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We introduce a data-driven forecasting method for
high-dimensional chaotic systems using long short-
term memory (LSTM) recurrent neural networks. The
proposed LSTM neural networks perform inference of
high-dimensional dynamical systems in their reduced
order space and are shown to be an effective
set of nonlinear approximators of their attractor.
We demonstrate the forecasting performance of the
LSTM and compare it with Gaussian processes
(GPs) in time series obtained from the Lorenz
96 system, the Kuramoto–Sivashinsky equation and
a prototype climate model. The LSTM networks
outperform the GPs in short-term forecasting accuracy
in all applications considered. A hybrid architecture,
extending the LSTM with a mean stochastic model
(MSM–LSTM), is proposed to ensure convergence to
the invariant measure. This novel hybrid method
is fully data-driven and extends the forecasting
capabilities of LSTM networks.

1. Introduction
Natural systems, ranging from climate and ocean
circulation to organisms and cells, involve complex
dynamics extending over multiple spatio-temporal
scales. Centuries-old efforts to comprehend and forecast
the dynamics of such systems have spurred developments
in large-scale simulations, dimensionality reduction
techniques and a multitude of forecasting methods.
The goals of understanding and prediction have been
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complementing each other but have been hindered by the high dimensionality and chaotic
behaviour of these systems. In recent years, we observe a convergence of these approaches
due to advances in computing power, algorithmic innovations and the ample availability of
data. A major beneficiary of this convergence are data-driven dimensionality reduction methods
[1–7], model identification procedures [8–15] and forecasting techniques [16–30] that aim to
provide precise short-term predictions while capturing the long-term statistics of these systems.
Successful forecasting methods address the highly nonlinear energy transfer mechanisms
between modes not captured effectively by the dimensionality reduction methods.

The pioneering technique of analogue forecasting proposed in [31] inspired a widespread
research in non-parametric prediction approaches. Two dynamical system states are called
analogues if they resemble one another on the basis of a specific criterion. This class of methods
uses a training set of historical observations of the system. The system evolution is predicted
using the evolution of the closest analogue from the training set corrected by an error term. This
approach has led to promising results in practice [32] but the selection of the resemblance criterion
to pick the optimal analogue is far from straightforward. Moreover, the geometrical association
between the current state and the training set is not exploited. More recently [33], analogue
forecasting is performed using a weighted combination of data-points based on a localized kernel
that quantifies the similarity of the new point and the weighted combination. This technique
exploits the local geometry instead of selecting a single optimal analogue. Similar kernel-based
methods, [34] use diffusion maps to globally parametrize a low-dimensional manifold capturing
the slower time scales. Moreover, non-trivial interpolation schemes are investigated in order to
encode the system dynamics in this reduced order space as well as map them to the full space
(lifting). Although the geometrical structure of the data is taken into account, the solution of an
eigen-system with a size proportional to the training data is required, rendering the approach
computationally expensive. In addition, the inherent uncertainty due to sparse observations
in certain regions of the attractor introduces prediction errors which cannot be modelled in a
deterministic context. In [35], a method based on Gaussian process regression (GPR) [36] was
proposed for prediction and uncertainty quantification in the reduced order space. The technique
is based on a training set that sparsely samples the attractor. Stochastic predictions exploit the
geometrical relationship between the current state and the training set, assuming a Gaussian
prior over the modelled latent variables. A key advantage of GPR is that uncertainty bounds can
be analytically derived from the hyper-parameters of the framework. Moreover, in [35] a mean
stochastic model (MSM) is used for under-sampled regions of the attractor to ensure accurate
modelling of the steady state in the long-term regime. However, the resulting inference and
training have a quadratic cost in terms of the number of data samples O(N2).

Some of the earlier approaches to capture the evolution of time series in chaotic systems using
recurrent neural networks (RNNs) were developed during the inception of the long short-term
memory networks (LSTM) [37]. However, to the best of our knowledge, these methods have been
used only on low-dimensional chaotic systems [38]. Similarly, other machine learning techniques
based on multi-layer perceptrons (MLP) [39], echo state networks (ESNs) [40,41] or radial basis
functions [42,43] have been successful, albeit only for low-order dynamical systems. Recent work
in [44,45] demonstrated promising results of ESNs for high-dimensional chaotic systems.

In this paper, we propose LSTM-based methods that exploit information of the recent history
of the reduced order state to predict the high-dimensional dynamics. Time-series data are used
to train the model while no knowledge of the underlying system equations is required. Inspired
by Taken’s theorem [46] an embedding space is constructed using time-delayed versions of the
reduced order variable. The proposed method tries to identify an approximate forecasting rule
globally for the reduced order space. In contrast with GPR [35], the method has a deterministic
output while its training cost scales linearly with the number of training samples and it exhibits
an O(1) inference computational cost. Moreover, following [35], LSTM is combined with a
MSM, to cope with attractor regions that are not captured in the training set. In attractor
regions, under-represented in the training set, the MSM is used to guarantee convergence to the
invariant measure and avoid an exponential growth of the prediction error. The effectiveness
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of the proposed hybrid method in accurate short-term prediction and capturing the long-term
behaviour is shown in the Lorenz 96 system and the Kuramoto–Sivashinsky (K-S) system. Finally,
the method is also tested on predictions of a prototypical climate model.

The structure of the paper is as follows: In §2, we explain how the LSTM can be employed for
modelling and prediction of a reference dynamical system and a blended LSTM–MSM technique
is introduced. In §3, three other state-of-the-art methods, GPR, MSM and the hybrid GPR-MSM
scheme are presented and two comparison metrics are defined. The proposed LSTM technique
and its LSTM–MSM extension are benchmarked against GPR and GPR–MSM in three complex
chaotic systems in §4. In §5, we discuss the computational complexity of training and inference in
LSTM. Finally, §6 offers a summary and discusses future research directions.

2. Long short-termmemory recurrent neural networks
The LSTM was introduced in order to regularize the training of RNNs [37]. RNNs contain loops
that allow information to be passed between consecutive temporal steps (figure 1a) and can be
expressed as

ht = σh(Whiit + Whhht−1 + bh) (2.1)

and

ot = σo(Wohht + bo) = f w(it, ht−1), (2.2)

where it ∈ Rdi , ot ∈ Rdo and ht ∈ Rdh are the input, the output and the hidden state of the RNN
at time step t. The weight matrices are Whi ∈ Rdh×di (input-to-hidden), Whh ∈ Rdh×dh (hidden-
to-hidden), Woh ∈ Rdo×dh (hidden-to-output), bh and bo. Moreover, σh and σo are the hidden
and output activation functions, while bh ∈ Rdh and bo ∈ Rdo are the respective biases. Temporal
dependencies are captured by the hidden-to-hidden weight matrix Whh, which couples two
consecutive hidden states together. A schematic of the RNN architecture is given in figure 1.

In many practical applications, RNNs suffer from the vanishing (or exploding) gradient
problem and have failed to capture long-term dependencies [47,48]. Today the RNNs owe
their renaissance largely to the LSTM, that copes effectively with the aforementioned problem
using gates. The LSTM has been successfully applied in sequence modelling [49], speech
recognition [50], hand-writing recognition [51] and language translation [52].

