
fluids

Article

Hydrodynamics of Prey Capture and Transportation
in Choanoflagellates

Siv Sørensen 1, Seyed Saeed Asadzadeh 1,2 and Jens Honoré Walther 1,3,*

����������
�������

Citation: Sørensen, S.;

Asadzadeh, S.S.; Walther, J.H.

Hydrodynamics of Prey Capture and

Transportation in Choanoflagellates.

Fluids 2021, 6, 94. https://doi.org/

10.3390/fluids6030094

Academic Editor: Houshuo Jiang

Received: 27 December 2020

Accepted: 13 February 2021

Published: 27 February 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Mechanical Engineering, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark;
sivsoerensen@gmail.com (S.S.); sesasa@mek.dtu.dk or sesasa@aqua.dtu.dk (S.S.A.)

2 National Institute of Aquatic Resources and Centre for Ocean Life, Technical University of Denmark,
DK-2800 Kgs. Lyngby, Denmark

3 Computational Science and Engineering Laboratory, ETH, CH-8092 Zürich, Switzerland
* Correspondance: jhw@mek.dtu.dk

Abstract: Choanoflagellates are unicellular microscopic organisms that are believed to be the closest
living relatives of animals. They prey on bacteria through the act of the continuous beating of
their flagellum, which generates a current through a crown-like filter. Subsequently, the filter retains
bacterial particles from the suspension. The mechanism by which the prey is retained and transported
along the filter remains unknown. We report here on the hydrodynamic effects on the transportability
of bacterial prey of finite size using computational fluid dynamics. Here, the loricate choanoflagellate
Diaphaoneca grandis serves as the model organism. The lorica is a basket-like structure found in only
some of the species of choanoflagellates. We find that although transportation does not entirely rely
on hydrodynamic forces, such forces positively contribute to the transportation of prey along the
collar filter. The aiding effects are most possible in non-loricate choanoflagellate species, as compared
to loricate species. As hydrodynamic effects are strongly linked to the beat and shape of the flagellum,
our results indicate an alternative mechanism for prey transportation, especially in biological systems
where having an active transport mechanism is costly or not feasible. This suggests an additional
potential role for flagella in addition to providing propulsion and generating feeding currents.

Keywords: choanoflagellates; prey transportation; lorica; low Reynolds number flow; CFD

1. Introduction

Choanoflagellates are microscopic filter feeders that are known to be a major con-
tributor to aquatic microbial foodwebs [1]. Their contribution is related to their ability
to effectively feed on bacteria in sea water (usually < 1µm in size [2]), and in return,
they regenerate inorganic nutrients for the growth of unicellular algae [2]. In addition to
their ecological importance, choanoflagellates are subjected to great interest due to their
ancestral relationship with animals [3].

The choanoflagellate cell is characterized by a beating flagellum surrounded by a
crown-like collar filter made up of a single layer of microvilli tentacles. Some choanoflagel-
late species also construct an extra-cellular structure, the lorica, a covering that consists
of a two-layered arrangement of costae made up of rod-shaped costal strips. The lor-
ica structure bears resemblance to a basket-like cage, from which the collar and cell are
suspended [2]. All morphological characteristics are shown in Figure 1. The continuous
beating of the flagellum acts as a pumping mechanism that draws water through the
collar and, thus, retains appropriately sized bacteria [2]. Hydrodynamic characteristics are
therefore crucial in understanding prey capture within these microscopic organisms. Due
to the low concentration of prey particles in the suspension, choanoflagellates must clear
a volume of water equivalent to about one million times that of their own body daily [4].
Previously, the flow-inducing flagellum was believed to take the shape of a thin bare
rod. However, recently, it has been shown that such high clearance rates are only feasible
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if the flagellum is modeled as a thin wide sheet, representing a flagellar vane, oriented
perpendicularly to the plane of beating [5]. The presence of a flagellar vane has been
observed and explored in several species of choanoflagellates and choanocytes [6,7], but it
remains unknown if a vane is present in all species. Similarities in the collar–flagellum
system between choanoflagellates and choanocytes in sponges have led to the belief that
their collar–flagellum interactions have both evolved in aspiration to optimize fluid flow
through micro-scale filters [6].

(A) (B)

Figure 1. Morphology of Diaphanoeca grandis. (A) Microscopic image of the choanoflagellate. Scale
bar: 4 µm. (B) Model morphology picturing the cell (green), collar filter (red), flagellum (yellow),
and lorica dome and chimney (blue) with ribs (gray) in the lower part of the lorica. The direction of
the flow is indicated with the dashed arrows.

The near-cell feeding flow in choanoflagellates still remains poorly understood due
to simplified computational analyses and a lack of quantitative experimental results [2,8].
However, the recent discovery showing the necessity of a sheet-like flagellum structure has
improved our understanding of the near-cell feeding flow, and thereby allows us to model
it more accurately [5,7]. This new flagellum model was recently utilized in a study focused
on the hydrodynamic functionality of the lorica [9]. Because not all choanoflagellates
construct the lorica, the nature of its adaptive value has sparked curiosity. The study
concluded that the lorica is not beneficial in terms of prey encounters [9]. Instead, the study
argues, that the lorica enhances prey capture efficiency by improving the prey retention
of the filter. Furthermore, the study considered the local velocity field between the filter
openings in the flagellum beat plane, simulated both with and without the presence of
the lorica. Here, a significant difference in the magnitude of the velocity field was found.
In addition, the snapshots of the velocity fields ([9] Figure 9 therein) show that part of the
flow field is directed both away from the collar and down towards the cell. These traits
present a significant opportunity to understand the transportation process of prey, as the
captured prey particles are directly influenced by the flow through the filter openings.

