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1  Introduction

Turbulent flows are ubiquitous in the technical field of 
engineering as well as the natural environment. Solar flares 
originate from the turbulence developing on the surface 
of the sun. Accurate weather forecasting is enabled by the 
knowledge of turbulent atmospheric flows involved in the 
formation of clouds. The drag acting on cars, aircraft and 
nautical vessels is controlled by turbulent boundary lay-
ers, and the design of efficient internal combustion engines 
strongly relies on the turbulent mixing of fuel and oxidizer, 
to name but a few examples.

The non-linear nature of turbulence gives rise to an 
enormous range of length and time scales. The Reynolds 
number estimates the ratio of the length scale  associated 
with the largest structures in the flow field and the length 
scale �K, i.e., the Kolmogorov scale, related to the smallest 
ones as ∕�K ∼ Re

3

4. Until today, this dependency renders 
Direct Numerical Simulation (DNS), which aims at resolv-
ing all features down to the smallest scales, infeasible for 
all but the simplest turbulent flows. Thus, with DNS being 
ruled out, a certain level of modeling will become unavoid-
able. In contrast to DNS, for instance, approaches based on 
the Reynolds-Averaged Navier–Stokes (RANS) equations 
merely compute the statistical averages; that is, the time-
averaged non-turbulent mean flow, leaving all turbulent 
features to a model. However, Kolmogorov’s hypothesis 
of local isotropy (see [128]), i.e, the flow-independence 
of the smaller scales, suggests restricting the modeling 
effort to these scales only. The universal character of the 
smaller scales can be considered as the basis of an alter-
native approach to the numerical simulation of turbulent 
flows, that is, Large-Eddy Simulation (LES). By comput-
ing the larger flow-dependent structures and modeling the 
impact of the smaller ones on their evolution, LES can be 
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categorized in between DNS and RANS modeling. As a 
result, the cost of LES is significantly reduced compared to 
DNS, while the necessary degree of modeling is kept nota-
bly lower than for RANS approaches.

The Variational Multiscale Method (VMM) was intro-
duced for the first time about 20 years ago in [106] and fur-
ther developed as a general framework for computational 
mechanics in [107]. It aims at problems with broad scale 
ranges, which typically pose an enormous challenge for 
standard numerical methods. When applying the VMM, the 
scales of the underlying problem are separated into a prede-
fined number of scale groups. This scale separation opens 
a door for a different numerical treatment of each of these 
predefined scale groups and allows for designing advanced 
computational methods. A categorization of the VMM into 
the broad field of multiscale methods, taking into account 
applications both in fluid as well as in solid mechanics, 
may be found, e.g., in the overview article [86].

Aside from various other applications, as aforemen-
tioned, the theoretical framework of the VMM was also 
extended to the incompressible Navier–Stokes equations 
with a view to turbulent flow in [110]. Thus, the founda-
tions for generating a new approach to LES were laid. In 
the past 15 years, the VMM for LES has evolved into a 
frequently used and comprehensive approach to numeri-
cally investigating turbulent flows. In fact, it has not only 
shown very good performance for classical benchmark 
examples such as homogeneous isotropic turbulent flow in 
a box and turbulent channel flow, but also demonstrated its 
applicability for robust and accurate numerical simulation 
of complex engineering and biomedical flow. For instance, 
the aerodynamics of wind turbines were analyzed in [105], 
flow-control applications to a realistic wing design were 
reported in  [176], multi-ion transport in dilute electrolyte 
solutions under turbulent flow conditions in [8] and pulsa-
tile turbulent flow in the upper and lower pulmonary air-
ways in [53].

