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ABSTRACT
We present unprecedented, high throughput simulations of
cloud cavitation collapse on 1.6 million cores of Sequoia
reaching 55% of its nominal peak performance, correspond-
ing to 11 PFLOP/s. The destructive power of cavitation re-
duces the lifetime of energy critical systems such as internal
combustion engines and hydraulic turbines, yet it has been
harnessed for water purification and kidney lithotripsy. The
present two-phase flow simulations enable the quantitative
prediction of cavitation using 13 trillion grid points to re-
solve the collapse of 15’000 bubbles. We advance by one or-
der of magnitude the current state-of-the-art in terms of time
to solution, and by two orders the geometrical complexity of
the flow. The software successfully addresses the challenges
that hinder the effective solution of complex flows on con-
temporary supercomputers, such as limited memory band-
width, I/O bandwidth and storage capacity. The present
work redefines the frontier of high performance computing
for fluid dynamics simulations.

Categories and Subject Descriptors
[Peak performance, Time-to-solution]

1. INTRODUCTION
Today’s advances in supercomputers enable engineers to de-
sign effective solutions for some of the most pressing chal-
lenges of our century such as energy and the environment.
Fluid dynamics are a critical aspect in the design and op-
eration of such engineering systems. Here, we develop soft-
ware for the simulation of cloud cavitation collapse, a phe-
nomenon of enormous economic and ecological impact as it
pertains to the erosion of liquid-fuel injectors, hydropower
turbines and ship propellers. With 20% of the world’s energy
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resources currently spent in transportation by vehicles run-
ning on liquid fuels, their proper operation is of paramount
importance. In particular, further reduction in CO2 emis-
sions requires improving the efficiency of internal combus-
tion (IC) engines which in turn implies high-pressure fuel in-
jection systems. Precise fuel injection control and enhanced
fuel-air mixing implies high liquid fuel injection pressures
(e.g. 2500 bar for Diesel engines with combustion chamber
pressure of 50 bar). Under such conditions, liquid fuel can
undergo vaporization and subsequent recondensation in the
combustion chamber resulting in shock waves with pressure
peaks up to two orders of magnitude larger than the ambient
pressure [67]. When such shock waves impact on solid walls
they can cause material erosion of the combustion chamber
and limit the lifetime of the fuel injectors. Similarly, the
prevention of cavitation is essential for the design of ship
propellers, cryogenic pumps in the aerospace industry [75],
pipelines and turbines. On the other hand, the destructive
potential of cavitation can be harnessed, as already realized
by the mantis shrimp to stun its prey, to remove kidney
stones [50], purify water, and to develop innovative drilling
and emulsification techniques [13].

Currently, the quantitative prediction of cavitation phenom-
ena is severely limited. Cavitation, in particular as it occurs
in realistic conditions, presents a formidable challenge to
experimental and computational studies due to its geomet-
ric complexity and the disparity of its spatiotemporal scales.
Consequently, engineers usually employ simplified models to
account for its effects in their designs. Simulations of cloud
cavitation collapse are very demanding in terms of num-
bers of operations, system size and memory traffic. They
require two phase flow solvers capable of capturing inter-
actions between multiple deforming bubbles, traveling pres-
sure waves, formation of shocks and their impact on solid
walls, over a multitude of spatiotemporal scales. In this pa-
per, we integrate accurate numerical methods with effective
software that harnesses the power of modern supercomput-
ers, to present unprecedented simulations of cloud cavitation
collapse.

Cloud cavitation collapse involves bubbles covering about
50% of the computational domain, while pressure gradi-
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ents propagate and interact with flow structures through-
out the flow field. As further discussed and justified in
Section 7 we chose a uniform resolution over an Adaptive
Mesh Refinement (AMR) [7] or multi resolution technique
[76] for the discretization of this flow field. We focus on
the performance and time to solution of finite volume uni-
form resolution solvers that enable simulations with an un-
precedented 13 trillion computational elements evolving over
10’000 to 100’000 time steps. Such simulations resolve col-
lapsing clouds with up to 15’000 bubbles, a two order of
magnitude improvement over the current state of the art.

Our high throughput software for the simulation of cloud
cavitation collapse on supercomputers had to overcome the
following challenges:

• I/O bandwidth. Unravelling the fast dynamics of the
cloud collapse requires large numbers of time steps as
well as massive numbers of grid points to capture the
multiple bubble interactions. These requirements im-
pose high demands in terms of storage and I/O band-
width. The serialization to file of the simulation state
would involve I/O operations on Petabytes of data,
leading to an I/O time that would overwhelm the ac-
tual simulation effort.

• Operational intensity. In a finite volume solver, the
evaluation of the fluxes can be regarded as a product
of a large, sparse and data-dependent matrix with a
large state vector containing the flow quantities. This
type of operation is not expected to perform at large
fractions of the nominal peak performance. As sug-
gested by the roofline model [79], in order to fully
utilize the available computing power, software must
feature computational kernels with operational inten-
sities1 of at least 10 FLOP /Byte. While numerical
schemes for compressible flow simulations can involve
a large amount of operations, devising compute kernels
exhibiting such high operational intensities is challeng-
ing.

• FLOP/instruction density. Current computing hard-
ware is designed to execute relatively high FLOP/instruction
density text. Cores are meant to perform a smaller
amount of data accesses compared to the number of
floating point operations. Algorithms in this context
must employ data reordering to enforce more spatial
locality, however, at the cost of increased data shuf-
fling and integer instructions. This in turn leads to a
decrease in the FLOP/instruction density of the com-
pute kernels [31, 4, 41].

• Software productivity. The last, and arguably the
most important challenge, is the current gap between
performance and productivity in particular as it man-
ifests itself in flow simulation software. The current
lack of productivity in simulation software is consid-
ered to be the most detrimental bottleneck in compu-
tational science [18, 46, 81] especially due to the fast
evolution of hardware.