Many marine organisms (including unicellular ciliates/flagellates or multicellular
organisms, such as copepods and starfish larvae) use an appendage to generate a feeding
current, which facilitates the prey encounter process by bringing prey particles to their
prey-capturing area. Furthermore, ciliary bands on the surface of starfish larvae facilitate
transportation of the prey particles along the body toward the mouth [10]. Many protists,
however, take advantages of surface motility by utilizing microtubule-filled extensions to
capture and handle prey particles (cf. Bloodgood [11]). Bloodgood reviewed different exam-
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ples of the surface motility in these protists, which always happens “on plasma membrane
domains associated with microtubule cytoskeletons that vary greatly in complexity” [11].
Choanoflagellates, however, do not have these extensions, and it has been argued that prey
transportation in choanoflagellates must have a different underlying mechanism [11]. The
possibility that prey transportation in choanoflagellates relies on molecular motors, such as
encasement in pseudopods, has previously been explored [12]. However, the observations
did not support the presence of any molecular motors. Instead, it was hypothesized that
the flow of water might contribute to the bacterial transport.

The present study will examine the hydrodynamic effects on bacterial transport using
computational fluid dynamics (CFD). The study will utilize the loricate choanoflagellate
Diaphanoeca grandis as the model morphology. Moreover, the hydrodynamic effects of
the lorica will also be explored by studying an artificial non-loricate model of D. grandis.
The analysis will consist of a static and a dynamic approach. The static approach endeavors
to quantify the force contribution of the local flow on the bacterial surface. In theory,
the prey are force and torque free when drifting freely within the flow, since any forces
or torques felt by the prey are balanced by counteracting forces and torques due to the
movement of the prey. The prey forces are attained by systematically fixing the prey along
the collar surface, thus eliminating the motion and, hence, the counteracting forces and
torques. The dynamic approach will allow the bacterial prey to move freely. Here, the effects
on the flow caused by fixating the prey will be studied, as well as the correspondence
between the static and dynamic results.

2. Methods

This section describes the methods utilized in the static and dynamic studies. The ad-
vantages and limitations of the solution procedures will be discussed, as well as the degree
of accuracy that we credit to the numerical CFD model. Furthermore, we describe in detail
which parameters are varied and to what extent.

2.1. Computational Fluid Dynamics

The flow characteristics of D. grandis were evaluated numerically using the com-
mercial CFD software STAR-CCM+ (14.02.010-R8). Here, the computational domain was
discretized using a combination of polyhedral and prism cells. Finite disjoint overset
meshes discretized the ambient prey flow and secured connectivity with the remaining
computational domain using linear interpolation. The governing equations were solved
using the finite volume method.

The traveling wave that models the shape of the flagellum beat displacement is
orientated relative to the coordinate system seen in Figure 1B and given by [9]:

d(y, t) = A
[
1− e−(y−yB)/δ

]
sin (k(y− yB)−ωt). (1)

Here, yB is the y-coordinate at the flagellum base (the position at which the cell
and flagellum connect), δ = 1.0µm is the characteristic length scale of the amplitude
modulation, k = 2π/λ denotes the wave number, and ω = 2π f the angular frequency.
Lastly, d(y, t) gives the lateral displacement of the flagellum along the x-axis with respect to
the longitudinal position from the flagellum base and a specific instant in time, t, within a
beat cycle. The characteristic parameters in Equation (1) are given for the model organism
D. grandis in Table 1.

Table 1. Characteristic flagellum parameters specific to D. grandis. A is the wave amplitude, L is the
projected length of the flagellum onto the center axis y, f is the wave frequency, λ is the wavelength,
and W is the width of the flagellar vane.

A [µm] L [µm] f [Hz] λ [µm] W [µm]

2.8 8.3 7.3 8.6 5.0
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2.1.1. Placement of Fixed Prey

When constructing the model morphology of D. grandis, the assumption of symmetry
around the longitudinal center axis is utilized in shaping the lorica, filter, and cell. This
allows for each part’s surface to be constructed as a simple curve, which can readily be
revolved around the center axis of symmetry (Figure 2A). The equations for the curves of
revolutions were obtained by averaging the outline of the mid-plane view of six different
instances of the species [5,9]. The first resultant curvature equation models both the lorica
dome, RL(θ), and the cell, RC(θ), and the second curvature equation models the collar
filter, RF(θ). Both curvature equations are given, respectively, as:

RL,C(θ) = R0[1 + α1cos(θ) + α2cos(2θ) + α3cos(3θ)], (2)

RF(θ) = RC(θC) + [RL(θL)− RC(θC)]
θ − θC
θL − θC

, (3)

where R0, α1, α2, and α3 are morphological parameters unique to the lorica and cell outline
(Supplementary Information S8.1, Table S1), and θC = 76◦ and θL = 25◦ are the polar
angles at which the filter meets the cell and lorica, respectively. The polar angle θ is defined
relative to the longitudinal center axis, as seen in Figure 2A.

