is proportional to the prod-
uct of a likelihood function p(D|~θ,M), which describes how
likely the data are observed given ~θ, and a prior distribution
p(~θ |M),

p(~θ |D,M) =
p(D|~θ,M)p(~θ |M)

p(D|M)
, (1)

where the evidence p(D|M) is a normalizing constant that
quantifies the trade-off between how well M fits D and how
much information is extracted from D in order for M to fit
D.16 The posterior distribution is used to predict a quantity
of interest y based on the total probability theorem and the
assumption that prediction of y does not depend on the data
when ~θ is known,

p(y|D,M) =
∫

p(y|~θ,M)p(~θ |D,M) d~θ. (2)

When there are multiple sets of heterogeneous data (D
= {Di |i= 1, . . . , ND}), one approach is to apply the same
Bayes’ theorem and choose a likelihood function that accounts
for all data sets simultaneously. For example, we can use a
weighted sum of the likelihood for each data set, in a fash-
ion similar to classical multi-objective optimization methods.
Another possibility is to assume that the model parameters ~θ
predict the quantity of interest yi for each data set (Di) indepen-
dently (see Figure 1(a) for a Bayesian network representation).
This results in a product of the likelihood functions of all data
sets. We note that this approach integrates data sets based on
data-fitting represented by the likelihood functions.

We propose an alternative approach that fuses the hetero-
geneous data using an extra layer in the Bayesian network. Our
approach is based on a hierarchical probabilistic model that
includes a chosen structure for the prior distribution, param-
eterized by ~ψ. We assume that the predictions yi of each data
set Di may depend on different model parameter values ~θi,
and there is an underlying distribution that describes all ~θi (see
Figure 1(b)). We compare the hierarchical model, denoted as

FIG. 1. Bayesian networks for two different models on heterogeneous data
sets.

MHB, with a non-hierarchical model MNB (Figure 1(a)) for
water.

A. Bayesian inference for a non-hierarchical model

We integrate the ND data sets with MD simulations
with input x (e.g., temperature, pressure, and initial con-
ditions of the atoms) and force-field parameters ~θ so that
their output yi (for multiple predictions) can be expressed
in terms of a function fi(x, ~θ) and εyi is the additive error
term,

yi = fi(x, ~θ) + εyi i = 1, . . . , ND. (3)

The error term εyi is typically chosen to be a Gaussian distri-
bution Nεyi

(0,σyi ) with zero mean and σyi standard deviation.
We denote the corresponding model for Di as M i. Here, σyi

becomes an extra parameter to be inferred from the data under
the Bayesian framework. We group all σyi into a single vector
~σy = {σyi |i = 1, . . ., ND}. Based on Bayes’ theorem,

p(~θ, ~σy |D,MNB) =
p(D|~θ, ~σy,MNB)p(~θ, ~σy |MNB)

p(D|MNB)
. (4)

We can use a Markov Chain Monte Carlo (MCMC) method
to sample from the posterior distribution p(~θ, ~σy |D,MNB).

FIG. 2. TIP5P-E water system representation used in the simulations. Oxygen
is depicted red, hydrogen white, and the two fictitious charge points pink.
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TABLE I. Upper and lower bounds of all parameters.

Parameter Min. Max. Units

εLJ 0.4 1.2 kJ/mol
q 0.20 0.32 e

σ
(1)
y 0.007 5 0.75 10�9 m2/s

σ
(2)
y 2.5 250.0 kg/m3

σ
(3)
y 0.004 0.40

µε 0.6 1.0 kJ/mol
σε 0.000 8 0.24 kJ/mol
µq 0.22 0.30 e
σq 0.000 25 0.0625 e
ρ �0.99 0.99

To obtain an estimate for the marginalized posterior distri-
butions, e.g., p(~θ |D,MNB) or p(~σy |D,MNB), we take the cor-
responding components of the samples and neglect the other.
As mentioned before, this model implies that the likelihood
function

p(D|~θ, ~σy,MNB) =
ND∏
i=1

p(Di |~θ,σyi , Mi) (5)

and the evidence term will be used to quantify the plausibility
of the model,

p(D|MNB) =
∫

p(D|~θ, ~σy,MNB)p(~θ, ~σy |MNB) d~θ d~σy. (6)

