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We investigate the optimal morphologies for fast and efficient anguilliform swimmers
at intermediate Reynolds numbers, by combining an evolution strategy with three-
dimensional viscous vortex methods. We show that anguilliform swimmer shapes
enable the trapping and subsequent acceleration of regions of fluid transported along
the entire body by the midline travelling wave. A sensitivity analysis of the optimal
morphological traits identifies that the width thickness in the anterior of the body and
the height of the caudal fin are critical factors for both speed and efficiency. The
fastest swimmer without a caudal fin, however, still retains 80 % of its speed, showing
that the entire body is used to generate thrust. The optimal shapes share several
features with naturally occurring morphologies, but their overall appearances differ.
This demonstrates that engineered swimmers can outperform biomimetic swimmers for
the criteria considered here.
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1. Introduction

The striking hydrodynamic performance of natural swimmers (Hertel 1966) has
inspired a wide range of engineering applications, from robots to energy-harnessing
systems (Triantafyllou & Triantafyllou 1995; Nachtigall & Bluechel 2000; Bartol et al.
2005). Bioinspired engineering designs often rely on mimicking specific features of
natural organisms that are considered to have a functional role (Wilga & Lauder 2004;
Nawroth et al. 2012).

In the case of natural swimmers, however, we have limited information to assess
which functions are served by their morphological features, and whether such shapes
provide an optimal solution. Furthermore, engineering designs may take advantage of
available materials and components with flexibilities and restrictions different from
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those encountered in natural organisms. One may therefore question to what extent
engineers should follow a biomimicry approach. In this context the work of Borazjani
& Sotiropoulos (2010) demonstrated that manually selected combinations of different
shapes and kinematics can swim faster than naturally occurring swimmers. In Gazzola,
van Rees & Koumoutsakos (2012) it was found that C-start escape mechanisms of
larval fish can be improved upon by increasing the midline curvature beyond values
observed in nature. In the case of potential flow models, optimal fast and efficient
shapes and motions have been identified through multi-objective optimization (Tokic &
Yue 2012; Eloy 2013).

Here we present shape optimizations with regard to speed and efficiency for self-
propelled anguilliform swimmers at moderate Reynolds numbers. We analyse the
geometric features that lead to optimality and discuss how they relate to corresponding
biological systems.

The paper is organized as follows. The shape parametrization and cost functions are
presented in § 2, followed by a brief review of the employed methodology in § 3. The
results of the optimization campaigns are analysed in §§ 4 and 5, and the findings are
summarized in § 6.

2. Physical problem definition

2.1. Flow conditions
In this work we study swimmers at a constant Reynolds number based on the
fish length L, period of the travelling wave T and dynamic viscosity ν, Refish =
(L2/T )/ν = 550 (Gazzola et al. 2012). This flow regime is typical for larval zebrafish
5 days post-fertilization (Muller, van den Boogaart & van Leeuwen 2008; Gazzola
et al. 2012), which will be used here as the biological reference to place the optimal
solutions into context.

2.2. Midline kinematics
The swimmer’s midline kinematics (see the Appendix in the supplementary material
available at http://dx.doi.org/10.1017/jfm.2013.157) is fixed throughout this work to a
motion representative of anguilliform swimming (Carling, Williams & Bowtell 1998).
Anguilliform swimming is an archetypal swimming mode that has been extensively
studied, both experimentally (Gray 1933; Tytell 2004) and computationally (Carling
et al. 1998; Kern & Koumoutsakos 2006). Furthermore, the larval zebrafish considered
here as reference exhibits anguilliform swimming motion (Muller et al. 2008).

2.3. Shape parametrization
The three-dimensional geometry of the swimmer is represented by two orthogonal
planar curves for the width and height profiles, respectively. Each curve is a bijective,
continuous and smooth function of the axial coordinate s. For each s ∈ [0,L], an
elliptical cross-section is defined by half-axes based on the width and height curves
w(s) and h(s), respectively. The union of cross-sections is the employed doubly
symmetric three-dimensional geometry. We note that, by fixing the length to keep
Refish constant, the volume varies for different shapes.