Figure 2. (A) The 3D computational fluid dynamics (CFD) model morphology, shown with a 5µm
wide flagellar vane (yellow) and a medium-sized prey (gray). (B) A 2D schematic of the CFD model.
The bold curves, which correspond to Equations (2) and (3), are revolved around the longitudinal
center axis to create the model surfaces (pictured as opaque). The polar coordinate system, which
is shown in degrees, serves as the reference frame for the prey’s placement along the filter collar.
(C) The three vertical prey positions on the collar. Each prey (gray) is equipped with a local coordinate
system: normal (x) and tangent (y) to the collar surface. Pictured is a medium-sized prey (gray) in
true relative scale.

Forty-eight microvilli tentacles are distributed equally along the collar surface. The lor-
ica dome and chimney are modeled as an impermeable baffle, where the ribs in the inferior
part of the lorica (pictured in Figure 1B) are neglected for simplicity [9]. The flagellar vane
is modeled as a 5µm wide sheet, which corresponds to the vane being slightly smaller
than the diameter of the collar at the collar base. The traveling waveform of the beat of the
flagellar vane is given in Equation (1), along with additional morphological and kinematic
parameters for D. grandis (Table 1). The resulting CFD model morphology is pictured in
Figure 2C. All surfaces (i.e., surfaces of the filter, the cell, the flagellum, and the lorica) are
subject to the no-slip boundary condition.

The analysis will consider four different prey types: three spherical preys and one
elongated prey (Table 2). The medium-sized prey, Preym, will serve as the reference prey.
The surface forces on each prey are recorded with respect to its local coordinate system.
The local coordinate system is placed such that the x-axis is parallel to the normal vector at
the point of prey–collar contact, and equivalently, the y-axis is parallel to the tangent vector.
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Using Equation (3), the gradients of the tangent, St(θ), and the normal vector, Sn(θ), are
given by:

St(θ) =
R f ′(θ) sin(θ) + R f (θ) cos(θ)
R f ′(θ) cos(θ)− R f (θ) sin(θ)

, (4)

Sn(θ) = −
1

St(θ)
. (5)

Table 2. Characteristic parameters of the four different prey types considered: small, medium, large,
and elongated, denoted by s, m, l, and e, respectively. Dimensions are given in µm. Only Preys is
smaller than the filter openings.

Preys Preym Preyl Preye

Major radius 0.18 0.25 0.50 0.50
Minor radius - - - 0.25

Furthermore, the local x-axis is directed towards the collar, and the local y-axis is
directed away from the cell, as seen in Figure 2B.

The prey will be placed in two vertical perpendicular planes, each of which contains
the longitudinal symmetry axis. In the first plane, called the beat plane (xy-plane in
Figure 1), the prey will be placed on the right-hand side and left-hand side of the collar,
denoted R and L, respectively. In the second plane, called the vane plane (zy-plane in
Figure 1), the prey will similarly be placed on the back and front of the collar with respect
to the view pictured in Figure 1. These two positions are denoted B and F, respectively. In
each of the four positions, R, L, B, and F, the vertical position on the collar will be varied in
three ways: at the bottom (θ = 68◦), the middle (θ = 50◦), and the top (θ = 32◦), summing
to a total of 12 positions. As an example, a medium-sized prey placed at the middle and on
the left-hand side of the collar is referred to as: Preym50L.

2.1.2. Governing Equations and Hydrodynamic Effects

For the prey particles captured by D. grandis, the Reynolds number (Re = ρDλ f /µ) is
in the order of 10−5. Here, ρ = 997 kg/m3 is the fluid density, µ = 10−3 Pa · s is the fluid
dynamic viscosity, D is the characteristic length scale given by the diameter of the prey,
and λ f is the characteristic velocity of the flagellum, where λ and f denote the wavelength
and frequency of the beating flagellum (cf. Supplementary Information S8.1). We note that
a flow at this Reynolds number is governed by the time-independent Stokes equations:

∇p = µ∇2u, (6)

∇ · u = 0, (7)

where u and p denote the flow velocity and pressure, respectively. The time independency
allows for the flow to be resolved in a series of discrete time steps, as the response of the
fluid to the motion of boundaries can be considered instantaneous [13]. One flagellum
beat cycle is discretized into 25 time steps. Doubling the number of time steps introduces
a variation of less than 1 % in the results [5]. Although it suffices to solve the Stokes
equations, the full Navier–Stokes equations are solved at each discrete point in time by
the CFD software. In combination with using mesh-morphing techniques, this allows for
the flagellum position to be updated in each time step in a computationally efficient way.
Given the symmetry of prey placed in the same plane but on opposing sides of the collar, it
is only necessary to model half of a flagellum beat cycle. However, to ensure that mesh
morphing does not have a significant impact on the symmetry at hand, we still choose to
simulate the entire beat cycle.
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An overset mesh using linear interpolation between the overset and background
meshes is added around all prey particles, which allows for the same mesh to be used
in both the dynamic and static simulations. The drawback of using an overset mesh in
the static setting is that it is not possible for the body within the overset to be in direct
contact with another surface. Subsequently, we introduce a gap between the prey and the
microvilli. The combination of introducing a gap of size ∼5% of the prey radius and opting
for the overset mesh method has been shown to result in an accumulated variation of up
to ∼5% in the calculated prey forces as compared to a mesh without overset. Similarly to
the mesh-morphing techniques used for updating the flagellum position, an overset mesh
greatly reduces the solver workload in the dynamic prey simulations, as the regeneration
of the entire volume mesh in each time step becomes dispensable.