B. Bayesian inference for a hierarchical model

The hierarchical approach requires that we propose a prior
distribution parameterized by ~ψ. We choose a Gaussian prior
of ~θ, thus ~ψ includes the parameters that define the mean vec-
tor and covariance matrix. Then, the posterior distribution is
calculated by

p(~θ |D,MHB) =
∫

p(~θ |~ψ,MHB)p(~ψ, ~σy |D,MHB) d~ψ d~σy,

(7)

where p(~θ |~ψ,MHB) is the chosen Gaussian prior of ~θ and
p(~ψ, ~σy |D,MHB) is the posterior distribution of ~ψ and ~σy,
which can be calculated using Bayes’ theorem,

p(~ψ, ~σy |D,MHB) =
p(D|~ψ, ~σy,MHB)p(~ψ, ~σy |MHB)

p(D|MHB)
. (8)

Given ~ψ and the independence of predictions allows us to
express the likelihood function p(D|~ψ, ~σy,MHB) by

p(D|~ψ, ~σy,MHB) =
ND∏
i=1

p(Di |~ψ,σyi ,MHB). (9)

To understand the meaning of p(Di |~ψ,σyi ,MHB), we first look
at the posterior distribution of ~θi in this model,

p(~θi |Di, ~ψ,σyi ,MHB)

=
p(Di |~θi,σyi ,MHB)p(~θi |~ψ,MHB)

p(Di |~ψ,σyi ,MHB)
,

(10)

where p(Di |~θi,σyi ,MHB) is the same likelihood function as
p(Di |~θ,σyi , Mi). We observe that p(Di |~ψ,σyi ,MHB) is the evi-
dence term in this Bayesian inference problem for given ~ψ and
σyi . Beck16 proves that the evidence term in Bayesian infer-
ence quantifies the trade-off between data-fitting and informa-
tion gain from the data. This suggests that higher values of
p(D|~ψ, ~σy,MHB) correspond to a prior distribution of ~θ that
overlaps more with the likelihood functions of all the data
sets. If a likelihood function is peaked, which implies a low
uncertainty of the data set, the prior distribution is highly con-
strained by this likelihood. This is because a prior that does not
cover the peaked likelihood will lose a significant contribution
to the final evidence p(D|~ψ, ~σy,MHB). Hence, our approach
automatically assigns a higher weight to the more “confident”
data. Meanwhile, this confidence toward a data set depends on
the estimated data noise as well as the sensitivity of the data
to the model parameters.

A major challenge of using this model is the high compu-
tational demand required to calculate p(D|~ψ, ~σy,MHB), which

FIG. 3. Selected 30 values of εLJ , q, and σy,1 for EIM surrogate model of density likelihood (see Figures 4 and 5 for diffusion and RDF). The color scale
indicates the sequence of selection from earliest to latest (black to white). For example, the first basis function chosen for density takes the values of ε = 0.84,
q = 0.24,σy = 7.36, and the last (30th) basis function chosen for density takes the values of ε = 0.40, q = 0.32,σy = 6.47.
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FIG. 4. Selected 30 values of εLJ , q, and σy,1 for EIM surrogate model of diffusion likelihood. The color scale indicates the sequence of selection from earliest
to latest (black to white).

involvesmultiple integral evaluations that typically have no
analytical solutions. In Sec. III, we propose a novel method to
approximate p(D|~ψ, ~σy,MHB) based on EIM that is combined
with the TMCMC method.

III. SURROGATES FOR A HIERARCHICAL BAYESIAN
FRAMEWORK

The evidence for all models M i is needed in order
to construct the likelihood function p(D|~ψ, ~σy,MHB). As
a result, the inference process involves a nested Monte
Carlo evaluation: (i) sampling ~ψ and ~σy and (ii) sam-
pling ~θi for each (~ψ, ~σy) sample. This can become
computationally intractable due to the quadratic growth

of the number of samples needed. To remedy the
computational cost, we develop an efficient approximation
method by combining TMCMC with a novel, two-level
surrogate model.

We use the parallelized TMCMC algorithm to draw
samples from the posterior distribution of ~ψ and ~σy, p(~ψ,
~σy |D,MHB), in order to perform uncertainty quantification
of the model parameters and predictions. We note that when
using full MD simulations, one evaluation of the evidence
term p(Di |~ψ, ~σy,MHB) is very computationally intensive even
with this efficient TMCMC method.17 Building upon the EIM
idea, we construct the two-level surrogate model to achieve
orders of magnitude reduction in the total computational
demand.