With respect to the aforementioned predefined num-
ber of scale groups, VMMs for LES are usually catego-
rized into two- and three-scale approaches. In two-scale 
approaches, resolved and unresolved scales are distin-
guished, whereas in three-scale approaches, the resolved 
scales are further differentiated in that the larger and 
smaller ones of these resolved scales are separated. For 
instance, the recent review in [1] is guided by this classifi-
cation. Here, in contrast to that, we follow a different cate-
gorization based on the one introduced in [188]: (i) Implicit 
LES (ILES), here represented by residual-based and stabi-
lized methods, (ii) functional subgrid-scale modeling via 
small-scale subgrid-viscosity models and (iii) structural 
subgrid-scale modeling, which has so far merely been real-
ized via the introduction of multifractal subgrid scales.

This review does not only focus on LES of turbulent 
incompressible flow, but also aims at covering further 
aspects of numerically simulating turbulent flow as well as 
applications beyond incompressible single-phase flow. This 
is one of the aspects setting it apart from all reviews on the 
VMM for LES published earlier in [1, 80, 118]. An impor-
tant aspect for LES of wall-bounded turbulent flow at very 
high Reynolds number is wall-layer modeling, which will 
be addressed in this article. As concerns further complexi-
ties introduced into turbulent flows, passive and active sca-
lar transport will be considered. Moreover, developments 
for LES of turbulent two-phase flow and combustion will 
likewise be covered briefly.

The remainder of the present review article is organized 
as follows: In Sect.  2, the incompressible Navier–Stokes 
equations are introduced, and the fundamental concepts 
of LES as well as traditional approaches are outlined. The 
variational multiscale formulation of the incompressible 
Navier–Stokes equations is derived in Sect.  3. Residual-
Based VMMs (RBVMMs) are addressed in Sect.  4. Sec-
tion  5 provides an overview of VMMs with small-scale 
subgrid-viscosity modeling. In Sect. 6, a VMM for which 
the subgrid-scales are explicitly estimated from a multi-
fractal modeling procedure is shown. Section 7 juxtaposes 
the various VMMs presented in Sects. 4–6. Developments 
towards wall-layer modeling in the context of the VMM are 
compiled in Sect. 8. In Sects. 9, extensions of the VMMs 
introduced in Sects. 4–6 to passive and active scalar trans-
port are presented. Section 10 addresses the application of 
VMMs to LES of turbulent two-phase flow and combus-
tion. A brief summary and outlook in Sect.  11 concludes 
this review article.

2 � Large‑Eddy Simulation

In the field of LES, extensive research has been performed 
in the past more than five decades since the publication of 
the Smagorinsky subgrid-scale model in [196]. As a result, 
LES has found its way into a wide variety of fluid mechani-
cal applications. In the following, we only briefly summa-
rize the traditional concepts of LES and related subgrid-
scale modeling strategies. Comprehensive insights into 
the historical aspects, practical issues as well as the related 
physical and mathematical theory may be obtained from 
various review articles such as [66, 71, 95, 138, 153, 167, 
185] as well as textbooks such as [14, 75, 117, 188].

2.1 � Problem Statement: The Navier–Stokes Equations

Turbulent flow in the domain Ω is governed by the 
Navier–Stokes equations. The incompressible Navier–Stokes 
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equations, comprising momentum conservation and continu-
ity equation, are given by

where �(�, t) = (u1(�, t), u2(�, t), u3(�, t))
T denotes the 

velocity vector, pkin(�, t) the kinematic pressure, imposing 
the divergence-free constraint, and � the kinematic viscos-
ity, assumed constant. The rate-of-deformation tensor �(�) 
is defined as

Moreover, a potential volume force is denoted by �, but 
omitted in the remainder of this section. Both the conserva-
tive form ∇ ⋅ (�⊗ �) of the convective term of the momen-
tum equation (1) as well as the alternative convective form 
� ⋅ ∇� will be used below.