The equations of the LSTM are

gf
t = σf (Wf [ht−1, it] + bf ) gi

t = σi(Wi[ht−1, it] + bi),

C̃t = tanh(WC[ht−1, it] + bC) Ct = gf
tCt−1 + gi

tC̃t

and go
t = σh(Wh[ht−1, it] + bh) ht = go

t tanh(Ct),

⎫
⎪⎪⎬

⎪⎪⎭
(2.3)

where gf
t, gi

t, go
t ∈ Rdh×(dh+di) are the gate signals (forget, input and output gates), it ∈ Rdi is the

input, ht ∈ Rdh is the hidden state, Ct ∈ Rdh is the cell state, while Wf , Wi, WC, Wh ∈ Rdh×(dh+di)

are weight matrices and bf , bi, bC, bh ∈ Rdh are biases. The activation functions σf , σi and σh are
sigmoids. For a more detailed explanation on the LSTM architecture refer to [37]. In the following,
we refer to the LSTM hidden and cell states (ht and Ct) jointly as LSTM states. The dimension of
these states is called the number of hidden units h = dh and it controls the capability of the cell to
encode history information. In practice, we want the output to have a specific dimension do. For
this reason, a fully connected final layer without activation function Woh ∈ Rdo×h is added

ot = Wohht = f w(it, ht−1, Ct−1), (2.4)

where all parameters (weights and biases) are encoded in w = {Wf, Wi, WC, Wh, bf, bi, bC, bh} and
f w is the LSTM cell function that maps the previous LSTM States ht−1, Ct−1 and current input it

 on May 24, 2018http://rspa.royalsocietypublishing.org/Downloaded from 

http://rspa.royalsocietypublishing.org/


4

rspa.royalsocietypublishing.org
Proc.R.Soc.A474:20170844

...................................................

it

ht

ot

D

Whi

Woh

Whh

it−d+1 it−d+2 it−1 it

ht−d+1 ht−d+2 ht−1 ht

ot−d+1 ot−d+2 ot−1 ot

Whi Whi Whi Whi

Woh Woh Woh Woh

Whh Whh Whh
ht−d

(b)(a)

Figure 1. (a) A recurrent neural network cell, where D denotes a delay. The hidden cell state ht depends on the input it and its
previous value ht−1. The output ot depends on the hidden state. The weight matrices are parameters of the cell. (b) A recurrent
neural network unfolded in time (unfolding the delay). The same weights are used at each time step to compute the output ot
that depends on the current input it and short-term history (recursively) encoded in ht−1.

to the output. By unfolding the LSTM d time-steps in the past and ignoring dependencies longer
that d we get

ot = f w(zt, ht−1, Ct−1) =Fw(zt, zt−1, . . . , zt−d+1︸ ︷︷ ︸
zt:t−d+1

,✟✟✟✯0
ht−d,✟✟✟✯0

Ct−d), (2.5)

where Fw represents the iterative application of f w and computation of the LSTM states for d time
steps. For a more detailed explanation of the formula for Fw, and a figure of the neural network
architecture refer to the appendix.

In this work, we consider the reduced order problem where the state of a dynamical system
is projected in the reduced order space. The system is considered to be autonomous, while żt =
dzt/dt is the system state derivative at time step t. Following [38], the LSTM is trained using
time series data from the system in the reduced order space D = {z1:T, ż1:T} to predict the reduced
state derivative żt from a short history of the reduced order state {zt, zt−1, . . . , zt−d+1} consisting
of d past temporally consecutive states. In this work, we approximated the derivative from the
original time series using first-order forward differences. The loss that has to be minimized is
defined as

L(D, w) = 1
T − d + 1

T∑

t=d

∥Fw(zt:t−d+1)
︸ ︷︷ ︸

ot

−żt∥2. (2.6)

The short-term history for the states before zd is not available, that is why in total we have T − d +
1 training samples from a time series with T samples. During training the weights of the LSTM
are optimized according to w⋆ = argmin

w
L(D, w). The parameter d is denoted as truncation layer

and time dependencies longer than d are not explicitly captured in the loss function.
Training of this model is performed using Back-propagation through time, truncated at layer

d and mini-batch optimization with the Adam method [53] with an adaptive learning rate (initial
learning rate η= 0.0001). The LSTM weights are initialized using the method of Xavier [54].
Training is stopped when convergence of the training error is detected or the maximum of 1000
epochs is reached. During training the loss of the model is evaluated on a separate validation
dataset to avoid overfitting. The training procedure is explained in detail in the appendix.

An important issue is how to select the hidden state dimension h and how to initialize the
LSTM states ht−d, Ct−d at the truncation layer d. A small h reduces the expressive capabilities
of the LSTM and deteriorates inference performance. On the other hand, a big h is more
sensitive to overfitting and the computational cost of training rises. For this reason, h has to
be tuned depending on the observed training behaviour. In this work, we performed a grid
search and selected the optimal h for each application. For the truncation layer d, there are
two alternatives, namely stateless and stateful LSTM. In stateless LSTM, the LSTM states at layer
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Figure 2. Iterative prediction using the trained LSTMmodel. A short-term history of the system, i.e. ztrue1 , . . . , ztrued , is assumed
to be known. Initial LSTM states are h0, C0. The trained LSTM is used predict the derivative żpredd =Fw(ztrued:1 , h0, C0). The state
prediction zpredd+1 is obtained by integrating this derivative. This value is used for the next prediction in an iterative fashion. After
d time-steps only predicted values are fed in the input. In stateless LSTM, h and C are initialized to zero before every prediction.
(Online version in colour.)

d are initialized to zero as in equation (2.5). As a consequence, the LSTM can only capture
dependencies up to d previous time steps. In the second variant, the stateful LSTM, the state is
always propagated for p time steps in the future and then reinitialized to zero, to help the LSTM
capture longer dependencies. In this work, the systems considered exhibit chaotic behaviour and
the dependencies are inherently short term, as the states in two time steps that differ significantly
can be considered statistically independent. For this reason, the short temporal dependencies
can be captured without propagating the hidden state for a long horizon. As a consequence, we
consider only the stateless variant p = 0. We also applied stateful LSTM without any significant
improvement so we omit the results for brevity. The trained LSTM model can be used to iteratively
predict the system dynamics as illustrated in figure 2. This is a solely data-driven approach and
no explicit information regarding the form of the underlying equations is required.

(a) Mean stochastic model and hybrid LSTM–MSM
The MSM is a powerful data-driven method used to quantify uncertainty and perform forecasts
in turbulent systems with high intrinsic attractor dimensionality [35,55]. It is parametrized a
priori to capture global statistical information of the attractor by design, while its computationally
complexity is very low compared to LSTM or GPR. The concept behind MSM is to model each
component of the state zi independently with an Ornstein–Uhlenbeck (OU) process that captures
the energy spectrum and the damping time scales of the statistical equilibrium. The process takes
the following form:

dzi = cizi dz + ξi dWi, (2.7)

where ci, ξi are parameters fitted to the centred training data and Wi is a Wiener process. In the
statistical steady state, the mean, energy and damping time scale of the process are given by

µi = E[zi] = 0, Ei = E[zi(zi)∗] = − ξ2

2ci
and Ti = − 1

ci
, (2.8)

where (zi)∗ denotes the complex conjugate of zi. To fit the model parameters ci, ξi, we directly
estimate the variance E[zi(zi)∗] from the time series training data and the decorrelation time using

Ti = 1
E[zi(zi)∗]

∫∞

0
E[zi(t)(zi(t + τ ))∗] dτ . (2.9)
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After computing these two quantities, we replace in (2.8) and solve with respect to ci and ξi. As
the MSM is modelled a priori to mimic the global statistical behaviour of the attractor, forecasts
made with MSM can never escape. This is not the case with LSTM and GPR, as prediction errors
accumulate and iterative forecasts escape the attractor due to the chaotic dynamics, although
short-term predictions are accurate. This problem has been addressed with respect to GPR in [35].
To cope effectively with this problem, we introduce a hybrid LSTM–MSM technique that prevents
forecasts from diverging from the attractor.

The state-dependent decision rule for forecasting in LSTM–MSM is given by

żt =
{

(żt)LSTM, if ptrain(zt) =
∏

ptrain
i (zi

t) > δ,

(żt)MSM, otherwise,
(2.10)

where ptrain(zt) is an approximation of the probability density function of the training dataset and
δ ≈ 0.01 a constant threshold tuned based on ptrain(zt). We approximate ptrain(zt) using a mixture
of Gaussian kernels. This hybrid architecture exploits the advantages of LSTM and MSM. In case,
there is a high probability that the state zi lies close to the training dataset (interpolation) the LSTM
having memorized the local dynamics is used to perform inference. This ensures accurate LSTM
short-term predictions. On the other hand, close to the boundaries the attractor is only sparsely
sampled ptrain(zi) < δ and errors from LSTM predictions would lead to divergence. In this case,
MSM guarantees that forecasting trajectories remain close to the attractor, and that we converge
to the statistical invariant measure in the long term.

3. Benchmark and performance measures
The performance of the proposed LSTM-based prediction mechanism is benchmarked against the
following state-of-the-art methods:

— MSM
— GPR
— mixed model (GPR–MSM)

To guarantee that the prediction performance is independent of the initial condition selected,
for all applications and all performance measures considered the average value of each measure
for a number of different initial conditions sampled independently and uniformly from the
attractor is reported. The ground truth trajectory is obtained by integrating the discretized
reference equation starting from each initial condition, and projecting the states to the reduced
order space. The reference equation and the projection method are of course application
dependent.