FIG. 5. Selected 30 values of εLJ , q, and σy,1 for EIM surrogate model of RDF likelihood. The color scale indicates the sequence of selection from earliest to
latest (black to white).
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A. TMCMC on a two-level surrogate

We estimate Equation (8) using the parallelized TMCMC
with the likelihood function (Equation (9)). The evidence terms
p(Di |~ψ,σyi ,MHB) for i = 1, . . ., ND are calculated by

p(Di |~ψ,σyi ,MHB)

=

∫
p(Di |~θi,σyi , MHB)p(~θi |~ψ,MHB) d~θi.

(11)

We note that p(Di |~θi,σyi ,MHB) is the same likelihood func-
tion as p(Di |~θ,σi, Mi), and p(~θ |~ψ,MHB) is the chosen Gaus-
sian prior for ~θ parameterized by ~ψ.

If the deterministic functions f i is a linear function of ~θ, the
integral of the Gaussian likelihood model with a Gaussian prior
has an analytical solution. Such linear dependencies are not
common, so an alternative is to have a surrogate model for the
likelihood function based on Gaussian radial basis functions.
However, this is also impractical because the likelihood is a
function ofσyi , which is part of the sampling space. As a result,

we will need a large amount of surrogate models to cover all
possible σyi values. Wepropose to use EIM as the first level
surrogate to decouple the parameters ~θ and σyi using L basis
functions ql ,I ,

p(Di |~θi,σyi , MHB) ≈
L∑

l=1

αl,i(σyi )ql,i(~θi), (12)

where αl,i are the weights computed depending on σyi as
explained in Appendix A. Then, as a second level surrogate, we
approximate each basis function ql ,i with a linear combination
of Gaussian radial basis functions,

ql,i(~θi) ≈
Nl,i∑
j=1

w
(j)
l,i N~θi

(µ(j)
l,i , Σ

(j)
l,i ), (13)

where w(j)
l,i is the weight for the Gaussian basis N~θi

(µ(j)
l,i , Σ

(j)
l,i )

with mean µ(j)
l,i and covariance matrix Σ(j)

l,i .
As a result, we obtain an analytical approximation to

the desired integral in Equation (11) using the property of
Gaussian integrals,

p(Di |~ψ,σyi ,MHB) ≈
L∑

l=1

αl,i(σyi )
Nl,i∑
j=1

w
(j)
l,i

∫
N~θi

(µ(j)
l,i , Σ

(j)
l,i )N~θi

(µθ (~ψ), Σθ (~ψ)) d~θ

=

L∑
l=1

αl,i(σyi )
Nl,i∑
j=1

w
(j)
l,i N

µ
(j)
l,i

(
µθ (~ψ), Σ(j)

l,i + Σθ (~ψ)
)

, (14)

where µθ and Σθ are the mean and covariance matrix of the
Gaussian prior of ~θ determined by ~ψ. Based on the EIM, w(j)

l,i ,

µ
(j)
l,i , and Σ(j)

l,i are predetermined and stored, whereas αl,i are
calculated “online,” i.e., during the TMCMC sampling. The
Gaussian radial basis approximation is performed by empiri-

cally fixing a grid of µ(j)
l,i and determining a diagonal covariance

matrix Σ(j)
l,i . Then, we find the weights w(j)

l,i using the least-
square method. We note that, as an alternative for building
surrogate models from Gaussian radial basis functions, one
can use any standard method, such as the Relevance Vec-
tor Machine that can induce sparsity robustly.18 For building
the bases ql ,i in the EIM, we use a greedy algorithm that is
explained in Appendix A.

IV. HIERARCHICAL MD SIMULATIONS OF WATER
A. Data and models

We use a 5-site water model — TIP5P19 — and we
resolve long range electrostatics using the particle-mesh-ewald
method. The calibration data consist of three distinct subsets:

D1: self diffusion coefficient of water at 4 thermodynamic
states (P = 1 bar, T = 288, 300, 330, 350 K),20

D2: density of water at the same 4 thermodynamic states as
in D1

21

D3: the values of the first 3 local maxima and 1 minimum
of the RDF of oxygen-oxygen in bulk water, at a single
thermodynamic state (P, T ) = (1 bar, 300 K).22

Each evaluation of a sample requires a full MD-simulation
run that was performed using the MD-code GROMACS.23

We performed our simulations on the compute nodes of the
Piz Daint Cray XC30 cluster at the Swiss National Super-
computing Center CSCS in Lugano. We use version 5.0.2 of

FIG. 6. Posterior distribution of model parameters given individually the
three data sets: (1) diffusion coefficient, (2) density, and (3) RDF.
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FIG. 7. Relative maximum error value of EIM surrogate model with L basis
functions normalized by the maximum value in the training data set. Black
solid line denotes diffusion (D1), gray solid line denotes density (D2), and
black dashed line denotes RDF (D3).