The present work extends the design and implementation of

1The ratio between floating point operations and off-chip
Byte traffic.

CUBISM-MPCF which was shown to reach 30% of the nom-
inal peak performance on Cray supercomputers employing
up to 250 billion computational elements for gas dynam-
ics simulations [33]. The software has been extensively re-
engineered to take advantage of the novel features of the the
IBM Blue Gene/Q (BGQ) platform and to simulate cavita-
tion collapse dynamics using up to 13 trillion computational
elements. The performance of the software is shown to reach
an unprecedented 11 PFLOP/s on 1.6 million cores corre-
sponding to 55% of the peak on the 20 PFLOP/s Sequoia
supercomputer. These results massively improve the current
state of the art in flow simulations and open new frontiers for
Computational Fluid Dynamics. Furthermore, the software
introduces a first of its kind efficient wavelet based compres-
sion scheme, in order to decrease the I/O time and the disk
footprint of the simulations. The scheme delivers compres-
sion rates up to 100 : 1 and takes less than 1% of the total
simulation time.

The paper is organized as follows: in Section 2 we discuss
the current state of the art and in Section 3 we present
the governing equations, their numerical discretization and
their computer implementation. The computing platforms
on which we performed simulations of cloud collapse are de-
scribed in Section 4, while in Section 5 and Section 6 we
describe our algorithmic and implementation innovations,
respectively. The results of the production simulations are
presented in Section 7, and in Section 8 we present a detailed
analysis of the performance. We summarize our findings in
Section 9 along with a discussion on the implications of the
present work on future supercomputing architectures.

2. CURRENT STATE OF THE ART
The prevention and exploitation of the destructive capac-
ity of cavitation for engineering and medical applications
ranging from pressurized diesel injection systems to extra-
corporeal shock wave lithotripsy, has been the focus of an
ever increasing number of investigations over the last 50
years [49, 29, 5, 30, 14, 10, 9]. However, current estimates
of cavitation phenomena are largely based on the theory of
single bubble collapse as developed a century ago by Lord
Rayleigh [61], and further extended by Gilmore [25] and
Hickling and Plesset [35]. These studies have demonstrated
the importance of compressibility in the later stages of col-
lapse.

However, modeling cavitation on the basis of the spherical
collapse of an isolated bubble entails a number of idealized
assumptions and is not likely to be representative of real
world problems. Such models must be enhanced to account
for the presence of other bubbles and/or solid walls, which
lead to the asymmetric deformation of individual collapsing
bubbles [11].

The spatiotemporal scales and the violence of cavitation hin-
der the experimental acquisition of information that can
elucidate its driving mechanisms. Experimental investiga-
tions have also largely addressed single bubble collapse [5,
74] and report quantities such as average bubble radii, while
they estimate the damage potential through measurements
of surface pits inside tubes and over flat surfaces [56, 30, 40,
21]. Similarly cavitation presents a formidable challenge to
simulations. Blake et al. [9] studied the single bubble asym-



metric collapse using a boundary integral method. Johnsen
and Colonius [44] have investigated the potential damage of
single collapsing bubbles in both spherical and asymmetric
regime with axisymmetry assumption for a range of pulse
peak pressures in shock-induced collapse. Lauer et al. [51]
have studied collapses of arrays of cavities under shockwaves
using the sharp interface technique of Hu et al. [37].

The current state of the art in the numerical investigation of
cloud cavitation are those by Schmidt et al. [68] and Adams
and Schmidt [2] using a cluster of 125 vapor bubbles inside
a pressurized liquid at 40 bar. To the best of our knowledge
there has never been a large scale study of cavitation on
supercomputer architectures.

Flow simulations on supercomputing architectures however
have a long history. We note in particular a number of im-
pressive flow simulations that range from the work of Gropp
et al. [27] to those performed using AMR techniques [7].
Their use has been facilitated by powerful open source soft-
ware such as Chombo [58] and FLASH [22]. Chombo [58]
is a block-structured AMR package which features a num-
ber of solvers for time dependent systems of PDEs with
the support for compressible, two-phase flows and prob-
lems with solid boundaries as well as for elliptic PDEs. Its
performance has been shown only for elliptic problems by
Wen et al. [77] to scale up to 8000 processors. FLASH [22]
is a solver for hyperbolic system of equations on adaptive
grids constructed by PARAMESH and it has been shown
to scale up to 33k cores for terascale simulations of com-
pressible turbulence [19]. Raptor developed by Greenough et
al. [26] has been used for both uniform resolution and AMR-
based simulations of compressible flows with two-phases (see
[60]). The reported performance for uniform resolution sim-
ulations on a 32k-core IBM BG/L achieved 3 TFLOP/s,
corresponding to 3.3% of the peak performance. For fluid-
structure interaction (FSI) problems, an AMR-based solver
called Uintah by Berzins et al. [8, 55] is shown to scale up to
256k cores. A high performance AMR-based solver (Nyx)
has been recently introduced for hydrodynamics (and astro-
physics) problems demonstrating a weak scaling efficiency of
70% on 50k cores [3] of a Cray XE6.

In the realm of uniform resolution solvers, the most recent
landmark is the simulation of noise propagation of jet en-
gines on 1 million cores on the Sequoia supercomputer by
the Center for Turbulence Research at Stanford University
[57]. However the percentage of the peak performance was
not reported. To the best of our knowledge, the highest frac-
tion of the peak for uniform resolution solvers was reached
by an earlier version of the present software, achieving 30%
of the nominal peak on 47k cores of Cray XE6 Monte Rosa
[33] to study shock-bubble interactions [34].