Furthermore, boundary conditions on the boundary �Ω of 
the domain Ω are defined as follows:

where � is the identity tensor and � the outer unit 
normal vector on �Ω. Dirichlet boundary condi-
tions are enforced on the part ΓD,� of �Ω and Neu-
mann boundary conditions on ΓN,�. It is assumed that 
ΓD,� ∩ ΓN,� = � and ΓD,� ∪ ΓN,� = �Ω. Neumann bound-
ary conditions are prescribed differently on in- and 
outflow parts of the Neumann boundary. The total 
momentum flux is specified on a potential inflow part 
Γin
N,�

(t) = {� ∈ ΓN,�|�(�, t) ⋅ �(�) < 0}, but only the traction 
on the outflow part Γout

N,�
(t) = {� ∈ ΓN,�|�(�, t) ⋅ �(�) ⩾ 0}, 

with Γout
N,�

∩ Γin
N,�

= � and Γout
N,�

∪ Γin
N,�

= ΓN,�; see, e.g., [82, 
109, 112]. The Neumann boundary condition is split up 
this way owing to potentially arising eddies at the outflow 
boundary, which may evoke (partial) inflow at the outlet. 
The incorporation of the resulting convective boundary 
term at the outlet of the domain is mandatory for ensur-
ing stability at the outflow boundary in such cases, mean-
ing that potential eddies are indeed convected out of the 
domain, as observed, e.g., in  [11, 87]. Finally, the initial 
condition is given by

with a velocity field �0 assumed to be divergence-free.

(1)
𝜕�

𝜕t
+ ∇ ⋅ (�⊗ �) + ∇pkin − 2𝜈∇ ⋅ �(�) = � in Ω,

(2)∇ ⋅ � = 0 in Ω,

(3)�(�) =
1

2

(
∇� + (∇�)T

)
.

(4)� = �D on ΓD,�,

(5)−�(� ⋅ �) +
(
−pkin� + 2��(�)

)
⋅ � = �

�
on Γin

N,�
,

(6)
(
−pkin� + 2��(�)

)
⋅ � = �

�
on Γout

N,�
,

(7)� = �0 in Ω,

2.2 � The Filtered Navier–Stokes Equations

In LES, merely the evolution of the larger, problem-depend-
ent scales is computed. To eliminate the smaller and more 
universal scales, a spatial low-pass filtering operation, which 
is expressed as a convolution of the velocity field with a filter 
kernel G subject to

is (traditionally) applied, as proposed in  [137]. The fil-
ter kernel G is assumed homogeneous with normalization 
∫ G(�)d� = 1. The resolved large-scale part is denoted by 
̄(⋅), and the unresolved subfilter-scale part, marked by (⋅)��, 

is obtained as

Applying the filtering operation to the Navier–Stokes equa-
tions  (1) and (2) and assuming commutation with deriva-
tive operators, the filtered Navier–Stokes equations, gov-
erning the evolution of the resolved scales, take the form

where the subfilter-scale stress tensor �sfs is defined as

According to [137], the subfilter-scale stress tensor �sfs can 
be decomposed into two parts. The first part, termed Leon-
ard-stress tensor, is given by

and comprises all terms which can be computed from the 
known filtered solution. The second part

contains the subfilter scales and is further split into cross-
stress tensor �C and subfilter-scale Reynolds-stress tensor 
�R as

However, the filtered momentum equation is not closed, 
since �∗

sfs
 is not exclusively defined in terms of the resolved 

velocity field. Closure is achieved by modeling the impact 
of the subfilter scales on the basis of the information con-
tained in the resolved scales only. By including the Leon-
ard-stress tensor into the non-linear term, an alternative 
form of the filtered momentum equation is obtained, which 
reads

(8)�̄(�, t) = ∫ G(� − �̌)�(�̌, t)d�̌,

(9)�
�� = � − �̄.

(10)
𝜕�̄

𝜕t
+ ∇ ⋅ (�̄⊗ �̄) + ∇p̄kin − 2𝜈∇ ⋅ �(�̄) = −∇ ⋅ � sfs,

(11)∇ ⋅ �̄ = 0,

(12)�sfs = �⊗ � − �̄⊗ �̄.