From each initial condition, we generate an empirical Gaussian ensemble of dimension Nen
around the initial condition with a small variance σen. This noise represents the uncertainty in
the knowledge of the initial system state. We forecast the evolution of the ensemble by iteratively
predicting the derivatives and integrating (deterministically for each ensemble member for the
LSTM, stochastically for GPR) and we keep track of the mean. We select an ensemble size Nen =
50, which is the usual choice in environmental science, e.g. weather prediction and short-term
climate prediction [56].

The ground truth trajectory at each time instant z is then compared with the predicted
ensemble mean z̃. As a comparison measure we use the root mean square error (RMSE) defined

as RMSE(zk) =
√

1/V
∑V

i=1(zi
k − z̃i

k)2, where index k denotes the kth component of the reduced
order state z, i is the initial condition, and V is the total number of initial conditions. The RMSE is
computed at each time instant for each component k of the reduced order state, resulting in error
curves that describe the evolution of error with time. Moreover, we use the standard deviation
σ of the attractor samples in each dimension as a relative comparison measure. Assuming that
the attractor consists of samples {z1, z2, . . . , zN}, with zj ∈ Rdi , the attractor standard deviation in

 on May 24, 2018http://rspa.royalsocietypublishing.org/Downloaded from 

http://rspa.royalsocietypublishing.org/


7

rspa.royalsocietypublishing.org
Proc.R.Soc.A474:20170844

...................................................

dimension i ∈ {1, . . . , di} is defined as σi =
√

E[(zi − z̄i)2]), where z̄i is the mean of the samples in
this dimension. If the prediction error is bigger than this standard deviation, then a trivial mean
predictor performs better.

Moreover, we use the mean anomaly correlation coefficient (ACC) [57] over V initial conditions
to quantify the pattern correlation of the predicted trajectories with the ground-truth. The ACC is
defined as

ACC = 1
V

V∑

i=1

∑rdim
k=1 wk(zi

k − z̄k)(z̃i
k − z̄k)

√∑rdim
k=1 wk(zi

k − z̄k)2 ∑rdim
k=1 wk(z̃i

k − z̄k)2
, (3.1)

where k refers to the mode number, i refers to the initial condition, wk are mode weights selected
according to the energies of the modes after dimensionality reduction and z̄k is the time average
of the respective mode, considered as reference. This score ranges from −1.0 to 1.0. If the forecast
is perfect, the score equals to 1.0. The ACC coefficient is a widely used forecasting accuracy score
in the meteorological community [58].

4. Applications
In this section, the effectiveness of the proposed method is demonstrated with respect to three
chaotic dynamical systems, exhibiting different levels of chaos, from weakly chaotic to fully
turbulent, i.e. the Lorenz 96 system, the K-S equation and a prototypical barotropic climate model.

(a) The Lorenz 96 system
In [59], a model of the large-scale behaviour of the mid-latitude atmosphere is introduced. This
model describes the time evolution of the components Xj for j ∈ {0, 1, . . . , J − 1} of a spatially
discretized (over a single latitude circle) atmospheric variable. In the following, we refer to this
model as the Lorenz 96. The Lorenz 96 is usually used ([35,58] and references therein) as a toy
problem to benchmark methods for weather prediction.

The system of differential equations that governs the Lorenz 96 is defined as

dXj

dt
= (Xj+1 − Xj−2)Xj−1 − Xj + F, (4.1)

for j ∈ {0, 1, . . . , J − 1}, where by definition X−1 = XJ , X−2 = XJ−1. In our analysis J = 40. The right-
hand side of (4.1) consists of a nonlinear adjective term (Xj+1 − Xj−2)Xj−1 − Xj, a linear advection
(dissipative) term −Xj and a positive external forcing term F. The discrete energy of the system
remains constant throughout time and the Lorenz 96 states Xj remain bounded. By increasing
the external forcing parameter F the behaviour that the system exhibits changes from periodic
F < 1 to weakly chaotic (F = 4) to end up in fully turbulent regimes (F = 16). These regimes can be
observed in figure 3.

Following [35,56], we apply a shifting and scaling to standardize the Lorenz 96 states Xj. The

discrete or Dirichlet energy is given by E = 1
2

∑J
j=1 X2

j . In order for the scaled Lorenz 96 states to
have zero mean and unit energy we transform them using

X̃j =
Xj − X̄
√

Ep
, dt̃ =

√
Ep dt and Ep = 1

2T

J−1∑

j=0

∫T0+T

T0

(Xj − X̄)2 dt, (4.2)

where Ep is the average energy fluctuation. In this way, the scaled energy is Ẽ = 1
2

∑J−1
j=0 X̃2

j = 1

and the scaled variables have zero mean ¯̃X = (1/J)
∑J−1

j=0 X̃j = 0, with X̄ the mean state. The scaled

Lorenz 96 states X̃j obey the following differential equation:

dX̃j

dt̃
= F − X̄

Ep
+

(X̃j+1 − X̃j−2)X̄ − X̃j√
Ep

+ (X̃j+1 − X̃j−2)X̃j−1. (4.3)
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(i) Dimensionality reduction: discrete Fourier transform
Firstly, the discrete Fourier transform (DFT) is applied to the energy standardized Lorenz 96 states
X̃j. The Fourier coefficients X̂k ∈ C and the inverse DFT to recover the Lorenz 96 states are given by

X̂k = 1
J

J−1∑

j=0

X̃j e−2π ikj/J and X̃j =
J−1∑

k=0

X̂k e2π ikj/J . (4.4)

After applying the DFT to the Lorenz 96 states we end up with a symmetric energy spectrum
that can be uniquely characterized by J/2 + 1 (J is considered to be an even number) coefficients X̂k
for k ∈ K = {0, 1, . . . , J/2}. In our case J = 40, thus we end up with |K| = 21 complex coefficients X̂k ∈
C. These coefficients are referred to as the Fourier modes or simply modes. The Fourier energy of
each mode is defined as Ek = Var(X̂k) = E[(X̂k(t̃) − ¯̂Xk)(X̂k(t̃) − ¯̂Xk)∗].

The energy spectrum of the Lorenz 96 system is plotted in figure 4 for different values of
the forcing term F. We take into account only the rdim = 6 modes corresponding to the highest
energies and the rest of the modes are truncated. For the different forcing regimes F = 4, 8, 16,
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the six most energetic modes correspond to approximately 89%, 52% and 43.8% of the total
energy, respectively. The space where the reduced variables live in is referred to as the reduced
order phase space and the most energetic modes are notated as X̂r

k for k ∈ {1, . . . , rdim}. As shown
in [60], the most energetic modes are not necessarily the ones that capture better the dynamics
of the model. Including more modes, or designing a criterion to identify the most important
modes in the reduced order space may boost prediction accuracy. However, in this work, we
are not interested in an optimal reduced space representation, but rather in the effectiveness of a
prediction model given this space. The truncated modes are ignored for now. Nevertheless, their
effect can be modelled stochastically as in [35].

As each Fourier mode X̂r
k is a complex number, it consists of a real part and an imaginary part.

By stacking these real and imaginary parts of the rdim truncated modes we end up with the 2 rdim
dimensional reduced model state

X ≡ [Re(X̂r
1), . . . , Re(X̂r

rdim
), Im(X̂r

1), . . . , Im(X̂r
rdim

)]T. (4.5)

Assuming that Xt
j for j ∈ {0, 1, . . . , J − 1} are the Lorenz 96 states at time instant t, the mapping Xt

j ,
∀j → X is unique and the reduced model state of the Lorenz 96 has a specific vector value.

(ii) Training and prediction in Lorenz 96
The reduced Lorenz 96 system states Xt are considered as the true reference states zt. The LSTM is
trained to forecast the derivative of the reduced order state żt as elaborated in §2. We use a stateless
LSTM with h = 20 hidden units and the back-propagation truncation horizon set to d = 10.

To obtain training data for the LSTM, we integrate the Lorenz 96 system state, e.g. (4.1) starting
from an initial condition X0

j for j ∈ {0, 1, . . . , J − 1} using a Runge–Kutta fourth-order method with
a time step dt = 0.01 up to T = 51. In this way, a time series Xt

j , t ∈ {0, 1, . . .} is constructed. We

obtain the reduced order state time series Xt, t ∈ {0, 1, . . .}, using the DFT mapping |Xj
t ∀ j → Xt.