The height and width profiles are represented by cubic B-splines with Nh and Nw

control points (figure 1). For both curves the first and last control points are fixed
at (sw

0 ,w0) = (sh
0, h0) = (0, 0) and (sw

Nw−1,wNw−1) = (sh
Nh−1, hNh−1) = (L, 0), respectively,

and serve to maintain C1 continuity at the end points. The remaining control
points are uniformly distributed along the length of the swimmer. Their width and
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FIGURE 1. Three-dimensional shape reconstruction of a larval zebrafish 5 days post-
fertilization (m0) based on our parametrization. (a) The width and height profiles (solid blue
curves) are cubic B-splines defined by the parameter values βw

i and βh
j , respectively. (b) The

three-dimensional shape is generated by constructing the ellipsoidal cross-sections with half-
axes defined by the width and height profiles.

height values, βw
i and βh

j with i ∈ [1,Nw − 2] and j ∈ [1,Nh − 2], are the parameters
to be optimized. We set Nw = 6 and Nh = 8, for a total of ten parameters, {βw

i }i=1,...,4

and {βh
j }j=1,...,6

. Example shapes generated with this parametrization are shown in the
Appendix in the supplementary material.

We remark that in the present simulations the swimming motion is imposed
irrespective of the power required to sustain it. Swimmers with large vertical and
lateral dimensions will exert correspondingly large forces on the fluid to achieve the
prescribed motion. In order to facilitate a comparison with natural swimmers and to
generate shapes that are relevant for robotic design, we constrain the search space so
that the swimmer fits within a bounding box of size L × 0.3L × 0.3L. This size of
the bounding box is chosen so as to allow a wide range of shapes while retaining
relevance to natural swimmers and man-made vehicles.

2.4. Cost function for fast swimming

The fastest shape is found by maximizing the average forward velocity Ū over the
sixth swimming cycle, starting from rest. The sixth cycle was chosen as a compromise
between reducing computational costs and approximating cruise velocity, based on
preliminary studies and the results of Kern & Koumoutsakos (2006). The cost function
to be minimized during the optimization is defined as

fvel =−Ū =−
∥∥∥∥ 1
T

∫ 6T

5T

U(t) dt

∥∥∥∥
2

, (2.1)

where U(t) is the velocity vector of the swimmer’s centre of mass.

2.5. Cost function for efficient swimming

The most efficient shape is identified by maximizing, over the sixth cycle, the Froude
efficiency, i.e. the ratio between useful energy and the sum of input and useful energy.
The input energy is imparted by the swimmer to the fluid through its deformation
while the useful energy is the kinetic energy gained by the swimmer itself. The
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efficiency cost function is defined as

feff =− Euseful

Einput + Euseful
=− mŪ2/2(

1
T

∫ 6T

5T

Pinput(t) dt

)
+ mŪ2/2

, (2.2)

where m is the swimmer’s mass and Pinput is the total instantaneous power delivered to
the fluid (see the Appendix in the supplementary material). The swimmer’s volume
is part of the efficiency definition, which can therefore be understood from an
engineering perspective as a transport efficiency.

We stress that our objective is to identify optimal swimmer morphologies with
respect to relevant engineering metrics. Natural fish have probably evolved under
requirements and constraints different from those considered in this study.

3. Methodology

3.1. Numerical method
We consider a self-propelling body immersed in a three-dimensional viscous flow
governed by the incompressible Navier–Stokes equations:

∇ ·u= 0,
∂u
∂t
+ (u ·∇)u=− 1

ρ
∇p+ ν∇2u, x ∈Σ \Ω, (3.1)

where Σ is the entire domain and Ω is the volume occupied by the swimmer. The
no-slip boundary condition at the geometry interface ∂Ω matches the fluid velocity
u to the local body velocity us. The feedback from the fluid to the body follows
Newton’s equations of motion:

msẍs = FH, d(Isθ̇ s)/dt =MH, (3.2)

where FH and MH are the hydrodynamic force and momentum exerted by the fluid on
the body, characterized by centre of mass xs, angular velocity θ̇ s, mass ms and moment
of inertia Is.