The computational domain is discretized using from 6 to 11 million computational
cells, where the highest density of cells is found along the microvilli tentacles and prey sur-
faces. This cell density is kept approximately constant for all analyses. The computational
cost for a full simulation containing 11 million cells is approximately 50 h when performed
on seven 16-core nodes (Xeon E5-2650 running at 2.60 GHz). The extent of the prey overset
mesh is increased when the prey size is increased; hence, to obtain a sufficient connectivity
between the two grids, the extent of refined cells in the background mesh has to increase
accordingly. The mesh is pictured in Supplementary Information S8.3, Figure S3. In the
loricate case using Preym, the discretization error was shown to cause a variation of less
than 1 % in the measured prey forces and the time-averaged clearance rate through the
filter (Supplementary S8.3). Here, a very fine mesh acted as an exact solution; thus, the
discretization error was quantified based on a comparison with this solution. The geometry
is contained within a spherical computational domain with a radius of 30µm, where a
pressure boundary condition (B.C.) is applied to the outer surface (note the drawbacks
of the pressure B.C. in Supplementary Information S8.2). Increasing the computational
domain radius to 40µm results in a variation of less than 1 % in the results [5].

The hydrodynamic forces, F, and torque, L, acting on the fixed prey are obtained by
integrating the stress tensor, σ, over the prey surface [13], S:

F =
∫∫

S
σ · n dS, (8)

L =
∫∫

S
s× (σ · n) dS, (9)

where the stress tensor is given by σ = −pI + µ
[
∇u + (∇u)T] (I is the identity tensor),

n denotes the normal vector directed outwards from the prey surface, and s denotes
the position vector on the prey surface. Hence, prior to constructing the stress tensor,
the pressure, p, and velocity, u, of the incompressible fluid must be computed.

For a fixed sphere of radius r held in a uniform stream of velocity U, the Stokes law
states the drag force on a sphere [14]:

Fsphere = 6πµUr. (10)

The total drag force is made up of two force contributions: pressure and viscous shear
stress. Here, viscous forces account for two-thirds of the total drag force, and pressure
forces account for the remaining one-third [15]. If the ratio of pressure to shear stress forces
on the spherical prey surface is found to be approximately 1:2, then this could suggest that
it may be reasonable to use the Stokes law to give a first-order estimate of the order of the
prey velocity. This can be done by rearranging Equation (10) and using the magnitude
of the simulated prey force as an input. Similarly to Equation (10), the drag on a prolate
spheroid placed in a flow normal to its axis of revolution takes the approximate Stokes
form [16–18]:

F = CnµUb, Cn = 6π
3 + 2a/b

5
. (11)
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Here, a is the major and b is the minor radius of the spheroid, and Cn is the specific
drag coefficient for the described case. The limitation of Equations (10) and (11) is that they
do not take into account the non-uniform velocity field in the vicinity of the filter or the
influence of the finite size of the prey and its boundary condition—as it is either non-slip
for the fixed prey or globally force and torque free for the freely moving prey. Hence,
when using the Stokes law, the velocity estimate for the prey may be an overestimation.
Evaluating the shape of the curvature of the velocity profile near the filter would allow for
a second-order estimate of the prey velocity using Faxén relations [14]. However, as we
simply wish to evaluate the order of the prey velocity, the first-order Stokes estimate is
considered sufficient. Consequently, we choose to use Stokes (Equations (10) and (11)) to
approximate the prey velocity from the forces on the fixed prey.

2.1.3. Solution Procedure to Model Drifting Prey

We define the prey velocity and rotation rate as V and Ω, respectively. The hydrody-
namic forces, F, and torques, L, are evaluated as stated in Equations (8) and (9). The Stokes
number, the ratio of the response time of a particle to the response time of the fluid in
which it is submerged, is, in the case of a Stokes flow, given by: St = ρpru/(9µ) ∼ 10−6.
Here, employing the density of the prey ρp = 997 kg/m3 (where we have assumed the
prey density to be equal to that of the fluid), the fluid velocity u ∼ λ f = 63µm/s, and the
radius of the prey r. For a Stokes number that is much smaller than unity, the prey will
adhere nearly perfectly to the motion of the streamlines [19]. Moreover, relative to the
motion of the rest of the domain, the prey will catch up with the flow instantaneously in
every discrete time step. Simulating that the prey catches up with the flow corresponds
to assigning the prey a velocity and a rotation rate such that, consequently, its surface
becomes force and torque free in each time step. Applying the same logic, we thus refrain
from the approach of simply solving Newton’s 2nd law of motion, since the concept of
acceleration becomes elusive at such low Stokes numbers. Instead, we opt for an iterative
method to ensure a force- and torque-free particle. Rather than focusing on dynamics,
this method iterates to determine a rigid body motion such that the condition of a force-
and torque-free surface is met. Here, we assume deformations of the prey to be negligible
for simplicity.

The procedure for obtaining the prey velocity and rotation rate in each discrete time
step is illustrated in Figure 3. Firstly, an arbitrary initial guess is assigned to the unknown
V and Ω. This allows for the flow velocity and pressure fields to be computed using the
SIMPLE algorithm [20]. Subsequently, the forces and torques acting on the prey surface can
be deduced. Given the prey forces and torques, we update the prey velocity and rotation
rate using the relation: (

dV
dΩ

)k+1

=

(
dV
dΩ

)k

+

(
cF
cL

)(
F
L

)k

prey
, (12)

where k denotes an iteration counter and cF and cL are relaxation constants for the trans-
lational velocity and the rotation rate, respectively. The constants are arbitrarily chosen
such that cF and cL are much smaller than (6πµr)−1 and (6πµr3)−1, respectively. The
magnitude of cF and cL is found only to influence the rate of convergence, and we use
cF(6πµr) ≈ cL(6πµr3) ≈ 10−2 throughout.