From this time series, we discard the first 104 initial time steps as initial transients, ending up
with a time series with Ntrain = 50 000 samples. A similar but independent process is repeated for
the validation set.

(iii) Results
The trained LSTM models are used for prediction based on the iterative procedure explained in
§2. In this section, we demonstrate the forecasting capabilities of LSTM and compare it with GPs.
One hundred different initial conditions uniformly sampled from the attractor are simulated. For
each initial condition, an ensemble with size Nen = 50 is considered by perturbing it with a normal
noise with variance σen = 0.0001.

In figure 5a–c, we report the mean RMSE prediction error of the most energetic mode X̂r
1 ∈ C,

scaled with
√

Ep for the forcing regimes F ∈ {6, 8, 16} for the first N = 10 time steps (T = 0.1). In the
RMSE, the complex norm ∥v∥2 = vv∗ is taken into account. The 10% of the standard deviation of
the attractor is also plotted for reference (10%σ ). As F increases, the system becomes more chaotic
and difficult to predict. As a consequence, the number of prediction steps that remain under
the 10%σ threshold are decreased. The LSTM models extend this predictability horizon for all
forcing regimes compared to GPR and MSM. However, when LSTM is combined with MSM the
short-term prediction performance is compromised. Nevertheless, hybrid LSTM–MSM models
outperform GPR methods in short-term prediction accuracy.

In figure 5d–f, the RMSE error for T = 2 is plotted. The standard deviation from the attractor
σ is plotted for reference. We can observe that both GPR and LSTM diverge, while MSM and
blended schemes remain close to the attractor in the long term as expected.

In figure 5g–i, the mean ACC over 1000 initial conditions is given. The predictability threshold
of 0.6 is also plotted. After crossing this critical threshold, the methods do not predict better than
a trivial mean predictor. For F = 4, GPR methods show inferior performance compared to LSTM
approaches as analysed previously in the RMSE comparison. However, for F = 8 LSTM models
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do not predict better than the mean after T ≈ 0.35, while GPR shows better performance. In turn,
when blended with MSM the compromise in the performance for GPR–MSM is much bigger
compared to LSTM–MSM. The LSTM–MSM scheme shows slightly superior performance than
GPR–MSM during the entire relevant time period (ACC> 0.6). For the fully turbulent regime
F = 16, LSTM shows comparable performance with both GPR and MSM and all methods converge
as chaoticity rises, since the intrinsic dimensionality of the system attractor increases and the
system becomes inherently unpredictable.

In figure 6, the evolution of the mean RMSE over 1000 initial conditions of the wavenumbers
k = 8, 9, 10, 11 of the Lorenz 96 with forcing F = 8 is plotted. In contrast with GPR, the RMSE error
of LSTM is much lower in the moderate and low energy wavenumbers k = 9, 10, 11 compared
to the most energetic mode k = 8. This difference among modes is not observed in GPR. This
can be attributed to the highly nonlinear energy transfer mechanisms between these lower
energy modes as opposed to the Gaussian and locally linear energy transfers of the most
energetic mode.

As illustrated before, the hybrid LSTM–MSM architecture effectively combines the accurate
short-term prediction performance of LSTM with the long-term stability of MSM. The ratio of
ensemble members modelled by LSTM in the hybrid scheme is plotted with respect to time in
figure 7a. Starting from the initial ensemble of size 50, as the LSTM forecast might deviate from
the attractor, the MSM is used to forecast in the hybrid scheme. As a consequence, the ratio of
ensemble members modelled by LSTM decreases with time. In parallel with the GPR results
presented in [35] and plotted in figure 7b, the slope of this ratio curve increases with F up to
time t ≈ 1.5. However, the LSTM ratio decreases slower compared to GPR.
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(b) Kuramoto–Sivashinsky equation
The K-S system is extensively used in many scientific fields to model a multitude of chaotic
physical phenomena. It was first derived by Kuramoto [61,62] as a turbulence model of the
phase gradient of a slowly varying amplitude in a reaction–diffusion type medium with negative
viscosity coefficient. Later, Sivashinsky [63] studied the spontaneous instabilities of the plane front
of a laminar flame ending up with the K-S equation, while in [64] the K-S equation is found to
describe the surface behaviour of viscous liquid in a vertical flow.
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Figure 8. (a) Contour plots of the solution u(x, t) of the Kuramoto–Sivashinsky system for different values ofν in steady state.
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For our study, we restrict ourselves to the one-dimensional K-S equation with boundary and
initial conditions given by

∂u
∂t

= −ν ∂
4u
∂x4 − ∂2u

∂x2 − u
∂u
∂x

,

u(0, t) = u(L, t) = ∂u
∂x

∣∣∣∣
x=0

= ∂u
∂x

∣∣∣∣
x=L

= 0

and u(x, 0) = u0(x),

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(4.6)

where u(x, t) is the modelled quantity of interest depending on a spatial variable x ∈ [0, L] and
time t ∈ [0, ∞). The negative viscosity is modelled by the parameter ν > 0. We impose Dirichlet
and second-type boundary conditions to guarantee ergodicity [65]. To spatially discretize (4.6) we
use a grid size *x with D = L/*x + 1 the number of nodes. Further, we denote with ui = u(i*x)
the value of u at node i ∈ {0, . . . , D − 1}. Discretization using a second-order differences scheme
yields

dui
dt

= −ν ui−2 − 4ui−1 + 6ui − 4ui+1 + ui+2

*x4 − ui+1 − 2ui + ui−1

*x2 −
u2

i+1 − u2
i−1

4*x
. (4.7)

Further, we impose u0 = uD−1 = 0 and add ghost nodes u−1 = u1, uD = uD−2 to account for
the Dirichlet and second-order boundary conditions. In our analysis, the number of nodes
is D = 513. The Kuramoto–Sivashinsky equation exhibits different levels of chaos depending
on the bifurcation parameter L̃ = L/2π

√
ν [66]. Higher values of L̃ lead to more chaotic

systems in terms of higher Lyapunov exponents [35].
In our analysis, the spatial variable bound is held constant to L = 16 and chaoticity level is

controlled through the negative viscosity ν, where a smaller value leads to a system with a
higher level of chaos (figure 8a). In our study, we consider two values, namely ν = 1/10 and
ν = 1/16 to benchmark the prediction skills of the proposed method. The discretized equation
(4.7) is integrated with a time interval dt = 0.02 up to T = 11 000. The data points up to T = 1000
are discarded as initial transients. Half of the remaining data (N = 250 000 samples) are used for
training and the other half for validation.

(i) Dimensionality reduction: singular value decomposition
The dimensionality of the problem is reduced using singular value decomposition (SVD). By
subtracting the temporal mean u and stacking the data, we end up with the data matrix
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U ∈ RN×513, where N is the number of data samples (N = 500 000 in our case). Performing SVD on
U leads to

U = MΣVT, M ∈ RN×N , Σ ∈ RN×513 and V ∈ R513×513, (4.8)

with Σ diagonal, with descending diagonal elements. The right singular vectors corresponding
to the rdim largest singular values are the first columns of V = [Vr, V−r]. Stacking these singular
vectors yields Vr ∈ R513×rdim . Assuming that ut ∈ R513 is a vector of the discretized values of u(x, t)
in time t, in order to get a reduced order representation c ≡ [c1, . . . , crdim ]T corresponding to the
rdim components with the highest energies (singular values) we multiply

c = VT
r u, c ∈ Rrdim . (4.9)

The percentage of cumulative energy w.r.t. to the number of PCA modes considered is plotted
in figure 8b. In our study, we pick rdim = 20 (out of 513) most energetic modes, as they explain
approximately 90% of the total energy.

(ii) Results
We train stateless LSTM models with h = 100 and d = 50. For testing, starting from 1000 initial
conditions uniformly sampled from the attractor, we generate a Gaussian ensemble of dimension
Nen = 50 centred around the initial condition in the original space with standard deviation of
σ = 0.1. This ensemble is propagated using the LSTM prediction models, and GPR, MSM and
GPR–MSM models trained as in [35]. The RMSE between the predicted ensemble mean and the
ground-truth is plotted in figure 9a,b for different values of the parameter ν. All methods reach
the invariant measure much faster for 1/ν = 16 compared to the less chaotic regime 1/ν = 10 (note
the different integration times T = 4 for 1/ν = 10, while T = 1.5 for 1/ν = 16).