Data dumps of large scale simulations of cavitation requires
efficient data compression algorithms to alleviate I/O bot-
tlenecks by decreasing the I/O footprint of the simulation.
The large, dynamic disparity of achievable compression rates
hinders the native support of data compression by high per-
formance I/O libraries such as ADIOS [53], HDF5 [20] and
PnetCFD [52]. ISOBAR [66] represents the state of the art
that performs asynchronous data transfer to the dedicated
I/O nodes. It was shown to achieve compression rates be-

tween 1.9X and 52.5X for three scientific datasets of less
than 1 GB, on up to 2048 nodes of the Cray XK6 Jaguar
cluster. We are not aware of data compression techniques
for the large scale data associated with high performance
computing for flow simulations, as is the case in this work.

Roofline model. The high performance techniques devel-
oped herein were guided by the roofline performance model
[79]. This model reflects the disparity between the peak per-
formance and the DRAM memory bandwidth of the under-
lying hardware as well as the operational intensity. Given a
compute kernel with an operational intensity of 0.1 FLOP/B
– for a machine with 200 GFLOP/s and 30 GB/s – the max-
imum achievable performance is estimated by min(200, 0.1 ·
30) = 3 GFLOP/s. Any kernel with an operational intensity
less than the “ridge point”, 6.7 FLOP/B in this case, cannot
achieve peak performance and is thus memory-bound.

3. EQUATIONS AND DISCRETIZATION
Cavitation dynamics are mainly dictated by the compress-
ibility of the flow while viscous dissipation and capillary ef-
fects take place at orders of magnitude larger time scales
[10]. Accordingly, we present a solver for the simulation of
inviscid, compressible, two-phase flows by discretizing the
corresponding Euler equations. The system of equations de-
scribing the evolution of density, momenta and the total
energy of the flow reads:

∂ρ

∂t
+∇ · (ρu) = 0,

∂(ρu)

∂t
+∇ · (ρuuT + pI) = 0,

∂(E)

∂t
+∇ · ((E + p)u) = 0. (1)

The evolution of the vapor and liquid phases is determined
by another set of advection equations:

∂φ

∂t
+ u · ∇φ = 0, (2)

where φ = (Γ,Π) with Γ = 1/(γ − 1) and Π = γpc/(γ −
1). The specific heat ratio γ and the correction pressure of
the mixture pc are coupled to the system of equations (1)
through a stiffened equation of state of the form Γp + Π =
E − 1/2ρ|u|2. We discretize these equations using a finite
volume method in space and evolving the cell averages in
time with an explicit time discretization. Each simulation
step involves three kernels: DT, RHS and UP (Figure 1
(left)). The DT kernel computes a time step that is obtained
by a global data reduction of the maximum characteristic
velocity. The RHS kernel entails the evaluation of the Right-
Hand Side (RHS) of the governing equations for every cell-
average. The UP kernel updates the flow quantities using a
Total Variation Diminishing (TVD) scheme. Depending on
the chosen time discretization order, RHS and UP kernels
are executed multiple times per step.

The spatial reconstruction of the flow field is carried out
on primitive quantities (velocity and pressure) in order to
minimize spurious oscillations across the interface [1, 43].
The zero jump conditions for pressure and velocity across
the contact discontinuities are maintained by reconstruct-
ing special functions of the specific heat ratios and correc-



Figure 1: Compute kernels of the software (left), colored according to their operational intensity (blue: low,
red: high), and computational stages for the RHS evaluation (right).

Table 1: BlueGene/Q supercomputers.
Name Racks Cores PFLOP/s

Sequoia 96 1.6 · 106 20.1
Juqueen 24 6.9 · 105 5.0

ZRL 1 1.6 · 104 0.2

tion pressures [45]. Quantities at the cell boundary are re-
constructed through a Weighted Essentially Non-Oscillatory
scheme (WENO) [42] that is regarded as a non-linear data
dependent spatial stencil. In order to advance the RHS,
we compute and sum the numerical fluxes by the HLLE
(Harten, Lax, van Leer, Einfeldt) scheme [78]. We em-
phasize that the evaluation of the RHS requires “ghosting”,
i.e. the information exchange of adjacent subdomains due
to the WENO scheme. The stages of the RHS evaluation
are depicted in Figure 1. They involve a conversion stage
from conserved to primitive quantities (CONV), a spatial re-
construction (WENO) using neighboring cells (only two in
the sketch, top right) and evaluation of the numerical flux
(HLLE) at the cell boundaries (bottom right) and summa-
tion of the fluxes (SUM).

4. EXPERIMENTAL SETUP
The target platform of this work is the IBM Blue Gene/Q
supercomputer (BGQ), that is based on the BGQ compute
chip (BQC)[31]. Table 1 reports the nominal peak perfor-
mance of the BGQ installations we used.

The BQC is designed for optimal price/performance, energy
efficiency and reliability [73]. This chip features enhanced
versions of the A2 processor core [39], and its design is highly
optimized for aggregate compute throughput performance.
A BQC features 16 symmetric cores operating at 1.6 GHz
(and 2 extra cores: one redundant and one for the OS),
where each core supports 4 hardware threads, reaching a
concurrency level of 64. The BQC core features a Quad
floating-point Processing Unit (QPU) that implements the
QPX instruction set, which provides a full set of arithmetic
operations including fused multiply-add instructions, and a
variety of operations for shuffling and selecting data. QPX
instructions have a SIMD-width of 4, and are natively de-
signed for double precision computation. The BQC core
natively supports 4-way fine-grained Simultaneous Multi-
Threading (SMT). Within a thread, dispatch, execution and
retirement of the instructions is performed in-order. Each
hardware thread has dedicated resources: the instruction
buffer, the decode and the dependency units. Within a cycle,

Table 2: BQC performance table.
Cores 16, 4-way SMT, 1.6 GHz

Peak performance 204.8 GFLOP/s
L2 peak bandwidth 185 GB/s (measured)

Memory peak bandwidth 28 GB/s (measured)

the active hardware thread can issue one general-purpose in-
struction and one QPX instruction.