(13)�L = �̄⊗ �̄ − �̄⊗ �̄

(14)�∗
sfs

= �̄⊗ ��� + ��� ⊗ �̄ + ��� ⊗ ���

(15)�C = �̄⊗ ��� + ��� ⊗ �̄,

(16)�R = ��� ⊗ ���.
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For this strategy based on an analytical filter, called explicit 
filtering, filtering and subfilter-scale modeling are assumed 
independent of the subsequent discretization of the filtered 
governing equation system. As a result, the numerical 
scheme has to ensure an accurate solution of the filtered 
equations. An alternative approach consists of taking the 
cumulative effect of the numerical treatment of the govern-
ing equations, in particular, the introduction of a computa-
tional grid and the application of discrete approximations 
of the derivative operators inherent in every flow simula-
tion as an implicit filtering leading to the large-scale field. 
In this case, as discussed, e.g., in  [190], the consideration 
of the alternative form (17) of the filtered momentum equa-
tion appears to be more appropriate, since the form �̄⊗ �̄ 
of the convective term gives rise to unresolved scales which 
are truncated by the implicit filter, inevitably resulting in 
�̄⊗ �̄. In the context of implicit filtering, it is also more 
appropriate to refer to the unresolved scales as the subgrid 
scales rather than the subfilter scales and to the subfilter-
scale stress tensor as the subgrid-scale stress tensor �∗

sgs
 

(and �sgs, respectively). With regard to the subsequent 
application of the VMM, this notation is adopted for the 
remainder of the present paper.

2.3 � Fundamental Subgrid‑Scale‑Modeling Strategies

According to  [188], two modeling strategies are usually 
distinguished in LES. Functional models, on the one hand, 
intend to model only the impact of the subgrid scales onto 
the evolution of the resolved scales, but not necessarily 
their structure. In the mean, they act dissipatively, remov-
ing energy from the resolved scales. The subgrid-viscosity 
concept builds on the assumption that the involved mech-
anisms exhibit a behavior similar to the dissipation by 
molecular motion. A general expression for the deviatoric 
part of the subgrid-scale stress tensor thus reads as

where �sgs denotes the subgrid viscosity. The Smagorinsky 
model  [196], introduced in the 1960s, is among the most 
popular subgrid-viscosity models. To date, various modi-
fications and enhancements have been developed, such as 
its dynamic form proposed in  [73] to adapt the involved 
model parameter to local flow structures. The underlying 
concept, which is based on the so-called Germano iden-
tity [72], evolved into a comprehensive procedure to deter-
mine otherwise tunable model parameters and was recently 
reviewed in  [149]. However, subgrid-viscosity models 
inherently rely on the assumption that the subgrid-scale 

(17)
𝜕�̄

𝜕t
+ ∇ ⋅

(
�̄⊗ �̄

)
+ ∇p̄kin − 2𝜈∇ ⋅ �(�̄) = −∇ ⋅ �∗

sfs
.

(18)�sgs −
1

3
tr(�sgs)� = −2𝜈sgs�(�̄),

stress tensor is aligned with the resolved strain-rate tensor. 
Indeed, the actual subgrid-scale stress tensor and the strain-
rate tensor are merely weakly correlated; see, e.g.,  [143]. 
Moreover, by definition, subgrid-viscosity models do not 
intend to recover the phenomenon of inverse energy trans-
fer from the subgrid scales to the resolved scales. Although 
energy is transferred to the subgrid scales on average, back-
scatter can be quite significant and of the same magnitude 
as forward scatter; see, e.g., [170].