GROMACS, compiled with GPU support. The system con-
tains 1603 TIP5P water atoms (see Figure 2 for a snapshot).
Normal periodic boundary conditions are used throughout.
The computational workflow includes equilibration using the
steepest descent of the system for at least 20 000 steps, sub-
sequent equilibration for a further 2 ns using a time step of
∆t = 0.5 fs based on the Berendsen barostat and thermostat
in the NPT ensemble, and finally a 5 ns production run in the
NPT ensemble for each run using a time step of ∆t = 1.0 fs
and Parrinello-Rahman pressure coupling. A single evaluation
on the parameter space took approximately 1 h on one node,
for a total computational cost of the calibration campaign of
3500 Piz Daint node hours.

Then, we extract the predicted oxygen-oxygen RDF (g(r))
averaged over the last 2.5 ns of the production part of the

trajectory sampled every 100 fs. We detect the first 3 local
maxima and the first local minimum of the g(r) function.
Similarly, we extract the ensemble average of the self diffu-
sion coefficient using the Einstein formulation, as well as the
density.

We choose to vary the Lennard–Jones parameter per-
taining to the oxygen-oxygen interaction εLJ , as well
as the partial charge of the TIP5P water model q. We
keep σLJ fixed at its nominal value. The nominal val-
ues provided by Rick19 for TIP5P-E are (ε̂LJ , σ̂LJ , q̂)
= (0.669 kJ/mol, 0.334 nm, 0.241 q).

We assume that the predictions for the data points within
a data set Di are independent of each other. The likelihood
models for each data point in data set Di are defined as the
Gaussian distribution with mean f i, which is the MD sim-
ulation result corresponding to the data point, and standard
deviation σyi , for i = 1, . . . , 3. We note that for the likeli-
hood function of D3, the standard deviation σ(3)

y is normalized
by the nominal value of each local optimum. The nominal
values are determined based on the experimental data. All
priors are chosen to be uniformly distributed, except the
specific Gaussian prior of ~θi in MHB. This Gaussian prior
is parameterized by ~ψ = {µε ,σε , µq,σq, ρ}, where µε and
σε are the mean and standard deviation of εLJ , µq and
σq are the mean and standard deviation of q, and ρ is
the coefficient of correlation between εLJ and q. More-
over, the error reported for the experimental data is very
small when compared to the model uncertainties and we
have omitted it in our study. One may add an experimental
error term during the likelihood construction to capture this
quantity, but the results are expected to be qualitatively the
same.

B. Algorithm setup and efficiency check

Based on our empirical study, we selected the region of
interest for all parameters: ~θ = {εLJ , q},~σy = {σ

(1)
y ,σ(2)

y ,σ(3)
y },

FIG. 8. Relative root mean square error of Gaussian radial basis function surrogate model (normalized by the maximum value in the training data set) as a
function of model uncertainty parameters σyi (left to right): diffusion, density, and RDF. The same training data set used for the EIM surrogate is used here.
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FIG. 9. Posterior distribution of model parameters based on hierarchical Bayesian framework MHB and normal Bayesian framework MNB. The dashed line
shows the range of εLJ from different calibration studies reported in the work of Chaplin.25

and ~ψ = {µε ,σε , µq,σq, ρ}. The boundaries are summarized
in Table I.

In our study, we perform Bayesian inference five times
with all priors chosen to be uniformly distributed with the
boundaries listed in Table I:

1st to 3rd times: posterior distribution of εLJ , q, and
σyi is calculated based on individual data set Di, for
i = 1, . . . , 3. The Bayesian inference follows the section
on non-hierarchical Bayesian model, but using only one
data set for the likelihood p(D|~θ, ~σy,MNB) at a time.

4th time: posterior distribution of εLJ , q, and ~σy is calcu-
lated based on MNB. The Bayesian inference follows
the section on non-hierarchical Bayesian model.

5th time: posterior distribution of εLJ , q, ~σy, and ~ψ is cal-
culated based onMHB. The Bayesian inference follows
the section on hierarchical Bayesian model.

Results of the Bayesian inference for individual data sets
are used as a reference when comparing between MNB and
MHB.