The 4-way SMT system is designed for hiding the back-
end latencies of the execution unit. Each core features a
4-way set-associative L1 data cache, 16 KB wide, which is
shared across the hardware threads. Each core accesses the
L2 cache through a crossbar, the central connecting struc-
ture between all of the processing units. The L2 data cache
is 16-way set-associative, write-back, 32 MB wide, and is
organized in 16 slices of 2 MB. The L2 memory controllers
feature a programmable hash function to scatter the memory
addresses across the slices. In order to hide possible laten-
cies from the L2 data cache and DDR memory, the BGQ
features an L1 cache prefetching unit.

Table 2 characterizes the performance of a single BQC. BQCs
are placed in a five-dimensional network topology, with a
network bandwidth of 2 GB/s for sending and 2 GB/s for
receiving data, respectively. Node boards are organized in a
group of 32 to form a rack, with a nominal compute perfor-
mance of 0.21 PFLOP/s. Each rack features additional BQC
nodes for I/O, with an I/O bandwidth of 4 GB/s per node.
We note that the BQC has a relatively low ridge point and
therefore kernels that exhibit operational intensities higher
than 7.3 FLOP/off-chip Bytes are compute-bound.

In addition we consider two other computing platforms at
Centro Svizzero di Calcolo Scientifico (CSCS), Switzerland:
Monte Rosa and Piz Daint. Monte Rosa is a Cray XE6
featuring compute nodes with 2P AMD CPUs based on
the Bulldozer micro-architecture. The nominal peak perfor-
mance of one node is 540 GFLOP/s and the measured peak
memory bandwidth is 60 GB/s, aggregate. The ridge point
is thus located at 9 FLOP/Byte. Piz Daint is a Cray XC30
and its compute nodes are based on the Sandy Bridge micro-
architecture. The nominal peak performance and measured
peak memory bandwidth are 670 GFLOP/s and 80 GB/s,
respectively, with a ridge point located at 8.4 FLOP/Byte.



Figure 2: Grid blocks containing cells in AoS for-
mat (left), and the AoS/SoA conversion during the
evaluation of the RHS (right).

Table 3: Potential gain due to data-reordering.
RHS DT UP

Naive 1.4 FLOP/B 1.3 FLOP/B 0.2 FLOP/B
Reordered 21 FLOP/B 5.1 FLOP/B 0.2 FLOP/B

Factor 15X 3.9X 1X
Max. gain 5.2X 3.9X -

5. KEY DECISIONS
The present software addresses simulation challenges in terms
of floating point operations, memory traffic and storage ca-
pacity. The following design choices were made so as to
overcome the limitations in memory and I/O bandwidth ex-
perienced by current supercomputers.

Minimize the compulsory memory traffic. A significant
algorithmic decrease in the total memory traffic has a di-
rect impact in terms of time to solution. To this effect we
implemented:

• Low-storage time stepping schemes, to reduce the over-
all memory footprint.
• High-order spatiotemporal discretization schemes, to

decrease the total number of steps.

In addition, a high order spatial discretization increases the
per-step FLOP count, potentially allowing kernels to reach
higher performance. Its main drawback however is the in-
creased stencil size, which in turn can degrade the opera-
tional intensity. This issue can be resolved by performing
data reordering [38, 54, 28] and cache-aware techniques [71]
as described in the next paragraph. In this work we employ
a third-order low-storage TVD Runge-Kutta time stepping
scheme [80], combined with a fifth order WENO scheme [42].
We opt for a discretization scheme that exhibits a spatial or-
der higher than the temporal one so as to better capture the
sharp pressure gradients associated with the shock waves.

Maximize FLOP/Byte and FLOP/instructions. For the
considered platforms, the roofline model predicts that the
performance of the kernels is likely to be memory-bound.
Hence we seek computational schemes that exhibit higher
operational intensities. We employ:

• Data reordering techniques, to increase spatial locality.
• SIMD-friendly memory layouts for vectorization.
• Computation reordering to increase temporal locality.
• Take advantage of platform-specific instructions.

Data reordering is achieved by grouping the computational
elements into 3D blocks of contiguous memory, and rein-
dexing the blocks with a space-filling curve [33, 28]. Blocks
are organized in an AoS format as it provides us with the
flexibility to easily change or extend the layout of the com-
putational elements (Figure 2, left). Table 3 reports the
potential gain on BGQ due to data reordering. Here, we
consider blocks of 32 elements in each direction, with extra
memory necessary for the evaluation of the RHS (Figure 2,
right, gray area).

To effectively operate on blocks we consider “data-slices”,
i.e. SIMD-friendly temporary data structures that lay out a
multiple-of-four number of elements. These data structures
are 32- or 16-byte aligned and have a small memory foot-
print. Their SoA format renders the computation amenable
to vectorization.

The computation reordering takes place when evaluating the
RHS. As depicted in Figure 2 (right), the kernel operates on
2D slices in the z-direction and performs directional sweeps
to evaluate the x-, y- and z-fluxes. The evaluation of the
RHS is then performed by exclusively using the ring buffers,
and it is put back in the temporary area of the block. When
possible, we “micro-fuse” different kernel substages together,
i.e. we mix the instructions coming from subsequent compu-
tational patterns, so as to further increase temporal local-
ity2.

Three QPX instructions are particularly useful here: inter-
lane permutations, fused multiply-add instructions and con-
ditional selections, mostly used at the WENO and HLLE
stages. The substages of every kernel benefit to different
extents, from fused multiply-add instructions.

Efficient wavelet-based data compression. The large num-
ber of computational elements employed in the present simu-
lations impose severe requirements on I/O time and storage.
A critical component of this work is the development of ef-
ficient wavelet based data compression schemes to address
this issue. A highly parallel implementation of the com-
pression schemes was necessary so as to have a negligible
impact on the total simulation time. Our design relies on
the following features:

• Data dumps performed only for p and Γ quantities.
• Fourth-order interpolating wavelets, on the interval.
• Lossy compression: detail coefficients are decimated.
• Lossless encoding of the decimated data.
• In-place transform, decimation and encoding.
• Data compression of only one quantity at a time.
• Parallel granularity corresponding to one block.
• A dedicated decimation buffer for each thread.
• A global buffer per rank for the encoded data.