The updated prey velocity and rotation rate serve as the input for a new iteration,
in which the above procedure is repeated. The iteration process continues until the forces
and torques on the prey are converged to a negligible level. At this point, the prey position
is updated based on the converged prey velocity and rotation rate. The entire procedure is
repeated for the subsequent time step.
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Figure 3. Flowchart illustrating the iterative procedure used to model drifting prey. The chart covers
the process for one arbitrary discrete time step. Here, k denotes an iteration counter.

3. Results and Discussion
3.1. Static Analysis

In this section, we only consider fixed prey. All simulations are carried out for all
12 positions on the collar, as described in Section 2.1.1, for both the loricate and non-
loricate D. grandis. Firstly, the effect of placing a prey exactly behind a microvilli tentacle
is compared to the effect of letting it rest in between two tentacles (not shown). We find
a significant amplification of measured forces on the prey when placed directly in the
flow between two tentacles. Assuming that the prey particles follow the streamlines of
the flow [19], it seems reasonable to assume that the equilibrium position of a captured
bacterial prey is between any neighboring pair of microvilli tentacles. Thus, all static
analyses are simulated accordingly.

3.1.1. Prey Positions on the Collar Filter

Figure 4 shows the tangent force on Preym for the duration of one beat cycle. Due to
the symmetry in the ambient flow between prey placed in the same plane but on opposite
sides of the collar, only one prey from each of the beat and the vane planes is shown (PreyR
and PreyB). Figure 4 suggests that the magnitude of the force exerted on the prey by the
fluid is amplified when the prey is positioned on the upper half of the collar, as compared
to the lower half. Furthermore, observing the scale of the forces in Figure 4, it can be seen
the tangential forces exerted on the prey by the fluid are approximately five times larger in
magnitude in the beat plane compared to the vane plane. The force time history in each
plane also differs over the course of a full beat cycle; in the beat plane, the rate of change
of the force generally switches sign twice, whereas in the vane plane, the rate of change
switches sign four times.
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Figure 4. Tangent force distribution on medium-sized prey during one beat cycle with period T.
Here, negative forces are in the direction of the cell. The left-hand column of plots is simulated with
the presence of the lorica, and the right-hand column of plots is simulated without. The first row of
plots displays forces on the right (R) side of the the collar, and the second row displays forces on the
back (B) of the collar.

To provide an understanding of this difference in forces between the beat and vane
plane, the underlying velocity fields are illustrated in Figure 5. In the beat plane
(Figure 5A,B), it is apparent that at the lateral peaks of the sinusoidal vane displacement,
a vortex appears. The vortex appearing to the left of the cell rotates counter-clockwise, and
the vortex appearing to the right of the cell rotates clockwise. Consequently, the near-collar
flow in the beat plane is directed downwards, as a flagellum peak sweeps by. It is observed
that a change in the sign of the tangent prey force coincides with a change in the vertical di-
rection of the near-prey flow. The velocity magnitude induced by the vortex is highest close
to its center, which is located at the flagellum displacement peak. The magnitude gradually
decreases when radially moving further away from the vortex center. Since the flagellum
beats closer to the filter in the upper part of the collar, we hypothesize that this explains
why the magnitude of force directed towards the cell (negative tangent force) is increased
the higher up along the collar the prey is positioned. Other choanoflagellate species, such
as the Salpingoeca rosetta, construct a straight rather than a curved collar, and subsequently,
the proximity to the flagellar vane is increased [21]. Such species therefore present an
opportunity to explore this hypothesis further. In the vane plane (Figure 5C), we find that a
vortex appears along the vane edges at the two points in which the flagellar vane intersects
the vane plane. Thus, this explains why the rate of change of the tangent is found to change
sign four times during one beat cycle.

From Table 3, we find that the average beat cycle tangential force is directed towards
the cell for Preym32 in the loricate D. grandis and for both Preym50 and Preym32 in the non-
loricate D. grandis. This trend is apparent in both the beat plane (PreyR) and in the vane
plane (PreyB). Despite the same overall trend being apparent in both planes, the two planes
still perform differently. In the loricate case, the average tangential force is lower in the
beat plane than in the vane plane for all vertical filter positions. The opposite is observed
in the non-loricate case, where we find the lowest tangential forces in the vane plane. Since
hydrodynamic transportability effects seem to vary between the two planes, we speculate
that this could be the reason why it has been observed that, on occasion, prey traverse
multiple microvilli as they descends toward the cell [12]. However, it remains elusive which
circumferential position on the filter is most favorable in terms of prey transportability.
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Figure 5. Planar views of an instantaneous flow field velocity simulated without the presence of prey. (A) Beat plane view
with the lorica. (B) Beat plane view without the lorica. (C) Vane plane view with and without the lorica, respectively.
(D) Horizontal view through the collar at position θ = 50◦, pictured with and without the lorica, respectively.

Table 3. Time-averaged tangent forces on prey during one flagellum beat cycle for both the loricate
and the non-loricate choanoflagellate. One position in the beat plane (R) and one position in the vane
plane (B) are shown. Column-wise, the table depicts the effects of prey size and shape variations.
Row-wise, the effects of the longitudinal position on the collar (θ) can be seen.