On the other hand, structural models aim at recon-
structing the subgrid-scale stress tensor directly, making 
use of information extracted from the resolved velocity 
field. By exploiting the similarity between the scales of 
adjacent ranges, Bardina’s scale-similarity model [6, 7] 
estimates the subgrid-scale stress tensor from its defini-
tion as

In general, scale invariance, which also enters the dynamic 
form of the Smagorinsky model mentioned above, consti-
tutes a particularly important property for subgrid-scale 
modeling in LES, as pointed out in [150]. Bardina’s scale-
similarity model may also be categorized as a particu-
lar case of the general class of deconvolution-type mod-
els. Deconvolution-type models, such as the approximate 
deconvolution model originally introduced in  [204], use 
an approximate inverse of the filtering operator to obtain 
information on the unresolved scales. Models of this cat-
egory display a notably high level of correlation with the 
actual subgrid-scale stress tensor. Furthermore, forward 
scatter as well as backscatter of energy are captured natu-
rally via the non-linear interactions retained by structural 
approaches. However, these models often do not supply 
sufficient subgrid-scale dissipation. This aspect is particu-
larly discussed in [56]. Both physically and mathematically 
motivated approaches have been proposed to adequately 
capture the missing subgrid-scale dissipation; see, e.g., [70] 
for an overview. In the case of the scale-similarity model, 
an additional subgrid-viscosity term is frequently included, 
leading to a so-called mixed model; see, e.g.,  [6, 7, 222]. 
Other structural models, such as the velocity-estimation 
model (see  [57]), explicitly approximate the subgrid-scale 
velocity.

The aforementioned subgrid-scale models seek for a 
proper approximation of the unclosed terms and are thus 
referred to as explicit subgrid-scale models. In contrast, 
ILES, as proposed in  [17], assumes that the numerical 
dissipation contained within the discrete scheme is able 
to take the effect of the unresolved scales into account, 
thereby relying on the assumption that the effect of 
the subgrid scales is dissipative in the mean, similar to 
functional models. For instance, an advanced form of 

(19)�sgs ∼ �̄⊗ �̄ − ̄̄�⊗ ̄̄�.
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an ILES, called Adaptive Local Deconvolution Method 
(ALDM), was introduced in [104].

3 � The Variational Multiscale Method

Originally, the VMM was introduced in [106] to explain the 
origins of stabilized methods, as used in the Finite Element 
Method  (FEM), by relating them to subgrid-scale mod-
els in general. Following its origin, most of the research 
on VMMs for LES has been conducted within the FEM. 
Therefore, the respective notations are almost exclusively 
adopted here. However, it is emphasized that the VMM 
constitutes a theoretical framework for LES not specifically 
related to the FEM, let alone restricted to it. In fact, the 
VMM can also be used as a framework within other numer-
ical methods. This issue was comprehensively discussed 
in [80] with a focus on the Finite Volume Method (FVM), 
besides the FEM. FVM-based methods may be found, e.g., 
in [38, 79]. Furthermore, approaches as well as references 
regarding Finite Difference Methods (FDMs) and spectral 
methods were provided in [80]. In the following, the VMM 
is first related to the concepts of traditional LES, then a 
two- and a three-scale formulation are introduced.

3.1 � A Paradigm for Scale Separation in Large‑Eddy 
Simulation

The variational multiscale concept offers a different perspec-
tive on the fundamental step of scale separation in LES. In 
the VMM, scale separation based on a variational projec-
tion of the governing equations is assumed. The variational 
projection, identifying the resolved and subgrid scales, ema-
nates from the discretization of the governing equations by 
a numerical method well suited for discretizing those equa-
tions appropriately, for instance, the FEM. The reader is 
referred, e.g., to [92] for an exhaustive discussion regarding 
the Galerkin FEM and its mathematical interpretation as a 
projection. VMMs for LES are therefore inherently linked 
with approaches assuming implicit filtering. Although filter-
ing might not be applied explicitly, the filtered formulation, 
displayed in Sect. 2.2, frequently serves as an analytical tool 
for devising and evaluating approaches to LES. Specifically 
for this case, the VMM enables a profound mathematical 
framework for LES. Owing to implicit filtering, the VMM 
can be straightforwardly applied to arbitrary complex geom-
etries. Furthermore, the VMM allows for a priori separating 
an arbitrary number of scale ranges and provides an equation 
for each scale range, describing the evolution of the respec-
tive scales; see, e.g.,  [51, 80]. By augmenting the number 
of separated scale groups beyond the established two-scale 
decomposition used in LES, more advanced multilevel LES 

approaches may be derived consistently; see [190] for a cat-
egorization of multilevel methods in general as well as a 
compilation of various concepts. This opportunity gives fur-
ther evidence of the multi-purpose framework enabled by the 
VMM.