The numerical method to discretize and advance equations (3.1) and (3.2) in time
consists of a remeshed vortex method, with a penalization technique (Angot, Bruneau
& Fabrie 1999) to account for the no-slip boundary condition and a projection method
(Coquerelle & Cottet 2008; Gazzola et al. 2011) to capture the action from the
fluid to the body. The body geometry is represented with a characteristic function
χs (χs = 1 inside the body, χs = 0 outside and mollified at the interface) and its
deformation is defined by the deformation velocity field udef . Further details, validation
and verification of the method can be found in Gazzola et al. (2011, 2012). In this
study, we discretize the domain with a uniform grid spacing of h = L/256 during the
optimization and h= L/512 for the diagnostics reported. The mollification length of χs

is set to ε = 2
√

2 h, the Lagrangian CFL condition to LCFL= 0.1 and the penalization
factor λ= 104 (Gazzola et al. 2011).

3.2. Optimizer

Optimal shapes (characterized by {βw
i }i=1,...,4 and {βh

j }j=1,...,6
) are identified by the

stochastic optimization algorithm covariance matrix adaptation evolutionary strategy
(CMA-ES) in its multi-host, rank-µ and weighted recombination form (Hansen, Muller
& Koumoutsakos 2003). CMA-ES has been shown to be robust and efficient in dealing
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FIGURE 2. Evolution of cost functions (a) fvel and (b) feff against number of cost function
evaluations. Blue and green lines correspond to, respectively, best solution in the current
generation and best solution ever. The inset of each plot shows the corresponding optimal shape.
The numerical data correspond to swimmers with L = 1, T = 1 and Refish = 550, simulated
with resolution h= L/256 due to computational costs.

with flow-related optimization problems (Kern & Koumoutsakos 2006; Gazzola et al.
2012). Throughout this work we set the population size p = 40, which we found
to be a good compromise between robustness and computational cost. We initialize
our parameters (m0) to reproduce the geometry of a zebrafish larva at 5 days post-
fertilization (figure 1 and table 1).

The search space bounds are enforced through a rejection algorithm. We consider
invalid, for numerical reasons, cases in which the vertical coordinate of βw

1 ,
βw

Nw−2, βh
1 or βh

Nh−2 is smaller than the grid spacing used in our simulations.
Invalid configurations are rejected by assigning a high default cost function value.
Furthermore, we reject cases in which one or both profile curves cross the body
midline.

4. Results

4.1. Optimal shapes

The evolution of the fitness functions, the corresponding optimal shapes and
parameters are presented in figure 2 and table 1. The width profile of the fastest
swimmer is reminiscent of a thin aerofoil, with a maximum thickness of 0.03L and an
inflection point in the posterior half. The height profile shows a dorsal and caudal fin,
connected by a caudal peduncle. The most efficient swimmer, in contrast, is thicker
and blunter than the fastest swimmer, with a 4.6 times larger volume and a maximum
width of 0.11L. An inflection point is present in the posterior width. The height profile
is characterized by a large lateral area with a smooth transition between the dorsal fin
and the caudal fin.

The efficiency, forward and lateral velocities of the fastest, most efficient and
zebrafish larva (m0) shapes are shown in figure 3. We note that, compared with
the shape of the zebrafish larva, the fastest and most efficient shapes achieve
a 40 % higher velocity and 135 % higher efficiency, respectively. These improved
performances, however, come at the expense of a larger input power. In particular, the
average power required by the fastest and most efficient solution during the sixth cycle
is, respectively, 3.2 and 4.0 times larger than for the zebrafish larva.
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m0 Fastest Most
efficient