In both chaotic regimes 1/ν = 10 and 1/ν = 16, the reduced order LSTM outperforms all other
methods in the short term before escaping the attractor. However, in the long term, LSTM
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does not stabilize and will eventually diverge faster than GPR (figure 9b). Blending LSTM with
MSM alleviates the problem and both accurate short-term predictions and long-term stability is
attained. Moreover, the hybrid LSTM–MSM has better forecasting capabilities compared to GPR.

The need for blending LSTM with MSM in the KS equation is less imperative as the system is
less chaotic than the Lorenz 96 and LSTM methods diverge much slower, while they sufficiently
capture the complex nonlinear dynamics. As the intrinsic dimensionality of the attractor rises
LSTM diverges faster.

The mean ACC (3.1) is plotted with respect to time in figure 9c,d for ν = 10 and 16, respectively.
The evolution of the ACC justifies the aforementioned analysis. The mean ACC of the trajectory
predicted with LSTM remains above the predictability threshold of 0.6 for a highest time duration
compared to other methods. This predictability horizon is approximately 2.5 for ν = 1

10 and 0.6 for
ν = 1

16 , since the chaoticity of the system rises and accurate predictions become more challenging.
For a plot of the time evolution of the ratio of the ensemble members that are modelled with
LSTM dynamics in the hybrid LSTM–MSM refer to the appendix.

(c) A barotropic climate model
In this section, we examine a standard barotropic climate model [67] originating from a realistic
winter circulation. The model equations are given by

∂ζ

∂t
= −J (ψ , ζ + f + h) + k1ζ + k2δ

3ζ + ζ ∗, (4.10)

whereψ is the stream function, ζ = δψ the relative vorticity, f the Coriolis parameter, ζ ∗ a constant
vorticity forcing, while k1 and k2 are the Ekman damping and the scale-selective damping
coefficient. J is the Jacobi operator given by

J (a, b) =
(
∂a
∂λ

∂B
∂µ

− ∂a
∂µ

∂B
∂λ

)
, (4.11)

where µ and λ denote the sine of the geographical latitude and longitude, respectively. The
equation of the barotropic model (4.10) is non-dimensionalized using the radius of the Earth
as unit length and the inverse of the Earth angular velocity as time unit. The non-dimensional
orography h is related to the real northern hemisphere orography h′ by h = 2sin(φ0)A0h′/H, where
phi0 is a fixed amplitude of 45◦ N, A0 is a factor expressing the surface wind strength blowing
across the orography, and H a scale height [67]. The stream-functionψ is expanded into a spherical
harmonics series and truncated at wavenumber 21, while modes with an even total wavenumber
are excluded, avoiding currents across the equator and ending up with a hemispheric model with
231 degrees of freedom.

The training data are obtained by integrating the equation (4.10) for 105 days after an initial
spin-up period of 1000 days, using a fourth-order Adams-Bashforth integration scheme with
a 45-min time step in accordance with [35], with k1 = 15 days, while k2 is selected such that
wavenumber 21 is damped at a time scale of 3 days. In this way, we end up with a time series ζt
with 104 samples. The spherical surface is discretized into a D = 64 × 32 mesh with equally spaces
latitude and longitude. From the gathered data, 90% is used for training and 10% for validation.
The mean and variance of the statistical steady state are shown in figure 10a,b.

The dimensionality of the barotropic climate model truncated at wavenumber 21 is 231. To
reduce it, we identify empirical orthogonal functions (EOFs) φi, i ∈ {1, . . . , 231} that form an
orthogonal basis of the reduced order space. The details of the method are described in the
appendix. EOF analysis has been used to identify individual realistic climatic modes such as the
Arctic oscillation (AO), the Pacific/North America (PNA) and the Tropical/Northern Hemisphere
(TNH) pattern known as teleconnections [68,69]. Accurate prediction of these modes is of high
practical importance as they feature realistic climate patterns. After projecting the state of the
barotropic model to the EOFs, we take into account only the rdim coefficients corresponding to
the most energetic EOFs that form the reduced order state y∗. In our study, the dimensionality of
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Figure 10. (a) Mean of the Barotropicmodel at statistical steady state. (b) Variance of the Barotropicmodel at statistical steady
state. (c) Percentage of energy explained with respect to the modelled modes. (Online version in colour.)

the reduced space is rdim = 30, as φ30 contains only 3.65% of the energy of φ1, while the 30 most
energetic modes contain approximately 82% of the total energy, as depicted in figure 10c.

(i) Training and prediction
The reduced order state that we want to predict using the LSTM are the 30 components of y. A
stateless LSTM with h = 140 hidden units is considered, while the truncated back-propagation
horizon is set to d = 10. The prototypical system is less chaotic than the K-S equation and
the Lorenz 96, which enables us to use more hidden units. The reason is that as chaoticity is
decreased trajectories sampled from the attractor as training and validation dataset become more
interconnected and the task is inherently easier and less prone to overfitting. In the extreme case
of a periodic system, the information would be identical. Five hundred points are randomly
and uniformly picked from the attractor as initial conditions for testing. A Gaussian ensemble
with a small variance (σen = 0.001) along each dimension is formed and marched using the
reduced-order GPR, MSM, mixed GPR–MSM and LSTM methods.

(ii) Results
The RMSE error of the four most energetic reduced order space variables yi for i ∈ {1, . . . , 4} is
plotted in figure 11. The LSTM takes 400–500 h to reach the attractor, while GPR based methods
generally take 300–400 h. By contrast, the MSM reaches the attractor already after 1 h. This implies
that the LSTM can better capture the nonlinear dynamics compared to GPR. Note that the
barotropic model is much less chaotic than the Lorenz 96 system with F = 16, where all methods
show comparable prediction performance. Blended LSTM models with MSM are omitted here, as
LSTM models only reach the attractor standard deviation towards the end of the simulated time
and MSM–LSTM shows identical performance.

5. A comment on computational cost of prediction
The computational cost of making a single prediction can be quantified by the number of
operations (multiplications and additions) needed. In GPR-based approaches the computational
cost is of order O(N2), where N is the number of samples used in training. For GPR methods
illustrated in the previous section N ≈ 2500. The GPR models the global dynamics by uniformly
sampling the attractor and ‘carries’ this training dataset at each time instant to identify the
geometric relation between the input and the training dataset (modelled with a covariance matrix
metric) and make (exact or approximate) probabilistic inference on the output.

By contrast, LSTM adjusts its parameters to reproduce the local dynamics. As a consequence,
the inference computational complexity does not depend on the number of samples used for
training. The inference complexity is roughly O(di · d · h + d · h2), where di is the dimension of
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each input, d is the number of inputs and h is the number of hidden units. This complexity
is significantly smaller than GPR, which can be translated to faster prediction. However, it is
logical that the LSTM is more prone to diverge from the attractor, as there is no guarantee that the
infrequent training samples near the attractor limits where memorized. This remark explains the
faster divergence of LSTM in the more turbulent regimes considered in §4.

6. Conclusion
We propose a data-driven method, based on LSTM networks, for modelling and prediction in the
reduced space of chaotic dynamical systems. The LSTM uses the short-term history of the reduced
order variable to predict the state derivative and uses it for one-step prediction. The network
is trained on time-series data and it requires no prior knowledge of the underlying governing
equations. Using the trained network, long-term predictions are made by iteratively predicting
one step forward.

The features of the proposed technique are showcased through comparisons with GPR and
MSM on benchmarked cases. Three applications are considered, the Lorenz 96 system, the K-S
equation and a barotropic climate model. The chaoticity of these systems ranges from weakly
chaotic to fully turbulent, ensuring a complete simulation study. Comparison measures include
the RMSE and ACC between the predicted trajectories and trajectories of the real dynamics.