Average Tangent Force per Beat Cycle [10−3 pN]
Case θ Preys Preym Preyl Preye

Beat plane (R)

with lorica
68 4.2 9.0 38.8 11.3
50 4.1 7.5 49.4 9.4
32 −2.1 −4.0 12.1 −5.6

without lorica
68 0 0.2 1.1 0.2
50 −2.3 −4.0 −2.9 −5.1
32 −0.9 −1.7 2.4 −2.4

Vane plane (B)

with lorica
68 5.2 10.7 43.0 13.3
50 4.6 8.3 57.2 10.5
32 −0.3 −1.2 28.2 −1.8

without lorica
68 0.5 0.8 1.7 1.1
50 −4.0 −6.9 −5.8 −8.8
32 −2.7 −4.9 −1.6 −6.4
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Hydrodynamics are only found to be beneficial to the transportability of prey towards
the cell in the upper half of the filter. No aiding effects were found at the lower part of
the collar. This lack of hydrodynamic effects could explain the presence of the observed
lamellipod-like “collar skirt” structure that surrounds the collar base in the choanoflagellate
species S. rosetta [6,12]. The function of the skirt has thus far remained unknown; however,
we speculate that because hydrodynamics cannot aid the transportation of prey in the
lower part of the collar filter, the function the skirt is to bridge the prey-handling process to
phagocytosis, hence completing the prey capture process. The time series of the process of
prey capture and ingestion ([12] Figure 1 therein) show that after the prey travels down
the collar, it remains at the lower part of the collar (where the skirt is located) for ∼2 min
before eventually being phagocytosed.

3.1.2. Prey Retention

In the non-loricate choanoflagellate species S. rosetta, microscopic imaging has re-
vealed that bacteria often make contact with the collar and remain there for a short while,
until escaping captivity and subsequently drifting away [12]. We find that hydrodynamics
could potentially explain these observations. From Figure 5D, which shows the velocity
field in the horizontal xz-plane at the collar position θ = 50◦, it is apparent that in the beat
plane, the flow field is directed away from the collar at some instance during a beat cycle.
Further investigation of this flow behavior subsequently suggests that the water is pushed
away from the collar by the flagellum peak displacement point. Hence, the motion of the
flagellum simultaneously directs the flow field both outwards and down towards the cell
when the flagellum peak passes the filter.

Figure 6 shows the variation in normal forces on Preym during one flagellate beat cycle.
For the non-loricate D. grandis, we find that the normal force in the beat plane changes
direction twice in one cycle, and thus, as the flow field predicted, the prey experiences both
forces that are directed towards and away from the collar within the duration of one beat
cycle. Assuming hydrodynamics to be the main cause of prey loss, the normal forces give
an indication of how strong the retention effect of the microvilli tentacle surface should be.
We find that for Preym, the contact forces between the prey and the microvilli should exceed
0.05 pN to overcome the counteracting hydrodynamic forces. The equivalent minimum
contact forces found for the other prey types are shown in Table 4.

Figure 6. Normal force distribution on medium-sized prey during one beat cycle with period T.
Here, negative forces are orientated in the direction away from the collar. Both plots are simulated
without the presence of the lorica. The left-hand plot shows the forces on prey placed on the right (R)
side of the collar, and the right-hand plot shows forces on prey placed at the back (B) of the collar.

Table 4. Minimum contact force between microvilli tentacles and prey required to counteract the
simulated hydrodynamic normal forces in the non-loricate D. grandis.

Preys Preym Preyl Preye

Min. contact force [pN] 0.03 0.05 0.10 0.08



Fluids 2021, 6, 94 12 of 17

In the vane plane, we find the normal forces to be orientated towards the collar at all
times. However, we note that the vortex along the flagellar vane sheet edge constantly
alters the direction of the nearby flow. Hence, the normal forces in the vane plane seem to be
particularly dependent on the width of the flagellar vane sheet. Only a few choanoflagellate
species have sporadically been pictured with a flagellar vane composed of a sheet-like
structure due to the difficulty of capturing it with electron microscopy [5,22]. The exact
shape of the sheet-like structure therefore remains elusive. Thus, due to the uncertainty
in the shape and extent of the sheet-like structure, we cannot exclude the possibility that
hydrodynamics could be counteracting the retention of prey in the vane plane as we find
them to do in the beat plane.

3.1.3. Loricate Effect

The two columns in Figure 4 show the difference in tangential forces for a loricate and
non-loricate D. grandis. Removing the lorica does not seem to have an effect on the overall
trend of the force time history, though it does affect the magnitude of the simulated forces.
In the vane plane (PreyB), it is especially noticeable that removing the lorica reduces the
magnitude of the predicted forces. At some points in a beat cycle, the force reduction even
leads to a change from a positive force to a negative force. Thus, this is an improvement
in the degree of prey transportability. Observing Figure 5, it becomes apparent that the
lorica directs the incoming flow field upwards, whereas in the non-lorica D. grandis, the
flow reaches the collar at a more horizontal direction. Assuming equal flow magnitudes,
it requires less force to direct a horizontally orientated flow downwards, as compared
to directing an upwards-orientated flow downwards. Consequently, this explains why
we see a reduction in the tangential forces for the non-loricate D. grandis in Figure 4.
Furthermore, it is observed that the amplitude of the force magnitude is generally reduced
in the non-loricate case as compared to the loricate case. We find no direct explanation for
this. However, it seems probable that the cause could be related to either the orientation of
the flow near the collar or a shielding effect from the presence of the lorica.