βw
1 8.9× 10−2 1.4× 10−2 7.1× 10−2

βw
2 1.7× 10−2 4.6× 10−2 1.5× 10−1

βw
3 1.6× 10−2 2.2× 10−3 1.3× 10−2

βw
4 1.3× 10−2 5.8× 10−3 7.7× 10−3

βh
1 5.5× 10−2 2.3× 10−1 1.6× 10−1

βh
2 6.8× 10−2 1.7× 10−1 2.6× 10−1

βh
3 7.6× 10−2 1.7× 10−1 2.8× 10−1

βh
4 6.4× 10−2 2.7× 10−1 3.0× 10−1

βh
5 7.2× 10−3 9.0× 10−2 2.3× 10−1

βh
6 1.1× 10−1 3.0× 10−1 2.1× 10−1

fvel −3.2× 10−1 −5.0× 10−1 −4.3× 10−1

feff −5.7× 10−2 −8.5× 10−2 −2.0× 10−1

TABLE 1. Optimal solutions and start searching point m0 (approximation of zebrafish larva
(Gazzola et al. 2012)). The numerical data correspond to swimmers with L= 1, T = 1 and
Refish = 550.
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FIGURE 3. (a) Forward and lateral velocities; dashed lines denote average velocity in the eighth
cycle. (b) Efficiency in a running window of length 1T = T ; dashed lines denote efficiency
at t = 8T . Colours denote the fastest shape (blue), the most efficient shape (red) and the
zebrafish larva m0 (green). The numerical data correspond to swimmers with L = 1, T = 1 and
Refish = 550.

4.2. Flow analysis
Both optimal swimmers accelerate during the first half and decelerate during the
second half of each stroke. Forward and lateral velocities peak when the tail reaches
its maximum lateral velocity (i.e. half-way during a stroke, after shedding the upstream
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(a) (b) (c)

(d) (e) ( f )

FIGURE 4. Optimal swimmers’ wake structure visualized via an isosurface of the Q-criterion,
coloured by the vertical component of the vorticity ω. The swimmers are plotted in dark grey.
We show (a,d) side, (b,e) top and (c,f ) perspective views for (a–c) the fastest and (d–f ) the most
efficient swimmer. Animations are presented in the supplementary material.

leg of a wake vortex ring). The minimum forward velocity is achieved at the beginning
of each stroke, when the tail changes direction.

Figure 4 shows the structure of the vorticity field for the fastest swimmer visualized
by the Q-criterion. In the second half of each tail beat, the downstream half of a
lateral elliptic vortex ring is generated, which is completed in the first half of the next
tail beat. Each vortex ring has a stronger circulation in the downstream half than in the
upstream half. The rings are initially generated with an aspect ratio of approximately
1.9 and then relax to a circular shape. The flow field of the most efficient swimmer
(figure 4) shows qualitatively the same structures as the fastest swimmer. The lack of a
distinct caudal fin results in weaker upstream halves of the vortex rings, so that their
asymmetric self-induced velocities cause the rings to rotate outwards around the z-axis.
Similar to the fastest swimmer, elliptical vortex rings are generated from the tail with
an aspect ratio of approximately 1.7 and relax to a circular shape downstream.

The flow–structure interaction is driven by the shape-independent midline
kinematics. We estimate the vorticity associated with the midline motion as ∂un/∂τ ,
where un is the normal velocity of the midline and τ the tangential coordinate.
Visualizing this quantity reveals two midline vortices that move downstream with
the travelling wave. During swimming, these midline-induced vortices modulate the
boundary-layer vorticity in the midplane (figure 5a). As a result, on either side of the
body stronger and weaker vortices alternate and are shed into the wake, forming a
2P vortex street (Williamson & Roshko 1988). The three-dimensional vorticity field
reveals that vortex rings are formed in the near flow around the body and travel
downstream. These rings are eventually rotated by the body and shed as lateral vortex
rings into the wake (figure 6).