In all cases, the proposed approach performs better, in short-term predictions, as the LSTM
is more efficient in capturing the local dynamics and complex interactions between the modes.
However, the prediction error accumulates as we iteratively perform predictions and similar to
GPR does not converge to the invariant measure. Furthermore, in the cases of increased chaoticity
the LSTM diverges faster than GPR. This may be attributed to the absence of certain attractor
regions in the training data, insufficient training and propagation of the exponentially increasing
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prediction error. To mitigate this effect, LSTM is also combined with MSM, following ideas
presented in [35], in order to guarantee convergence to the invariant measure. Blending LSTM
or GPR with MSM leads to a deterioration in the short-term prediction performance but the
steady-state statistical behaviour is captured. The hybrid LSTM–MSM exhibits a slightly superior
performance than GPR–MSM in all systems considered in this study.

In the K-S equation, LSTM can capture better the local dynamics compared to Lorenz 96 due
to the lower intrinsic attractor dimensionality. LSTM is more accurate than GPR in the short term,
but especially in the chaotic regime 1/ν = 16 forecasts of LSTM fly away from the attractor faster.
LSTM–MSM counters this effect and long-term forecasts converge to the invariant measure at the
expense of a compromise in the short-term forecasting accuracy. The higher short-term forecasting
accuracy of LSTM can be attributed to the fact that it is a nonlinear approximator and can also
capture correlations between modes in the reduced space. By contrast, GPR is a locally linear
approximator modelling each mode independently in the output, assuming Gaussian correlations
between modes in the input. LSTM and GPR show comparable forecasting accuracy in the
barotropic model, as the intrinsic dimensionality is significantly smaller than K-S and Lorenz
96 and both methods can effectively capture the dynamics.

Future directions include modelling the lower energy modes and interpolation errors using a
stochastic component in the LSTM to improve the forecasting accuracy. Another possible research
direction is to model the attractor in the reduced space using a mixture of LSTM models, one
model for each region. The LSTM proposed in this work models the attractor globally. However,
different attractor regions may exhibit very different dynamic behaviours, which cannot be
simultaneously modelled using only one network. Moreover, these local models can be combined
with a closure scheme compensating for truncation and modelling errors. This local modelling
approach may further improve prediction performance.
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A Long short-term memory (LSTM)

A.1 Training and inference

In this section, the LSTM training procedure is explained in detail. We assume
that time series data stemming from a dynamical system is available in the form
D = {z

t:N , ż
t:N}, where z

t

2 Rd

i is the state at time step t and ż
t

is the deriva-
tive. The available time series data are divided into two separate sets, the train-
ing dataset and the validation dataset, i.e. ztrain
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for t 2 {1, 2, . . . , N
train

� d+ 1}, in order to form the training (and validation)
input and output of the LSTM. These training samples are used to optimize
the parameters of the LSTM (weights and biases) in order to learn the mapping
i
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. The loss function of each sample is
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while the total Loss is defined as
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1

S

SX

b=1

L(itrain
b

,otrain

b

, w), (3)

⇤Chair of Computational Science, ETH Zurich, Clausiusstrasse 33, Zurich, CH-8092,
Switzerland

†Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Mas-
sachusetts Ave., Cambridge, MA 02139, United States
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where S = N
train

� d+1 is the total number of samples. These samples can be
further stacked together as batches of size B, with the loss of the batch defined
as the mean loss of the samples belonging to the batch. Using only one sample
for the loss gradient estimation may lead to noisy gradient estimates and slow
convergence. Mini-batch optimization tackles this issue.

At the beginning of the training the weights are randomly initialized to w0

using Xavier initialization. We also tried other initialization methods like draw-
ing initial weights from random normal distributions, or initializing them to
constant values, but they often led to saturation of the activation functions, es-
pecially for architectures with higher back-propagation horizon d. The training
proceeds by optimizing the network weights iteratively for each batch. In order
to perform this optimization step, a gradient descent optimizer can be used

wi+1 = wi � ⌘r
w

L(itrain
t

,otrain

t

, wi), (4)

where ⌘ is the step-size parameter, wi are the weights before optimizing the
batch i and wi+1 are the updated weights. Plain gradient descent optimization
su↵ers from slow convergence in practice and convergence to local sub-optimal
solutions. This approach is especially not well-suited for high dimensional prob-
lems in deep learning where the number of parameters (weights) to be optimized
lie in a high-dimensional manifold with many local optima. Sparse gradients
stemming from the mini-batch-optimization lead also to slow convergence as
previously computed gradients are ignored. Recent advances in stochastic opti-
mization led to the invention of adaptive schemes that e�ciently cope with the
aforementioned problems.

In our work, we used the Adam stochastic optimization method. Adam
exploits previously computed gradients using moments. The weights are initial-
ized to w0 and the moment vectors to m0

1 and m0
2. At each step the updates in

the Adam optimizer are

g = r
w

L(itrain
t

,otrain

t

, wi)

mi+1
1 = �1m

i

1 + (1 � �1) g

mi+1
2 = �2m

i

2 + (1 � �2) g
2

m̂1 = mi+1
1 /(1 � �i

1)

m̂2 = mi+1
2 /(1 � �i

2)

w
i+1 = w

i

� ⌘ m̂1/(
p
m̂2 + ✏),

(5)

where �1,�2, ✏, and ⌘ are hyper-parameters, g2 is the point-wise square of the
gradient and �i

1 is the parameter �1 in the ith power, where i is the iteration
number. After updating the weights using the Adam procedure (5) for every
batch, a training epoch is completed. Many such epochs are performed until
the total training loss reaches a plateau. After each epoch the loss is evaluated
also in the validation data set, in order to avoid overfitting. The validation
loss is used as a proxy of the generalization error. The training is stopped
when the validation error is not decreasing for 30 consecutive epochs or the
maximum of 1000 epochs is reached. In our work we used �1 = 0.9, �2 = 0.999,
✏ = 1e�8. We found that our results were robust towards the selection of these
hyper-parameters. To speed up convergence speed, a higher initial learning rate
⌘ = 0.001 was used and the models were then refined with ⌘ = 0.0001.
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A.2 Weighting the loss function

In the training procedure described above the loss function for each sample is
given by

L
sample

(i
t

,o
t

, w) = ||Fw(z
t:t�d+1| {z }

i
t

) � o

t

||2. (6)

However, in the applications considered in this paper the neural network output
Fw is a multidimensional vector and represents a prediction of the derivative of
the reduced order state of a dynamical system. In a dynamical system, specific
reduced order states are more important than others as they may explain a
bigger portion of the total energy. This importance can be introduced in the
loss function by assigning di↵erent weights in di↵erent outputs of the neural
network. The loss of each sample takes then the following form

L
sample

(ij
t

,oj

t

, w) =
1

d
o

d

oX

j=1

w
j

⇣
Fw(zj

t:t�d+1| {z }
ij
t

) � o

j

t

⌘2

, (7)

where d
o

is the output dimension and weights w
j

are selected according to the
significance of each output component, e.g. energy of each component in the
physical system.

A.3 LSTM architecture

An RNN unfolded d temporal time steps in the past is illustrated in Figure 1.
The following discussion on Stateless and Stateful RNNs generalizes to LSTMs,
with the only di↵erence that the hidden state consists of h

t

, C
t

instead of solely
h

t

and the functions coupling the hidden states with the input as well as the
output with the hidden states are more complicated.

In Stateless RNNs the hidden states at the truncation layer d, h

t�d

are
initialized always with 0. As a consequence, o = Fw(i

t:t�d+1) and only the
short-term history is used to perform a prediction. The only di↵erence when
using LSTM cells is that the function Fw has a more complex structure and
additionally h

t�d

, C
t�d

= 0.
In contrast, in Stateful RNNs the states h

t�d

6= 0. In this case, these states
can be initialized by ”teacher forcing” the RNN using data from a longer history
in the past. For example, assuming i

t�d:t�2d+1 is known, we can set h
t�2d = 0,

and compute h
t�d

using the given history i

t�d:t�2d+1 ignoring the outputs. This
value can then be used to predict o

t

= Fw(i
t:t�d+1,ht�d

) as in Figure 1. This
approach has two disadvantages.

• In order to be able to forecast starting from various initial conditions,
even with ”teacher forcing” some initialization of the hidden states is
imperative. This initialization introduces additional error, which is not
the case for the Stateless RNN.