In the loricate D. grandis, we find from Table 3 that the most favorable position, in terms
of the strongest degree of prey transportability in the direction of the cell, is at the top of
the collar. When removing the lorica, we still see a transportation effect directed towards
the cell at the top of the collar, but the position in which the effect is highest is now at
the middle of the collar. This observation contradicts our previous hypothesis, which
suggested that the proximity to the flagellum is positively correlated to the subsequent
degree of prey transportability. We find no apparent trend that explains why the middle
position on the collar is the most favorable position in terms of prey transportability in
the non-loricate case. However, we speculate that it could be related to the position of the
induced vortex relative to the filter, as the vortex is influenced by the presence of the lorica.

Given that D. grandis is a loricate choanoflagellate, we subsequently conclude that
the adaptive value of the lorica does not seem to be an improvement in the hydrodynamic
transportability of prey. It rather seems that the adaption of the lorica results in a deterio-
ration of such effects. However, hydrodynamics could still act as an aiding factor for the
unknown means of prey transportation.

3.1.4. Prey Size and Shape

When varying the size of the prey, one would also expect to see a change in forces from
the flow on the prey. An increased force in the direction towards the cell is not necessarily
advantageous for the transportability of prey. Likewise, a reduced force does not have to
be disadvantageous. The prey velocity also depends on the shape and size of the prey,
which could negate or weaken effects of increased or reduced forces on the prey. We use
the Stokes law in Equations (10) and (11) to transform the simulated tangent forces on the
four different prey types (Table 2) into their respective tangent velocities. We note that
the force contributions from pressure and viscous forces are approximately 1:1 for all prey
types during one beat cycle. This suggests that we do not have a perfectly symmetric flow
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around the prey [15], which stems from disturbances induced by the proximity of the collar.
Hence, the Stokes law cannot act as an accurate approximation of the velocity magnitude,
but may still suffice as an approximation of the order of magnitude.

The time-averaged tangent force for one beat cycle is listed in Table 3 for each prey type
in the beat plane (PreyR) and in the vane plane (PreyB). The resultant tangent velocities
can be seen in Figure 7. The tangent velocities that are directed towards the cell (negative
velocities) are observed to be in the approximate range of 0.3–1.3µm/s. Given that the
length of one microvilli is ∼9µm, the time it would take to move a prey from the very
top of the collar to the cell, assuming constant velocities within this velocity range, is
7–30 s. For the non-loricate choanoflagellate S. rosetta, with an approximate collar height
of 5µm [21], the movement of bacterial prey down along the collar has been observed to
take 12.5 s, on average, after the first point of contact between the prey and the collar [12].
Given that the first point of contact with the collar is at an arbitrary position, these physical
observations seem to be in good agreement with the order of the resultant tangent prey
velocities found in this static part of the study (Figure 7).

Figure 7. Resultant tangent velocity of fixed prey when using Equations (10) and (11) to convert
simulated forces (Table 3) into velocities. Here, a negative velocity is directed towards the cell.
The left plot is simulated with the lorica and the right plot without. Velocities are shown for prey
placed in the beat plane on the right (R) side of the collar and in the vane plane on the back (B) side of
the collar. For each vertical position on the collar (θ = 68◦, 50◦, 32◦), the velocity is shown for each
type of prey considered: small (s), medium (m), large (l), and elongated (e). The two legends apply to
both plots.

When comparing the effects of varying the prey size and shape, we find that elongating
a prey in the direction parallel to the tangent of the collar surface (Preye) seems to have
an insignificant effect on its resulting velocity, as compared to its original spherical shape
(Preym). Similarly, decreasing the size of the prey (Preys) is found to result in a slight
decrease in velocity magnitude. Enlarging the prey (Preyl) is, on the other hand, found to
have a significant effect on the transportability of prey. In the loricate D. grandis, the results
indicate that there is no apparent place on the collar in which Preyl is moved in the
direction of the cell when considering its average velocity in one beat cycle. Similarly, the
transportability of prey in the non-loricate D. grandis is significantly decreased for Preyl
when compared to the other prey types investigated. The larger the size of the fixed prey
particle, the more it is going to alter the local flow field as compared to when it is free to
drift. Hence, for Preyl , we conclude that hydrodynamics can have a positive effect on the
transportability of prey, even though such an effect is not apparent in this static analysis.
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3.2. Dynamic Analysis

In this section, which covers the dynamic approach, prey will be allowed to move
freely within the flow. We will consider the prey velocity components at some of the
same positions on the collar that were considered in the static study. From these positions,
we take one time step of a negligible size (10−4 T) such that the velocity components are
essentially evaluated in their initial position. The flagellum positions at the instant in
time at which we evaluate the velocities are pictured in Figure 1. We iterate through
the solution procedure given in Figure 3 until all forces and torques on the prey have
converged to a level of, at most, 0.1% of the resultant translational and rotational prey
velocities (Supplementary Information S8.4). Here, the comparison is made possible using
the Stokes law. We only consider Preym and Preyl in the setting of the loricate D. grandis.