Data dumps are performed exclusively on p and Γ as they
represent the main quantities of interest for the study and vi-
sualization of the cloud collapse dynamics. Wavelets enable
data de-correlation while the separability of their associated
filters leads to a very efficient forward wavelet transform

2Micro-fusion allows us also to manually perform common
subexpression eliminations that are not visible to the com-
piler.



Figure 3: Data flow of the compression scheme.

(FWT). We employ fourth-order interpolating wavelets [17,
59] as they provide a balanced trade-off between compres-
sion rate and computational cost, and can be readily 4-way
vectorized. In terms of accuracy, it is guaranteed that the
decimation will not lead to errors larger than the threshold ε.
The significant detail coefficients are further compressed by
undergoing a lossless encoding with an external coder, here
the ZLIB library [23]. Alternatively efficient lossy encoders
can also be used such as the zerotree coding scheme [72]
and the SPIHT library [48]. The “on the interval” property
[12] allows us to consider individual blocks as independent
datasets, enabling the parallel transform of all the blocks.
We perform all the compression substages in-place to mini-
mize the memory overhead. By processing one quantity at
a time we enforce it to be at most 10% of the simulation
footprint. Instead of encoding the detail coefficients of each
block independently, we concatenate them into small, per-
thread buffers and we encode them as a single stream. The
detail coefficients of adjacent blocks are expected to assume
similar ranges, leading to more efficient data compression.
This process is depicted in Figure 3.

6. SOFTWARE
The software is built upon a core of computational tech-
niques that reflect the strategies described in Section 5. Dur-
ing the software development, the primary objectives were
set to high productivity/low development time. We em-
braced the agile development principles [70] across a team
of 3 programmers. The software was initially developed in
less than 9 person months, and it has been extended and
optimized on BGQ platforms with a 7 man months effort.
Software reusability and flexibility were achieved by adopt-
ing a set of software design patterns [24]. The short de-
velopment time is reflected in the number of lines, which
is approximately 20’000. The code is spread in about 100
C++ classes with the largest class containing 1200 lines of
code.

Abstraction layers. The software is conceptually decom-
posed into three layers: cluster, node, and core. This organi-
zation increases reusability, allows to perform layer-specific
optimizations and has been shown to provide with an ade-
quate level of abstraction for rapidly prototyping new simu-
lations. The cluster layer is responsible for the domain de-
composition and the inter-rank information exchange. The
computational domain is decomposed into subdomains across
the ranks in a cartesian topology with a constant subdo-
main size. The cluster layer dispatches the prepared blocks
for computation to the node layer. The node layer is re-
sponsible for coordinating the work within the ranks. The

work associated to each block is exclusively assigned to one
thread. To evaluate the RHS of a block, the assigned thread
loads the block data and ghosts into a per-thread dedicated
buffer. For a given block, the intra-rank ghosts are obtained
by loading fractions of the surrounding blocks, whereas for
the inter-rank ghosts data is fetched from a global buffer.
The node layer relies on the core layer for the execution of
the compute kernels. The core layer is responsible for the
execution of the compute kernels, namely RHS, UP, SOS
and FWT. This layer is the most critical in terms of perfor-
mance.

Enhancing rank-level parallelism. The parallelism across
the cluster is achieved with the MPI library. During the
evaluation of the RHS, blocks are divided in two parts: halo
and interior. Non-blocking point-to-point communications
are performed to exchange ghost information for the halo
blocks. Every rank sends 6 messages to its adjacent neigh-
bors, the corresponding message size ranges between 3 MB
and 30 MB. Given these message sizes, we expect to observe
high communication bandwidth. While waiting for the mes-
sages, the rank dispatches the interior blocks to the node
layer. For the target platform the time spent in the node
layer is expected to be one order of magnitude larger than
the communication time. MPI parallel file I/O is employed
to generate a single compressed file per quantity. Since the
size of the compressed data changes from rank to rank, the
I/O write collective operation is preceded by an exclusive
prefix sum. After the scan, each rank acquires a destination
offset and, starting from that offset, writes its compressed
buffer in the file.

Enhancing Thread-Level Parallelism (TLP). We rely on
the OpenMP standard to take advantage of the TLP. We
enforce optimal thread-data affinity through a depth-first
thread placement layout. In order to hide potential im-
balances during the evaluation of the RHS, we enforce a
dynamic work scheduling and a parallel granularity of one
block. The overhead incurred by this scheduling is expected
to be amortized by the work per block, since it takes in the
order of 10 ms (per thread). Work imbalance is also ex-
pected to appear during the wavelet-based compression due
to the block-dependent work, and in the DT, due to the
scalar reduction. These imbalances are however expected to
have a less severe performance impact compared to those of
the RHS evaluation.

Enhancing Data-Level Parallelism (DLP). We rely on
explicit vectorization to effectively enforce the data-level
parallelism. The benefits of this choice have been previously
investigated in [15, 33]. The RHS, UP, DT kernels were writ-
ten so as to accommodate explicit vectorization with QPX
intrinsics. Due to its spatial access pattern and computa-
tional irregularities, the RHS is not straightforward to vec-
torize: it involves AoS/SoA conversions, data reshuffling for
stencil operations and conditional branches. Explicit vector-
ization has been also applied to the three substages of the
FWT kernel, namely the one-dimensional filtering, the x−y
transpositions of slices, and the x − z transpositions of the
entire dataset. During the wavelet transform, these stages



Figure 4: Overview of asymmetric deformations of
the bubbles towards the center of the cluster.