• In the Stateful RNN a longer history needs to be known in order to ini-
tialize the hidden states with ”teacher forcing”. Even though more data
needs to be available, we did not observe any prediction accuracy im-
provement in the cases considered. This follows from the chaotic nature
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of the systems, as information longer than some time-steps in the past are
irrelevant for the prediction.
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Figure 1: An RNN unfolded d timesteps. In mathematical terms, unfolding is
equivalent with iteratively applying fw

hh

to h

t�d

and finally feeding the result
to the output function fw. The output of the RNN is thus a function of the d
previous inputs i

t:t�d+1 and the initialization of the hidden states h

t�d

. This
function is denoted with Fw. For the RNN the hidden state mapping has the
simple form fw

hh

(i
t

,h
t�1) = �

h

(W
hi

i

t

+ W
hh

h

t�1), while the output mapping
is fw(i

t

,h
t�1) = �

o

(W
oh

h

t

) = �
o

�
W

oh

fw

hh

(i
t

,h
t�1)

�
. The same argumentation

holds for LSTM, though the form of fw

hh

, fw and Fw are more complicated.

B Lorenz 96

The most energetic Fourier modes in the Lorenz 96 system for di↵erent forcing
regimes F 2 {4, 6, 8, 16} are given in Table 1. These modes are used in order to
construct the reduced order phase space.

Forcing Wavenumbers k Forcing Wavenumbers k

F = 4 7,10,14,9,17,16 F = 8 8,9,7,10,11,6

F = 6 8,7,9,10,11,6 F = 16 8,9,10,7,11,6

Table 1: Most energetic Fourier modes used in the reduced order phase space

C Kuramoto-Sivashinsky equation

C.1 Dimensionality reduction

The temporal average of the state of the Kuramoto-Sivashinsky equation and
the cumulative energy are plotted in Figure 2. As ⌫ declines, chaoticity in the
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system rises and higher oscillations of the mean towards the Dirichlet bound-
ary conditions are observed in Figure 2, while the number of modes needed to
capture most of the energy is higher.
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Figure 2: Temporal average u and cumulative mode (PCA) energy for di↵erent
values of ⌫ in the Kuramoto-Sivashinsky system.
1/⌫ = 10 ; 1/⌫ = 16 ; 1/⌫ = 36 ; 20 modes

C.2 Results

For the hybrid LSTM-MSM, the ratio of the ensemble members that are modeled
with LSTM is plotted with respect to time in Figure 3a. The quotient drops
slower for 1/⌫ = 10 in the long run as the intrinsic dimensionality of the attractor
is smaller and trajectories diverge slower. However, in the beginning the LSTM
ratio is higher for 1/⌫ = 16 as the MSM drives initial conditions close to the
boundary faster towards the attractor due to the higher damping coe�cients
compared to the case 1/⌫ = 10. This explains the initial knick in the graph for
1/⌫ = 16. The slow damping coe�cients for 1/⌫ = 10 do not allow the MSM
to drive the trajectories back to the attractor in a faster pace than the di↵usion
caused by the LSTM forecasting. Compared with GPR plotted in Figure 3b,
the ratio drops slower.

(a) (b)

Figure 3: (a) Ratio of LSTM-MSM ensemble members modeled by the LSTM
dynamics for the Kuramoto-Sivashinsky (T = 1.5). (b) The same for GPR in
the hybrid GPR-MSM. (Mean over 1000 initial conditions)
1/⌫ = 10 ; 1/⌫ = 16
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D Barotropic model

In this section we describe the method used to reduce the dimensionality of
the Barotropic climate model. First, the original problem dimension of 231
is reduced using a generalized version of the classical multidimensional scaling
method. Then, we construct Empirical Orthogonal Functions (EOFs) that form
an orthogonal basis of the reduced order space and project the dynamics to
them.

The classical multidimensional scaling procedure tries to identify an em-
bedding with a lower dimensionality such that the pairwise inner products of
the dataset are preserved. Assuming that the dataset consists of points ⇣

i

,
i 2 {1, . . . , N}, whose reduced order representation is denoted with y

i

, the
procedure is equivalent with the solution of the following optimization problem

minimize
y1,...,yN

X

i<j

�
h⇣

i

, ⇣
j

i
⇣

� hy
i

,y
j

iy
�2
, (8)

where h·, ·i
⇣

, and h·, ·iy denote some well defined inner product of the original
space ⇣ and the embedding space y respectively. Problem (8) minimizes the
total squared error between pairwise products. In case both products are the
scalar products, the solution of (8) is equivalent with PCA. Assuming only
h·, ·iy is the scalar product, problem (8) also accepts an analytic solution. Let
W

ij

= h⇣
i

, ⇣
j

i
⇣

be the coe�cients of the Gram matrix, |k1| � |k2| � · · · � |k
N

| its
eigenvalues sorted in descending absolute value and u1,u2, . . . ,uN

the respective
eigenvectors. The optimal d-dimensional embedding for a point ⇣

n

is given by

y

n

=

0

BBBB@

k1/21 u

n

1

k1/22 u

n

2
...

k1/2
d

u

n

d

1

CCCCA
, (9)

where u

n

m

denotes the nth component of the mth eigenvector. The optimality
of (9) can be proven by the Eckart-Young-Mirsky theorem, as problem (8) is
equivalent with finding the best d rank approximation in the Frobenius norm.
In our problem, the standard kinetic energy product is used to preserve the
nonlinear symmetries of the system dynamics:

h⇣
i

, ⇣
j

i
⇣

=

Z

S
r 

i

· r 
j

dS = �
Z

S
⇣
i

 
j

dS = �
Z

S
⇣
j

 
i

dS, (10)

where the last identities are derived using partial integration and the fact that
⇣ = �y.

Solution (9) is only optimal w.r.t. the N training data points used to con-
struct the Gram matrix. In order to calculate the embedding for a new point,
it is convenient to compute the EOFs which form an orthogonal basis of the
reduced order space y. The EOFs are given by

�
m

=
NX

n=1

k�1/2
m

u

n

m

⇣
n

, (11)

where m runs from 1 to d. The EOFs are sorted in descending order according
to their energy level. The first four EOFs are plotted in Figure 4. EOF analysis
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has been used to identify individual realistic climatic modes such as the Arctic
Oscillation (AO) known as teleconnections. The first EOF is characterized by
a center of action over the Arctic that is surrounded by a zonal symmetric struc-
ture in mid-latitudes. This pattern resembles the Arctic Oscillation/Northern
Hemisphere Annular Mode (AO/NAM) and explains approximately 13.5% of
the total energy. The second, third and fourth EOFs are quantitatively very
similar to the East Atlantic/West Russia, the Pacific/North America (PNA)
and the Tropical/Northern Hemisphere (TNH) patterns end account for 11.4%,
10.4% and 7.1% of the total energy respectively. Since these EOFs feature real-
istic climate teleconnections, performing accurate predictions of them is of high
practical importance.
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Figure 4: The four most energetic empirical orthogonal functions of the
barotropic model

As a consequence of the orthogonality of the EOFs w.r.t. the kinetic energy
product, the reduced representation y

⇤ of a new state ⇣⇤ can be recovered from

y

⇤ =

0

BBB@

h⇣⇤,�1i⇣
h⇣⇤,�2i⇣

...
h⇣⇤,�

d

i
⇣

1

CCCA
. (12)

Note that only the d coe�cients corresponding to the most energetic EOFs form
the reduced order state y

⇤. In essence, the EOFs act as an orthogonal basis of
the reduced order space and the state obtained from classical multidimensional
scaling ⇣⇤ is projected to this basis.
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E Sensitivity to noise in the data

In this section, we evaluate the robustness of the proposed approach to noise.
For this purpose, the training data are perturbed with di↵erent noise levels.
We add Gaussian noise sampled from N(0,�

noise

) where the noise standard
deviation is proportional to the attractor standard deviation �

attractor

of each
system, i.e. �

noise

= k �
attractor

. We note that �
attractor

is computed from the
training data, as the standard deviation of the samples of the reduced order
state of the system. Di↵erent noise levels k are considered.