Swimming is enabled by transferring momentum to the fluid, balancing drag-
induced decelerations and sustaining the average forward velocity. For anguilliform
motion, the associated midline vortices modulate the vorticity on either side of the
swimmer, creating coherent flow regions (figure 5a). These regions are accommodated
within the concave sides of the shape and pushed downstream by the body travelling
wave, accelerating the swimmer. We remark that the regions identified through this
mechanism (white dashed lines in figure 5) correspond to the thrust regions visualized
in figure 14 in Reid et al. (2012). The basic mechanism of propulsion through the
acceleration of coherent flow regions characterizes also the C-start escape response
(Gazzola et al. 2012).
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(a) (b)

FIGURE 5. (a) Vortices generated by the midline kinematics (top) modulate the boundary layer
vorticity during swimming (bottom). Black arrows denote velocity, colours denote vorticity in
the midplane, white dashed lines sketch coherent flow regions. (b) The F-FTLE field, simulated
over 1TFTLE = 2T , reveals differences in flow structures for the fastest (left) and most efficient
(right) width profile in a two-dimensional simulation.

FIGURE 6. Vortex line representation of a selection of vortex rings generated by the fastest
swimmer. The colours denote their orientation once they have been laterally rotated and shed
into the wake.

To further elucidate this process, we simulated the optimal width profiles in two
dimensions and analysed the corresponding flow field by means of the forward
finite-time Lyapunov exponent field (F-FTLE), shown in figure 5(b). Two-dimensional
simulations, although not able to capture the full physical problem, are instructive in
understanding swimming hydrodynamics (Triantafyllou 2012). For both swimmers, the
F-FTLE reveals the above-mentioned regions of coherent flow in an inertial frame
of reference, which conform to the body geometry and kinematics and are shed as
alternating compact vortices in the wake. Owing to the high swimming speed of the
fastest swimmer, the flow regions are longitudinally stretched and extend upstream
along the entire body. The most efficient swimmer, in contrast, extracts fluid from a
less elongated and more circular region along the posterior 25 % of the body length.
This could be a characteristic of efficient swimming.

5. Shape variations

We systematically vary single morphological features of the obtained optimal shapes
to study their impact on swimming performance. During this variation we neglect the
bounding box imposed on the optimization to detect trends in an unconstrained setting.
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FIGURE 7. Effect of shape variations on the forward velocity (blue squares), efficiency (red
triangles) and input energy (green circles) for the fast swimmer.
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triangles) and input energy (green circles) for the efficient swimmer.

Besides the forward velocity and efficiency, we show for each variation the power
delivered to the fluid integrated over the sixth swimming cycle, as a measure of the
associated effort, in figures 7 and 8.

5.1. Width
Increasing the width for the fast swimmer causes a 40 % drop in forward velocity,
and a dramatic improvement (up to 60 %) in efficiency. For the efficient swimmer we
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also find that thinner shapes improve speed and degrade efficiency. Thicker shapes, on
the other hand, require a larger input energy than our most efficient swimmer, which
degrades their efficiency.

We find that the width profile has the largest influence on the swimmers’
performance. A thin shape maximizes the forward velocity by minimizing the pressure
drag along the bulk of the body, whereas a thicker width profile is beneficial for
efficiency by striking an optimal balance between energy losses in the wake and
forward momentum of the swimmer.

5.2. Inflection point
The posterior part of the width profile of the optimal swimmers is characterized by an
inflection point. The slenderness of the fast swimmer does not allow for a meaningful
variation study, therefore we focus our analysis on the efficient case. We chose to
enhance the inflection point by decreasing the value of βw

3 (case −1), and to remove
it by replacing the profile with a symmetric four-digit NACA aerofoil (Jacobs, Ward
& Pinkerton 1933) with the same maximum thickness (case 2). In case 1 the profile is
given by an average between the NACA profile and our optimal solution.

The lack of inflection point is found to be detrimental for both forward velocity
(−25 %) and efficiency (−20 %). We argue, based on the F-FTLE analysis, that the
presence of an inflection point increases the volume of the flow regions trapped by
the body and pushed backwards during each stroke, similar to the C-start mechanism
(Gazzola et al. 2012). The larger momentum transfer increases the speed, and the
associated growth in useful energy improves the swimmers’ efficiency.