The parallelized TMCMC algorithm17 is used for both
MNB and MHB. TMCMC generates posterior samples from

prior distribution based on multiple stages of MCMC sam-
pling that follow an annealing schedule for the likelihood
function.14 The number of samples per stage, which is also
the final number of posterior samples, used in our study
is 20 000 for MNB and 50 000 for MHB. The total num-
ber of stages depends on a parameter τCV that controls the
speed of converging to the actual likelihood function. We use
the suggested value of τCV = 100% from the work of Ching
and Chen.14 Another important parameter, βCOV controls the
step size of the random walk in each MCMC chain. We use
βCOV = 0.4, which is slightly higher than the suggested value
in the work of Ching and Chen,14 as we need the random
walk samples to explore a larger area in the space. As a
result, a total of 8 and 7 stages are used for MNB and MHB,
respectively.

For the EIM greedy algorithm, we initialize σ(1)
yi

= argmax
σ

(1)
yi

{
max~θi

p(Di |~θi,σ
(1)
yi

)
}

for i= 1, . . . , 3 to improve

the performance of the algorithm. Because each MD sim-
ulation requires a long computation time, it is impracti-
cal to train the EIM surrogate model by performing the
optimization on ~θi directly. Instead, we use a 500 × 500

FIG. 10. Zoom-in of the posterior distribution of model parameters given individually the three data sets: diffusion coefficient, density, and RDF (left to right).
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FIG. 11. Posterior distribution of ~ψ (left to right): p(µε ,σε |D,MHB), p(µq,σq |D,MHB), and p(ρ |D,MHB).

grid of interpolation points evaluated based on 780 MD sim-
ulations for four different temperatures as a training set to
perform the optimization. A total of 30 basis functions (L =
30) are used to reach at most 10�5 error (see Sec. V A).

Finally, for the Gaussian radial basis function surrogate
model, basis functions are centered at each point in the train-
ing set with standard deviation values equal to the square root
(because of 2-D grid) of the grid’s average step size. The
weights of each basis function are calculated by solving the
linear system of equations for all grid points. Weights that are
smaller than 0.000 01 ×

(
maxj(w

(j)
l,i )

)
are removed from the

surrogate model.
During the training stage of the two level surrogate

model, a total of 3120 MD simulations were performed. After
the EIM training process, which took around 1 h on one
CPU, the efficient approximation took less than 1 h on a
12-core CPU, which is around one MD simulation in our
example. A hierarchical Bayesian analysis based on a nested
TMCMC approach and without any surrogate models will
require a total number of MD simulations in the order of
1010. Our approach makes the originally intractable problem
feasible.

V. RESULTS AND DISCUSSIONS
A. Performance of surrogate models

The two-level surrogate model approach requires careful
monitoring of the surrogate modeling error. In Figures 3–5, it is
shown that the selected 30 values of εLJ , q, andσyi serve as the
basis functions for the EIM surrogate models. The locations of
the chosen values correspond well to the high likelihood value
region of each data set (Figure 6). The normalized maximum
error is controlled to be at most 0.001% for all three data sets
(Figure 7).

On the other hand, the normalized root mean square error
is controlled to be around 1% for the Gaussian radial basis
function surrogate models (Figure 8). The region of high error
mainly comes from the extremely low values of σy,1 and σy,3.
Overall, the error is small enough to give us the confidence in
our analyses (see Appendix B for further verification of the
results).

B. Posterior distribution of parameters and models

In Figure 9, it is shown that MHB and MNB both
have a similar optimal model parameter values. However, the

FIG. 12. Posterior distribution of model uncertainties ~σy of the three data sets (left to right): diffusion, density, and RDF. Gray solid lines are individual data
set results, black solid lines are hierarchical Bayesian MHB results, and black dashed lines are normal Bayesian MNB results.
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uncertainties associated with the parameters are significantly
different. To understand the differences, we investigate the pos-
terior distribution of ~θ for each individual data set (Figure 6
and a zoom-in version in Figure 10). We note that the posterior
probability values are directly proportional to the likelihood
function values of the data sets because the priors are uniformly
distributed. We conclude from the likelihood values that the
diffusion data will dominate the likelihood function in MNB.
Although the RDF data also have relatively high likelihood
values, the region of high values is too far away from the peak
value region of the diffusion data so that its influence becomes
minimal. Indeed, we observe the dominance of the diffu-
sion data in distribution shape and peak values of the model
parameters in MNB. This is not a surprising result because
the MD model and simulation protocol model used can cap-
ture the diffusion data at the investigated temperature regimes
more accurately than the density or the RDF. This occurs
as the statistical thermodynamic assumptions involved in the
MD model (e.g., pairwise interactions between the atoms)
affect less the diffusion calculation than the pair correlation
functions.24

On the other hand,MHB integrates the heterogeneous data
based on the evidence values of each data set. Although the
peak values of the model parameters are still controlled by the
diffusion data, there is a larger uncertainty associated with the
parameters.