Freely Drifting Prey

Figure 8 shows the difference in the tangent and normal prey velocity between the
static and dynamic analysis. The Stokes law (Equation (10)) is expected to give an overes-
timation of the prey velocities calculated from prey forces due to the boundary effects of
the nearby microvilli (Section 2.1.2). In Figure 8, it can be observed that the velocities are
generally evaluated to a higher value in the static simulations as compared to the dynamic
simulations. This trend is therefore consistent with our prior expectations. The directions
of the velocity components are also found to be the same in both the static and dynamic
analysis, with the exception of some near-zero velocities. Considering only the tangent
velocities for Preym, the static simulations overestimate the prey velocity magnitude by, at
most, approximately two times as compared to the dynamic results.

Figure 8. Prey velocity components in the normal and tangent directions to the collar from both the
static and dynamic analyses. A prey was placed on the middle and left-hand side of the collar (50L),
the middle and right-hand side (50R), the top and back side (32B), and the bottom and back side
(68B). The left plot shows the results for a medium-sized prey, and the right plot shows the results
for a large-sized prey. All results were simulated with the presence of the lorica and at the flagellum
position pictured in Figure 1.

The normal velocity component obtained for Preym from the static and dynamic
approaches seems less comparable than the tangent velocity results, judging by Figure 8.
However, both approaches still evaluate the magnitude of the normal velocities to be within
the same order. Considering Preyl , the static and dynamic results vary more compared to
Preym, which is expected due to the bigger impact that a larger particle has on the local
flow field. Hence, we expect the static and dynamic results to vary more when increasing
the prey size, which is the trend that is observed. The resultant local flow fields when fixing
Preyl , as compared to letting it freely drift, are shown in Figure 9. Considering Figure 9A,B,
we observe that the fixation of the prey gives rise to a change in the flow direction from
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upstream to downstream around the prey. This non-trivial change in the velocity field may
cause a change in the resultant force on the prey. Hence, the artificial motion of the fixed
prey (as predicted by the Stokes law) will be different from that of the freely drifting prey.
In Figure 9C,D, the flow field direction around the fixed prey is not changed as drastically,
as seen in Figure 9A,B. However, Figure 9 only considers a discrete instance in time at a
certain collar position. Therefore, the figure only confirms and visualizes that the fixation
of prey does, in fact, alter the local flow field to an extent that seems significant to the
prey motion.

A B
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m
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Figure 9. Planar views of the flow field velocity near a prey, showing the differences between the static and dynamic
simulation approaches. Pictured is the large prey positioned on the left side of the filter around the middle (Preyl50L) using
the local prey coordinate system. All figures show the instantaneous flow field corresponding to the flagellum position
pictured in Figure 1. (A) The local flow field seen from a frontal perspective when the prey is fixed. (B) The local flow field
seen from a frontal perspective when the prey freely drifts. (C) The local flow field seen from a top perspective when the
prey is fixed. (D) The local flow field seen from a top perspective when the prey freely drifts.

The variation found between the static and dynamic results could be a result of the
coupling between the prey rotation and translation. Due to the proximity of the microvilli,
the symmetry in the flow around the spherical prey is disturbed [23]. This disturbance is
accounted for in the dynamic analysis, where the torque on the prey surface is considered
in addition to the forces. However, the static analysis only considers prey surface forces.
From the dynamic analysis, we find that prey generally rotate around their local z-axis
at the positions on the collar considered in Figure 8. This suggests that the tangential
translation of the prey relative to the collar surface would be most impacted by the prey
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rotation. In order to evaluate the degree of the impact on the prey’s translation caused by
its own rotation, we also simulate the motion of a constrained prey that is allowed to have
only translational velocity. Each resultant velocity component is found to vary up to 6%
compared to those of a freely drifting prey (Figure 8). We find the biggest variations in the
tangent velocity components, as we expected, from the axis about which the prey generally
rotate. The small variation in results suggests that the prey rotation and translation can
be considered to be decoupled, and subsequently, the variation in the static and dynamic
results cannot be due to neglecting the rotation in the static approach.

Based on the results from the dynamic study, we remain confident that there exists
a hydrodynamic effect that could be an aiding factor in the process of transporting prey
to the cell. Furthermore, we trust the order of magnitude of the results obtained through
the static study, but acknowledge that the static results seem to be overestimations when
compared to the dynamic results. Since only spherical prey were considered in the dynamic
approach, we cannot validate the static results for Preye. Here, due to the asymmetrical
shape of the prey, rotation might have a bigger impact than what was found for spherical
prey. The rotation of Preye will also depend on its orientation on the collar. In the static
analysis, we assumed the major axis of Preye to be parallel with the downwards-orientated
tangent vector on the collar surface. Given that the prey rotates, it is likely to see the
orientation changes over the course of a beat cycle. Hence, a complete analysis of the
motion of elongated prey is rather complex and is beyond the scope of the present study.

4. Conclusions

In this study, which considered finite-sized prey, our results suggest that, at some
positions on the feeding collar, hydrodynamics do contribute to the transportability of prey
in the direction towards the cell. The results do not indicate that hydrodynamics account
for the majority of the transportability of prey; they rather suggest that hydrodynamics
could be an aiding factor in the main means of prey transportation, the nature of which
remains unknown. Removing the lorica was found to increase the extent of the region
on the collar surface at which hydrodynamics positively impact the prey transportability.
Thus, the adaptive value of the lorica does not seem to be linked to the transportability
of prey.

Supplementary Materials: The following are available online at https://www.mdpi.com/2311-5
521/6/3/94/s1, Figure S1: Model residuals, Figure S2: Convergence of mesh size, Figure S3: Mesh
illustrations, Table S1: Morphology parameters.
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