5.3. Caudal fin
For the fast swimmer, the caudal fin provides a significant part of the propulsion as
indicated by the drop in forward velocity when decreasing its size. The presence of
a caudal fin increases the available lateral area where lateral velocities are maximal,
resulting in a larger momentum transfer and therefore increased acceleration as the
swimmer sweeps its tail. However, without a caudal fin the swimmer surprisingly still
reaches 80 % of its top speed. This shows that thrust is generated along the entire
body, as coherent flow regions are pushed backwards and imparted a final acceleration
by the caudal fin. Increasing the caudal fin size beyond the optimum in turn decreases
the swimmer’s speed. In particular, a larger caudal fin increases frictional resistance
and flow separation due to a stronger adverse pressure gradient downstream of the
caudal peduncle.

For the most efficient swimmer, as for the fastest one, a larger caudal fin improves
the forward velocity and thereby increases its useful energy. However, the larger
volume of fluid displaced requires more input energy, which dominates the growth of
useful energy. Therefore swimmers with the largest caudal fins are the least efficient.
This trend is also found for the fast swimmer, where the efficiency peaks at case −2.

5.4. Height
We find that increasing the fast swimmer’s height beyond the bounding box results
in a marginal increase in forward velocity, contained within ∼4 % of case 0. For the
efficient swimmer, case 2 (also beyond the bounding box) represents a maximum with
∼3 % efficiency improvement over case 0. In both cases increasing the height leads
to a significant increase in the input energy required to sustain swimming, indicating
that the highest shapes may not be practically feasible. These considerations justify a
posteriori the choice of constraining the shape optimization within a bounding box.
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5.5. Head profile, dorsal fin and caudal peduncle

Naturally occurring anguilliform swimmers are often characterized by a torpedo-like
head profile, pronounced dorsal fin and/or caudal peduncle. Varying these features in
our optimal shapes leads to negligible performance degradation (at most ∼3 %) for
both speed and efficiency. Therefore, the widespread appearance of these features is
not justified by speed or efficiency alone. Such traits may improve manoeuvrability or
serve biological constraints.

6. Conclusions

We have presented a reverse engineering process to obtain the fastest and most
efficient shapes for self-propelled anguilliform swimmers at moderate Reynolds
numbers. This optimization relies on coupling an evolution strategy with three-
dimensional flow simulations using remeshed vortex methods.

Flow analysis reveals that the midline kinematics drives the formation of coherent
flow regions along either side of the swimmer, which are pushed downstream by the
body travelling wave. Through this mechanism the swimmer transfers momentum to
the flow and, consequently, accelerates.

The optimal shapes possess distinct features that are also widespread across natural
swimmers, such as a streamlined profile, dorsal fin, caudal fin and caudal peduncle.
However, the overall appearance of the optimal morphologies differs from natural
anguilliform swimmers. The obtained optimal shapes outperform the larval zebrafish
geometry by 40 % and 135 % for speed and efficiency, respectively. We note that
the optimal solutions require large input power (3–4 times more than a zebrafish
larva), which may not be attainable by natural swimmers due to muscular or
metabolic limitations, but might be achievable by robotic devices. The most relevant
morphological features identified are the swimmers’ thickness, inflection point and
caudal fin. Interestingly, the removal of the caudal fin from the fastest shape still
allows it to reach 80 % of its maximum speed, showing how anguilliform swimming
generates thrust along the entire body. Furthermore, based on flow analysis, we
argue that the presence of an inflection point allows an increased momentum transfer,
improving speed (+25 %) and efficiency (+20 %).

This study indicates that engineered swimmers have the potential to outperform
natural anguilliform swimmers in speed and efficiency, for the flow regime considered
herein.

Supplementary material

Supplementary material and movies are available at http://dx.doi.org/10.1017/jfm.
2013.157.
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