In order to understand the difference in distribution
shape between MHB and MNB, we investigate the posterior
distribution of ~ψ in MHB. From Figure 11, one can observe
that the smaller mean values of εLJ tend to have a higher
uncertainty. This contributes to the asymmetric posterior dis-
tribution of ~θ along the εLJ axis. Furthermore, the poste-
rior distribution of ρ is approximately uniform. This implies
that the given heterogeneous data are actually not sufficient
to confirm any correlation between εLJ and q. This is not
intuitive based on the posterior distribution shown in Fig-
ure 6. Further investigation may be needed to confirm this
conclusion.

One important strength of the hierarchical Bayesian
framework is the ability to accurately quantify the model
uncertainty σyi for each data set Di. Figure 12 shows the pos-
terior distribution of model uncertainties of the three data sets
obtained from different Bayesian analysis approaches. One
can observe that the results from MHB coincide well with
the actual model uncertainty values (results of the Bayesian
analysis on each of the individual data sets). However, results
from MNB tend to overestimate the model uncertainties. This
is because MHB separates the uncertainty coming from the
heterogeneous data from the actual model uncertainties. On
the other hand, MNB integrates all uncertainties to the model
uncertainties ~σy.

A major benefit of our approach is that the final evidence of
MHB is estimated as a by-product of the parallelized TMCMC
algorithm. We can use this evidence value to perform model
selection with other approaches, e.g.,MNB in our example. We
evaluate the posterior probability of a model M using Bayes’
theorem,

p(M|D) =
p(D|M)p(M)

p(D)
. (15)

TABLE II. Bayesian model selection between hierarchical and non-
hierarchical models in the Bayesian framework.

Model ln(Evidence) P(Model |D)

MHB −20.44 0.98
MNB −24.51 0.02

Typically, a uniform prior for p(M) is chosen to avoid bias
on any model before observing any data. As a result, p(M|D)
∝ p(D|M), which is the final evidence of M. Table II shows
thatMHB is a more probable approach thanMNB for the given
heterogeneous data D in this example.

This method is capable of the calibration of MD simu-
lations for other materials using heterogeneous experimental
data. In general, application of this method to other materials
does not require any changes. However, if the number of model
parameters increases, the dimension of ~ψwill be higher as well.
Extra care is needed when developing the Gaussian radial basis
function surrogate model in a high dimension space.

C. Robust posterior predictions

We perform a full Bayesian robust prediction to demon-
strate the uncertainties propagated from the model parameters
and the model uncertainty σy. The posterior prediction distri-
bution p(y|D,MHB) of a property of interest y can be estimated
using the N s posterior samples ~ψ(k) and ~σ(k)

y as follows:

p(y|D,MHB) =
∫

p(y|~ψ, ~σ,MHB)p(~ψ, ~σ |D,MHB) d~ψd~σ

≈
1

Ns

Ns∑
k=1

p(y|~ψ(k), ~σ(k),MHB), (16)

where p(y|~ψ(k), ~σ(k),MHB) is a special case of p(Di |~ψ
(k), ~σ(k),

MHB) with only one value in Di. More specifically,
for an output quantity of interest y (e.g., diffusion), the
p(y|~ψ(k), ~σ(k),MHB) quantifies the statistical error computed
from an MD simulation. Herein this is selected to be a Gaus-
sian distribution with mean and standard deviation computed
from the MD simulations.