Figure 5: Temporal evolution of the maximum
pressure in the flow field and on the solid wall (left),
the kinetic energy of the system (right), and tempo-
ral evolution of the normalized equivalent radius of
the cloud (solid blue line).

are repeatedly performed in order to construct the levels
of the multiresolution analysis. While the vectorization of
the transpositions are straightforward, the vectorization of
the filtering poses difficulties due to the filter irregularity
at the data boundaries. These are resolved by processing
four y-adjacent independent data streams. This techniques
is subject to an overhead due to the additional 4 x 4 trans-
positions necessary to operate concurrently on the four data
streams.

Enhancing Instruction-Level Parallelism (ILP). The ring
buffers employed in the RHS evaluation are designed to min-
imize the memory consumption and maximize the temporal
locality. Although one slice fits in the L1 data cache (it
takes about 6 KB, i.e. 40 × 40 scalars, single precision) the
ring buffer does not fit, as it contains 6 slices. As we need
to maintain seven ring buffers (one per flow quantity), we
have an aggregate overhead of 250 KB per thread, totaling
about 16 MB per node. This footprint is big enough and
may encounter problems in fitting into the L2 data cache.
The micro-fusion of the RHS substages alleviates this prob-
lem. The FWT kernel is expected to show caching issues
due to x − z data transpositions at the finest multiresolu-
tion levels. We perform however only two such “dangerous”
transpositions: one at 128 KB and one at 16 KB. The other
FWT stages are expected to be cache-friendly.

Figure 6: Domain decomposition, visualization of
pressure field (low to high: translucent blue, yel-
low, red) and liquid/vapor interface (white) at early
stages.

Figure 7: Time distribution of the simulation (left)
and the “IO WAVELET” stage (right).

7. SIMULATIONS
We initialize the simulation with spherical bubbles model-
ing the state of the cloud right before the beginning of col-
lapse. Radii of the bubbles are sampled from a lognormal
distribution [30] corresponding to a range of 50-200 microns.
Typical shock-bubble systems have been shown to require a
resolution of 50-150 points per radius (p.p.r.), depending on
the numerical approach (see [51, 32, 44]). For the bubble
distributions considered in the present work, we choose a
resolution such that the smallest bubbles are still resolved
with 50 p.p.r.

Material properties, γ and pc, are set to 1.4 and 1 bar for
pure vapor, and to 6.59 and 4096 bar for pure liquid. Initial
values of density, velocity and pressure are set to 1 kg/m3, 0,
0.0234 bar for vapor and to 1000 kg/m3, 0, 100 bar to model
the pressurized liquid. The total simulated physical time is
around 40µs. Figure 4 depicts the bubble deformation after
20µs. For the clouds considered in this work, no significant
change in the integral quantities of the flow is observed be-
yond this time. We chose a CFL of 0.3, leading to a time
step of 1ns for a total of 40’000 steps. Due to the native
support for double precision computation on the BGQ, the
simulations were performed in mixed precision: single pre-
cision for the memory representation of the computational
elements and double precision for the computation.

The target physical system is assembled by piecing together
the simulation units and keeping the same spatial resolution.
The physical system is then decomposed it into subdomains
and mapped to MPI ranks, as depicted in Figure 6. Every
simulation unit is a cube of 10243 grid cells i.e. 32 blocks per
dimension, and contains 50-100 bubbles. A single simula-
tion unit requires around 30 hours of wall-clock time (about
35’000 steps) on one BGQ rack (0.2 PFLOP/s). Since the



Figure 8: Volume/isosurface rendering of the pressure/interface at time t = 0.3 (left) and t = 0.6 (right).
White isosurfaces identify the bubbles and orange/blue denote high/low pressure regions.

spatiotemporal resolution of larger clouds is close to those
within a simulation unit, for larger simulations we do not
observe a significant change in time-to-solution. The com-
pressed data dumps are carried out every 100 steps. This
extra time is included in the wall-clock time.

In Figure 8 we present visualizations of the liquid/vapor in-
terface as well as the pressure field and the solid wall for
a 9-unit simulation at t = 0.3 (left) and 0.6 (right). We
monitor the maximum pressure in the flow field and on the
solid wall, the equivalent radius of the cloud ( 3

√
3Vvapor/4π)

and the kinetic energy of the system. At t = 0.3, we ob-
serve initial asymmetric deformation of the bubbles while
a few bubbles have undergone the final stage of their col-
lapse. At t = 0.6 a large number of bubbles have collapsed
with larger collective pressure hot spots within the flow field.
Shortly after this time we observe the highest values of the
kinetic energy inside the flow field (Figure 5, right). At a
later stage, the highest pressure is recorded over the solid
wall to be about 20 times larger than the ambient pressure
(Figure 5, left). We consider that this pressure is correlated
with the volume fraction of the bubbles, a subject of our
ongoing investigations. We also observe that the equivalent
radius of the cloud (blue line in Figure 5) undergoes an ex-
pansion after t = 0.6 implying that some packets of vapor
grow larger, indicating bubble rebound, before undergoing
their final collapse.

For this simulation, the decimation threshold for visualiza-
tion dumps was set to 10−2 for p and 10−3 for Γ. The
observed compression rates were in the range of 20-10 : 1 for
pressure and 150-100 : 1 for Γ, during the entire simulations.
The total uncompressed disk space is 7.9 TB whereas the
compressed footprint amounts to 0.47 TB. The compression
rate for p is lower than Γ as p shows more spread spatiotem-
poral scales and exhibits less correlation. The left graph of
Figure 7 illustrates how the wall-clock times of a simula-
tion step and associated data compression are distributed
among the kernels. Due to the high compression rate and
the parallel I/O, data dumps take only up to 4% of the to-
tal time. The right side of Figure 7 shows that, within a
data dump, 92% of the time is spent for parallel I/O, while
2% and 6% of the time is spent on the wavelet compression
and encoding stages, respectively. Table 4 reports the work

Table 4: Work imbalance in the data compression.
DEC ENC IO

Gamma 30% 390% 5%
Pressure 22% 2100% 15%

imbalance3 for the three stages of the wavelet-based com-
pression. As FWT is applied to every data block, imbalance
for this stage is exclusively introduced by the decimation
process, which is data-dependent. The encoding exhibits
higher imbalance because it strongly depends on the volume
of the data produced by the wavelet transform. However the
encoding amounts only to 6% of the compression time and
as such it does not have a significant impact.