E.1 Lorenz 96

In the following, we analyze the influence of noise in the training data for the
Lorenz 96 system. In parallel with the main body of the paper, we plot the
RMSE error evolution of the most energetic mode (first row of Figure 5) for
short term till T = 0.1, the same for time T = 2 (second row of Figure 5) and
the ACC (third row of Figure 5). The columns of Figure 5 correspond to di↵erent
chaotic regimes of the Lorenz 96 system. For the forcing F = 4 and noise levels
k 2 {0.01, 0.2}, noise does not a↵ect the prediction performance of the LSTM.
This can be attributed to the fact that the attractor dimensionality is really low
in this case and the amount of data is enough to capture the dynamics despite
the noisy training data. However, for F = 8 and F = 16 adding noise leads
to slight deterioration of the short term prediction accuracy for the noise level
k = 0.01, as illustrated by the last two Figures in the first row of Figure 5. As a
consequence, the method can be considered robust against noise. Increasing the
noise level to k = 0.2 corresponding to a noise standard deviation equal to 20%
of the attractor standard deviation leads to an important deterioration in short
term prediction performance. The deterioration in the short term prediction
performance can be seen in the short term RMSE error evolution of the fourth
most energetic modes for the forcing regime F = 8 plotted in Figure 6.

E.2 Kuramoto-Sivashinsky equation

In Figure 7 we plot the RMSE error evolution for the most energetic mode and
the ACC of the Kuramoto-Sivashinsky equation for two di↵erent chaotic regimes
1/⌫ 2 {10, 16}. Three di↵erent noise levels k 2 {0.001, 0.01, 0.2} are consid-
ered. For the low chaotic regime 1/⌫ = 10, predictability performance is robust
against noise, as the error evolution changes slightly with k 2 {0.001, 0.01}.
Only when the training data are polluted with noise with a standard deviation
bigger than 20% of the attractor standard deviation is the predictability perfor-
mance greatly deteriorated. On the contrary, adding noise to the training data
in the input improves the predictability performance of LSTM for the chaotic
regime ⌫ = 1/16. This can be attributed to the fact that in this chaotic regime
correlation patterns are much less prominent, and the LSTM is more prone to
overfit. As a consequence, adding noise to the input forces the neural network
to learn only robust patterns in the data that can be generalized. Short term
prediction performance is deteriorated slightly, but in the long term, the LSTM
is more robust against accumulation of errors. This behavior has to be further
investigated in future work.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5: (a), (b), (c) Short term RMSE evolution of the most energetic mode
for forcing regimes F = 4, 8, 16 respectively of the Lorenz 96 system. (d), (e),
(f) Long term RMSE evolution. (g), (h), (i) Evolution of the ACC coe�cient.
(In all plots average over 1000 initial conditions is reported).
10%�

attractor

; �
attractor

; ACC = 0.6 threshold ; MSM ; GPR ;
GPR-MSM ; LSTM k = 0h ; LSTM-MSM k = 0h ;
LSTM k = 10h ; LSTM-MSM k = 10h ; LSTM k = 200h ;
LSTM-MSM k = 200h

E.3 Barotropic model

In Figure 8 we plot the RMSE error evolution for the four most energetic EOFs
of the Barotropic model. Three di↵erent noise levels k 2 {0.001, 0.01, 0.2} are
considered. Only for the highest noise level is the prediction performance de-
teriorated. For low noise levels, the prediction performance can be increased
(k = 0.001), as the noise may regularize the Back-propagation procedure during
training with stochastic methods. Adding noise to the input of neural networks
can be used as a practical heuristic to increase their accuracy and can also be
seen as a form of dropout in the input layer of the LSTM. The results indi-
cate that the prediction performance of the LSTM is robust for the noise levels
k 2 {0.001, 0.01}.
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(a) (b)

(c) (d)

Figure 6: RMSE prediction error evolution of four energetic modes for the
Lorenz 96 system with forcing F = 8. (a) Most energetic mode k = 8. (b)

Low energy mode k = 9. (c) Low energy mode k = 10. (d) Low energy mode
k = 11. (In all plots average over 1000 initial conditions reported)
10%�

attractor

; MSM ; GPR ; GPR-MSM ; LSTM k = 0h ;
LSTM-MSM k = 0h ; LSTM k = 10h ; LSTM-MSM k = 10h ;
LSTM k = 200h ; LSTM-MSM k = 200h
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(a) (b)

(c) (d)

Figure 7: Training data of LSTM are perturbed with standard deviation
�
noise

= k �
attractor

. Three di↵erent noise levels k 2 {0.001, 0.01, 0.2} are
considered. (a), (b) RMSE evolution of the most energetic mode of the K-
S equation with 1/⌫ = 10 and 1/⌫ = 16. (c), (d) ACC evolution of the most
energetic mode of the K-S equation with 1/⌫ = 10 and 1/⌫ = 16. (In all plots,
average value over 1000 initial conditions is reported)
�
attractor

; ACC = 0.6 threshold ; MSM ; GPR ; GPR-MSM ;
LSTM k = 0h ; LSTM k = 1h ; LSTM k = 10h ; LSTM k = 200h
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(a) (b)

(c) (d)

Figure 8: RMSE evolution of the four most energetic EOFs for the Barotropic
climate model, average over 500 initial conditions reported. Training data are
perturbed with Gaussian noise with standard deviation �

noise

= k �
attractor

.
LSTM results for di↵erent noise levels k are plotted. (a) Most energetic EOF.
(b) Second most energetic EOF. (c) Third most energetic EOF. (d) Fourth
most energetic EOF.
GPR ; GPR-MSM ; LSTM k = 0h ; LSTM k = 1h ; LSTM
k = 10h ; LSTM k = 200h ;
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F Trajectory examples

In this section we present examples of predicted trajectories of the reduced
order state and compare them with the ground-truth trajectory. Moreover, we
also compare the equivalent trajectories in the original space by replacing the
unmodeled PCA modes with zero and projecting back to the original space. As
a reference system, we pick the Kuramoto-Sivashinsky (KS) equation.

The LSTM models for both ⌫ = 1/10 and ⌫ = 1/16 have h = 100 hidden
units and the back-propagation horizon was set to d = 50. An example of a
trajectory obtained starting from a known short-term history of the reduced
order state is plotted in Figure 9a. Moreover, the true trajectory obtained from
simulating the original system, along with the evolution of the RMSE error for
⌫ = 1/10 are plotted in Figures 9b and 9c. After projecting to the original
space we get the error evolution given in 9f. This error stems not only from the
prediction error associated with the LSTM model used to perform forecasts but
also with the error associated with the unmodeled dynamics as we only model
r
dim

= 20 modes. The energy included in the unmodeled modes is higher for
⌫ = 1/16 and the system exhibits higher Lyapunov exponents, as a consequence
performing forecasts is a more challenging task. This can be observed in Figure
10 where the same plots are given for ⌫ = 1/16. Note that the plotted time
horizon is T = 0.4 for ⌫ = 1/16 compared to T = 2 for ⌫ = 1/10.
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Figure 9: (a) Predicted evolution of the reduced order state for the KS equation
with ⌫ = 1/10. (b) True evolution of the reduced order. (c) Evolution of the
root mean squared error. (d)-(e) The same for the original state dimension
computed by projecting to the original space replacing the unmodeled modes
with zeros.

Another interesting question is how the proposed method performs when
no dimensionality reduction method is used in a chaotic system with a lower
Lyapunov exponent. The dynamics of this system are much easier to capture
compared to the applications considered in the main paper, as the chaotic e↵ects
are less prominent and there is no missing state information. In the following, we
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Figure 10: (a) Predicted evolution of the reduced order state for the KS equation
with ⌫ = 1/16. (b) True evolution of the reduced order. (c) Evolution of the
root mean squared error. (d)-(e) The same for the original state dimension
computed by projecting to the original space replacing the unmodeled modes
with zeros.

assume that the complete system state information is available and the LSTM
forecasts the evolution of the state directly. The KS equation with ⌫ = 1 and
L = 35 is simulated with a time-step of dt = 0.25 and a coarser grid with
D = 65 points instead of D = 513 of the original paper. The LSTM model used
has h = 4096 hidden units and a truncated back-propagation horizon of d = 32
was used. The results of three predicted trajectories along with the ground-
truth and the RMSE error are illustrated in Figure 11. Note that the LSTM
can forecast the evolution of the state with high accuracy for a much longer
horizon compared to the results shown before where the LSTM was applied in
the reduced order dimension of systems with higher Lyapunov exponents.
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(a)

(b)

(c)

Figure 11: (a)-(d) True evolution of the state for the KS equation with ⌫ = 1,
the predicted evolution and the associated RMSE error for three di↵erent initial
conditions.
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