The results help us understand how the hierarchical model
merges contribution from the heterogeneous data set from
a new aspect. In Figure 13, we show that diffusion has the
largest prediction uncertainty, while density is the second and
RDF is the last. This observation illustrates why the hierar-
chical model shows a stronger influence of the diffusion data
on the parameter calibration: a larger prediction uncertainty
for a given parameter distribution implies a higher sensitiv-
ity of the property prediction from the parameter variation
and thus attracts more attention during the calibration step as
compared to other less sensitive properties. In this aspect, the
Bayesian hierarchical model presented in this study results in
calibration that naturally balances between the prediction sen-
sitivities of the heterogeneous data set. This is another way
to express the concept of data fusion using uncertainty infor-
mation under the Bayesian framework. On the other hand,
for the normal Bayesian model, the same phenomenon results



244112-10 Wu et al. J. Chem. Phys. 145, 244112 (2016)

FIG. 13. Bayesian robust prediction through uncertainty propagation for diffusion, density, and RDF; the hierarchical model (left to right), for the normal
Bayesian model (top) and the hierarchical Bayesian model (bottom). The dashed black line is the mean prediction with actual data indicated as cross marker.
The two levels of gray regions indicate the 25%–75% and 5%–95% quantiles. The non-smooth curves are resulting from a coarse grid on the temperature during
prediction simulations with full MD runs, which is limited by our computational expense available.

in a better prediction on the diffusion data with a misleading
uncertainty quantification for the density and RDF predictions.

VI. CONCLUSIONS

We propose a new approach for calibrating force-field
parameters in MD simulations fusing heterogeneous data
through a hierarchical Bayesian framework. This approach
automatically integrates the contribution of each data set with-
out any additional parameter tuning. The fusion of the data sets
is based on their evidence values, obtained through a classical
Bayesian analysis, and provides a new perspective of how to
combine heterogeneous data. We show analytically that our
approach automatically includes the uncertainty information
of each data set in the data fusion process, thus increasing its
robustness.

We tackle the computational cost associated with the
hierarchical Bayesian framework, by introducing an efficient
approximation based on a two-level surrogate model and
a parallelized TMCMC algorithm. The two-level surrogate
comprises an EIM-based model and a Gaussian radial basis
surrogate model. The present surrogate model allows for
an order of magnitude reduction in the total computational
demand compared to a hierarchical Bayesian model without
surrogates.

To showcase our method, we calibrated two oxygen
interaction parameters for MD simulations of water using

FIG. 14. Posterior distribution of model parameters forMHB using a nested
TMCMC approach. Note that the evidence value is within 5 of the EIM
surrogate one, providing a very good agreement within the variability of
TMCMC.
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FIG. 15. Posterior distribution of ~ψ using a nested TMCMC approach.

experimental data of three types of significantly different mate-
rial properties: diffusivity, density, and the RDF. The results
demonstrate that our new approach captures the model uncer-
tainties accurately. A single set of optimal model parameter
values is found with high uncertainty due to the inconsis-
tent calibration results from each data set, and our results
motivate further investigation of the correlation between
εLJ and q. Instead of promoting the use of a single set
of optimal parameters and trying to develop methodology
for finding the optimal values, our framework provides a
quantitative evidence for whether a given model is reli-
able for predictions across a specific set of heterogeneous
data.

In this work we show that by using a single water
TIP5P force field, it is not possible to predict simulta-
neously three different liquid properties. This observation
may serve as a warning for the transferability of com-
monly used force-field models. At the same time, the present
hierarchical Bayesian framework is shown to provide robust
predictions for all three liquid properties at the expense of
higher uncertainty in the model parameters. In turn, this may
provide a framework for improving the development of force
fields.

We can use the uncertainties reflected from the posterior
distribution of the parameters and the predictions to guide our
understanding of the relationship between the model and the
data set. Ongoing investigations aim to extend the present hier-
archical Bayesian framework to MD simulations of other mate-
rials as well as to other models of physical processes for which
heterogeneous data are available. We envision new capabilities
for MD simulations through the data driven quantification of
model uncertainties.
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APPENDIX A: EIM-BASED ALGORITHM

We want to find L values of ~θi and σyi to be the
bases of the approximation in Equation (12). Then, we can
solve the following system of linear equations for αl,i, where
l = 1, . . . , L, to obtain the approximation during “online”
operations:

p(Di |~θ
(n)
i ,σyi ,MHB) = P(i)

n (σyi )

=

L∑
l=1

αl,i(σyi )ql,i(~θ
(n)
i ), 1 ≤ n ≤ L

or in a matrix form: [q(i)
nl ]{αl,i} = {P

(i)
n },

(A1)

where {P(i)
n } is the vector of the actual p(Di |~θi,σyi ,MHB) eval-

uated at σyi and the nth basis values of ~θi, denoted as ~θ(n)
i ;

[q(i)
nl ] is the matrix with components q(i)

nl that denotes the lth

basis function ql ,i evaluated at ~θ(n)
i ; {αl,i} is the unknown vec-

tor of αl,i to be calculated from solving the linear system of
equations.