We remark here that AMR and multiresolution techniques
[7, 6, 76, 58, 65, 16, 69] are known to provide advantages
in time to solution. Thresholds considered in wavelet- and
AMR-based simulation are usually set so as to keep the L∞
(or L1) errors below 10−4 − 10−7 [36, 76, 47, 62, 63]. Here,
these thresholds lead to an unprofitable compression rate of
1.15 : 1 at best, by considering independently each scalar
field, and 1.02 : 1 by considering the flow quantities as one
vector field. This demonstrates that AMR techniques would
not have provided significant improvements in terms of time
to solution for this flow.

Throughput. On the 96 racks of Sequoia, the simulations
operate on 13.2 trillion points, taking 18.3 seconds to per-
form a simulation step, reaching a throughput of 721 billion
points per second. By projecting the #cells/second through-
put of [68] on the BGQ platforms and assuming perfect scal-
ing, the present software outperforms the current state-of-
the-art by a factor of 20X. In terms of time to solution, we
estimate a similar improvement.

8. RESULTS AND DISCUSSION
We assess the software performance for simulations of cloud
cavitation collapse (see Section 7). Our main contributions
are summarized as follows:

• Peak performance: 11 PFLOP/s, i.e. 55% of the nom-

3computed as (tmax − tmin)/tavg



Table 5: Achieved performance.
RHS DT UP ALL

1 rack [% of peak] 60% 7% 2% 53%
24 racks [% of peak] 57% 5% 2% 51%
24 racks [PFLOP/s] 2.87 0.23 0.12 2.55
96 racks [% of peak] 55% 5% 2% 50%
96 racks [PFLOP/s] 10.99 0.98 0.49 10.14

inal peak on 1.6 million cores.
• Time to solution: 20X improvement over the current

state of the art.

We also note that we improved the state of the art in the
geometric complexity of the flow, by simulating the evolution
of 15’000 bubbles a 100X improvement over the current state
of the art. The software involves 20’000 lines of code with
16 man-months of development overall.

We discuss the challenges we addressed in achieving such
a performance and we identify the bottlenecks that pre-
vented us from reaching higher fractions. The measure-
ments on BGQ platforms collected on the total weighted
GFLOP/s were reported by IBM Hardware Performance
Monitor (HPM). The executables were generated with IBM
XL C/C++ compiler for BGQ v12.1.

Cluster layer. Table 5 shows the performance of the indi-
vidual kernels as well as the overall, obtained by carrying
out different simulations on up to 96 BGQ racks. On 24
racks, the RHS kernel achieves about 57% of the peak while
the performance loss compared to the 1 BGQ rack is ap-
proximately 5%. A smaller loss of %2 is observed for the
DT kernel, while the UP kernel is not significantly affected.
Another 2% loss in the performance is observed for the RHS
kernel on the 96 BGQ racks, achieving 11 PFLOP/s. The
software scales efficiently on all configurations, reaching an
overall performance (i.e. over the total execution time) of
more than 50% of the peak. On all platforms, the com-
pressed data dumps take 4%-5% of the total simulation
time for frequent data dumps, e.g. every hundred simula-
tion steps, introducing an overall performance degradation
of 6%-8%. For less frequent dumps, e.g. every 500 steps or
more, we expect a performance degradation of 1% or less.

Node layer. We assess the performance of the node layer
by performing simulation runs on a single BGQ chip. This
layer includes the ghost reconstruction across the blocks but
it avoids any inter-node communication and synchronization
overheads due to MPI. Table 6 depicts the percentage of the
peak achieved by the node layer. We observe a 2% node-to-
cluster performance degradation for all but the DT kernel,
which experiences a major performance loss due to the in-
volved global scalar reduction. This has however a negligible
impact to the overall performance as it corresponds to 2% of
the total wall-clock time. Figure 9 (left) reports the weak
scaling study and illustrates the performance (in GFLOP/s)
of the three kernels. We observe good scaling for the RHS
and DT kernels and lower for the UP kernel, caused by low
FLOP/B ratios. Figure 9 (right) depicts the performance

Table 6: Node-to-cluster performance degradation.
RHS DT UP ALL

1 rack [% of peak] 60% 7% 2% 53%
1 node [% of peak] 62% 18% 3% 55%

Figure 9: Performance of the node layer.

of the three kernels with respect to the roofline model. The
overall performance is close to the one of the RHS kernel,
which takes 89% of the total wall-clock time.

Core layer. The core layer performance is assessed by eval-
uating the individual kernels. Table 7 depicts the per-core
measured performance for the C++ and the QPX implemen-
tations of the kernels. We observe that the QPX version
of the RHS kernel reaches 65% of the nominal peak per-
formance, indicating that the performance loss of the node
layer (62%) due to the ghost reconstruction is about 3%.
For the DT and UP kernels, the performance across the two
layers is practically identical. The performance of the FWT
kernel reaches about 10% of the peak. We also observe that
the explicit vectorization with QPX intrinsics radically im-
proves the performance of all but the UP kernel. As the
RHS kernel takes up to 90% of the total simulation time,
it is worthwhile to estimate a performance upper bound.
According to the roofline model and the RHS operational
intensity of 21 FLOP/Byte, the performance of the RHS
kernel is expected to reach 100% of the nominal peak. This
performance upper bound is optimistic as it discounts the
FLOP/instruction density.

A second approach for estimating the upper bound of the
RHS kernel is based on nominal instruction issue bandwidth.
The RHS kernel is composed of five stages/microkernels:
CONV, WENO, HLLE, SUM and BACK. We analyze the
compiler-generated assembly of these QPX micro-kernels to
estimate their FLOP/instruction density. As we seek for
an upper bound here, we count as “FLOP” also the in-
structions for permutation, negation, conditional move, and
comparisons. We then divide the FLOP count by the to-
tal amount of QPX instructions, excluding loads and stores.
Table 8 depicts the theoretical upper bound of the perfor-

Table 7: Performance of the core layer.
RHS DT UP FWT

C++ [GFLOP/s] 2.21 0.90 0.30 0.40
QPX [GFLOP/s] 8.27 1.96 0.29 1.29
Peak fraction [%] 65% 15% 2% 10%

Improvement 3.7X 2.2X - 3.2X



Table 8: Performance estimations based on the issue
rate.

Stage Weight FLOP/instr Peak
CONV 1% 1.10 x 4 55%
WENO 83% 1.56 x 4 78%

HLLE 13% 1.30 x 4 65%
SUM 2% 1.22 x 4 61%

BACK <1% 1.28 x 4 64%
ALL 100% 1.51 x 4 76%

Table 9: Performance of the WENO kernel
Baseline Fused

Performance [GFLOP/s] 7.9 9.2
Peak fraction [%] 62% 72%

GFLOP/s improvement - 1.2X
Time improvement - 1.3X

mance of each stage based on the nominal instruction issue
bandwidth. This model indicates that the maximum achiev-
able performance of the RHS kernel is 76% of the nominal
peak, whereas the WENO stage could achieve up to 78%
of the peak. It is impossible to achieve higher peak frac-
tions as the FLOP/instruction density is not high enough.
We examine the performance gain by applying micro-fusion
at the WENO kernel, the most time consuming stage of
the RHS. Table 9 presents the performance results for both
of the QPX non-fused and fused WENO implementations.
We observe a gain of 1.1X and 1.3X with respect to the
attained GFLOP/s and processor cycles respectively. The
overall gain of micro-fusing the RHS kernel is 28% in cycles
and 16% in GFLOP/s.

8.1 Performance portability
Part of the strategies and implementation techniques pre-
sented here have been assessed on Cray platforms [33], where
the software was previously shown to achieve 30% of the
nominal peak, using smaller problem sizes and a machine
with less peak performance. Nevertheless, we benchmark
the new version of the software and we evaluate its perfor-
mance portability. The software can be compiled straight-
forwardly on Intel/AMD platforms by including a header
file that performs the QPX/SSE conversion via macroin-
structions. The development of the conversion was rather
effortless, except for two intrinsics: the QPX permutation
function, which is significantly more flexible than the SSE
data shuffle and the QPX absolute value function, which
does not have a counterpart in SSE. We have performed pro-
duction simulations of cloud cavitation collapse on Piz Daint
and Monte Rosa at CSCS. The nominal peak performance
of the available computational resources are 0.34 PFLOP/s
and 0.28 PFLOP/s, respectively, corresponding to approxi-

Table 10: Measured performance on the CSCS plat-
forms, per node.

RHS DT UP
Piz Daint [GFLOP/s] 269 118 13
Piz Daint [% of peak] 40% 18% 2%

Monte Rosa [GFLOP/s] 201 86 10
Monte Rosa [% of peak] 37% 16% 2%

mately 1.5 BGQ racks. As reported in Table 10, the tech-
niques discussed in Sections 5 and 6 are pertinent to both
Cray platforms as well. The results indicate a performance
improvement of 1.3X on both AMD and Intel platforms com-
pared to [33]. It is worth to mention that the nominal peak
on Piz Daint requires the use of AVX intrinsics, therefore the
current QPX/SSE conversion will not provide the maximum
achievable performance.

9. CONCLUSION AND OUTLOOK
We have presented CUBISM-MPCF4, a large-scale compress-
ible, two-phase flow simulation software designed for studies
of cloud cavitation collapse. The software is built upon al-
gorithmic and implementation techniques that address the
challenges posed by contemporary supercomputers, namely
the imbalance between the compute power and the memory
bandwidth as well as the limited I/O bandwidth and storage
capacity. The present flow simulations on 1.6 million cores
of Sequoia at LLNL, achieve an unprecedented 11 PFLOP/s
corresponding to 55% of its peak. The simulations employ
13 trillion computational elements to resolve 15’000 bubbles
improving by two orders of magnitude the state of the art
in terms of geometric complexity. We devise a novel data
compression scheme that leads to a 10-100X improvement
in terms of I/O time and disk space, and takes less than 1%
of the total simulation time. These achievements narrow
drastically the gap between hardware performance and its
effective utilization for flow simulations.

While the focus of this work was on IBM Blue Gene/Q
platforms, we demonstrated performance portability across
AMD and Intel micro-architectures. This indicates that the
devised techniques are generalizable and likely to remain
valuable for future systems. The proposed cache-awareness
strategy, together with the devised DLP and ILP features,
can be readily applied on current and next generation many-
core accelerators. For such platforms, as already demon-
strated on single-node simulations [64], most of the modifi-
cations will likely concern the enhancement of the TLP and
in particular work decomposition and thread-cooperation
schemes.

More investigations are necessary to identify optimal block
sizes for future systems. Furthermore it is not clear whether
such a two-level hierarchical indexing would provide ade-
quate locality. Due to the I/O bottlenecks of current many-
core accelerators, we envision the development of intra-node
techniques to enforce computation/transfer overlap that hide
potentially long latencies. Extensions aimed at targeting
next generation platforms are expected to be eased by the
present software design, which favors high flexibility.

We envision that large scale simulations of cloud cavitation
collapse will enhance engineering models and form the foun-
dation for complete simulations of high performance fuel in-
jection systems. On-going research in our group focuses on
coupling material erosion models with the flow solver for
predictive simulations in engineering and medical applica-
tions. Ultimately, we consider that this work represents a
successful step in closing the performance-productivity gap.

4The software can be downloaded from GitHub,
https://github.com/cselab/CUBISM-MPCF.

https://github.com/cselab/CUBISM-MPCF
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