We use the greedy (Algorithm 1) to find L basis functions
ql,i(~θi). We choose ql ,i to be the original likelihood func-
tion p(Di |~θi,σyi ,MHB) with some given values of σyi and
~θi (denoted as σ(l)

yi
and ~θ(l)

i in Algorithm 1).
We note that L can be determined based on a pre-

determined threshold on the error function el,i(~θi;σ
(l)
yi

), i.e., the
FOR-loop in Algorithm 1 can be substituted with a WHILE-
loop conditional on the error function exceeding the threshold.
Also, the choice of σ(1)

yi
is random, but we found that the given

choice improved the performance of the algorithm. We further-
more point out that the original EIM paper by Barrault et al.12

suggests using normalized error functions as bases recursively
built by

q̃l,i(~θi) =
el−1,i(~θi;σ

(l)
yi

)

el−1,i(~θ
(l)
i ;σ(l)

yi
)
,

and q̃1,i(~θi) =
p(Di |~θi,σ

(1)
yi

)

p(Di |~θ
(1)
i ,σ(1)

yi
)
.

(A2)
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FIG. 16. Posterior distribution of model uncertainties ~σy of the three data sets (left to right): diffusion, density, and RDF. Solid lines are results from the two-level
surrogate model and dashed lines are results from the nested TMCMC method.

This set of bases allows the computation of the solution
of Equation (A1) to be more efficient during the online stage.
However, the error functions are usually not smooth. Since we
need a second level surrogate to approximate the bases, the
original likelihood function is preferred.

APPENDIX B: VERIFICATION USING NESTED TMCMC

To further verify the results obtained from the two-level
surrogate model, we perform a surrogate-free estimation on
MHB using a nested TMCMC approach. When a sample
is drawn from the posterior distribution p(~ψ, ~σy |D,MHB)
using TMCMC (denote as the outer TMCMC), we need
to evaluate the likelihood p(D|~ψ, ~σ,MHB) by Equations (9)
and (11). We use TMCMC again to draw samples from
p(~θi |Di, ~ψ,σyi ,MHB) (Equation (10)) and p(Di |~ψ,σyi ,MHB)
is estimated as a by-product of the algorithm (denoted as
the inner TMCMC). We use the same TMCMC parameter
values and prior settings as in Sec. IV B for both of the
TMCMC usages here. Observing from Figure 11 that ρ is
unidentifiable with the given data, we remove ρ from ~ψ, i.e.,
~ψ = {µε ,σε , µq,σq}. We use 500 samples per stage for the
inner TMCMC because it is only in a 2D parameter space (~θ),
and we use 5000 samples per stage for the outer TMCMC,
which is in a 7D parameter space (~ψ and ~σ). Figures 14–16

ALGORITHM 1. Greedy algorithm

Initialize: σ(1)
yi
= argmaxσyi

{
max~θi

p(Di |~θi,σyi ,MHB)
}

and ~θ(1)
i = argmax~θi

{
p(Di |~θi,σ

(1)
yi

)
}

for l = 2 to L do
el−1,i(~θi;σyi )
= p(Di |~θi,σyi ,MHB) −

∑l−1
k=1 αk,i(σyi )qk,i(~θi)

σ
(l)
yi
= argmaxσyi

{
max~θi

{
el−1,i(~θi;σyi )

}}
~θ

(l)
i = argmax~θi

{
el−1,i(~θi;σ

(l)
yi

)
}

ql,i(~θi) = p(Di |~θi,σ
(l)
yi

,MHB)
end for

show the results using this nested TMCMC approach. Compar-
ing with Figures 9, 11, and 12, we observe that the results from
the two-level surrogate model approach agree with the results
from the nested TMCMC approach very well. Hence, we are
confident on the accuracy of the results from our surrogate
model approach.

APPENDIX C: ERROR NORMALIZATION

In Figures 6 and 7, we normalized the maximum error
by the maximum value of the estimated quantity found in the
training set, in order to estimate the relative error for consistent
comparison,

Figure 4 error at stage l =
max~θi ,σyi

{
el,i(~θi;σyi )

}

max~θi ,σyi
p(Di |~θi,σyi ,MHB)

,

(C1)

Figure 5 error =
RMSE of Gaussian radial basis function

max~θi ,σyi
p(Di |~θi,σyi )

,

(C2)
where ~θi and σyi belong to the pre-selected training set.
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