3.2 � Variational Formulation of the Incompressible 
Navier–Stokes Equations

For the variational formulation of the Navier–Stokes equa-
tions, appropriate solution function spaces 

�
 for � and p 

for pkin as well as weighting function spaces 
�
 for the veloc-

ity weighting function � and p for the pressure weighting 
function q are assumed. The system of Eqs. (1) (in convec-
tive form) and (2) is multiplied by � ∈ 

�
 and q ∈ p and 

integrated over the domain Ω. Viscous and pressure term are 
integrated by parts, with boundary conditions (4) as well as 
(5) and (6) applied to the resulting boundary integrals.

The variational formulation of the incompress-
ible Navier–Stokes equations is given as follows: find 
(�, pkin) ∈ 

�
× p such that

for all (�, q) ∈ 
�
× p. The form on the left-hand side is 

defined as

with the momentum part

and the continuity part

The linear form �NS(�) on the right-hand side is given as

and includes the Neumann boundary condition. The last 
term of the momentum part arises due to the aforemen-
tioned inflow part of the Neumann boundary condition (5). 
Since this term is not subject to the following scale sepa-
ration, it will be omitted in the subsequent derivations for 
brevity. Here, (⋅, ⋅)Ω and (⋅, ⋅)Γ denote the usual L2-inner 
product in a domain Ω and on a boundary Γ, which may be 
further specified by additional sub- or superscripts.

3.3 � Two‑Scale Decomposition

For the basic variant of the variational multiscale formulation 
of the Navier–Stokes equations, the velocity is decomposed 
into resolved and unresolved (or subgrid) components as

(20)NS(�, q;�, pkin) = �NS(�)

(21)NS(�, q;�, pkin) :=M(�;�, pkin) + C(q;�),

(22)

M(�;�, pkin) :=(
�,

��

�t

)
Ω
+ (�, � ⋅ ∇�)Ω −

(
∇ ⋅ �, pkin

)
Ω

+ (�(�), 2��(�))Ω − (�, �(� ⋅ �))Γin

N,�

(23)C(q;�) := (q,∇ ⋅ �)Ω.

(24)�NS(�) := (�, � )Ω +
(
�, �

�

)
ΓN,�
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where resolved velocity scales are identified by (⋅)h related 
to a spatial discretization of characteristic element length 
h. The subgrid scales are denoted by ̂(⋅). Analogously, the 
pressure is decomposed as

According to the decomposition of the solution functions, 
direct sum decompositions of the underlying function 
spaces into a finite-dimensional subspace of resolved scales 
and an infinite-dimensional subspace of unresolved scales 
in the form 

�
= h

�
⊕ ̂

�
 and p = h

p
⊕ ̂p, respectively, 

are assumed. Inserting the decomposition of velocity and 
pressure, (25) and (26), into the variational formulation 
(20) leads to

where

contains linear terms in the unresolved-scale quantities. 
The quadratic contribution from the convective term is 
given by

For separating resolved and unresolved scales via a varia-
tional projection, direct sum decompositions of the weight-
ing function spaces �

= h
�
⊕ ̂

�
 and p = h

p
⊕ ̂p, 

respectively, are also introduced. Accordingly, the weight-
ing functions read as

respectively. By this decomposition, the variational form of 
the Navier–Stokes equations is decoupled into a resolved- 
and an unresolved-scale equation, that is, variational 
form  (27) is separately weighted by the resolved- and the 
unresolved-scale part of the decomposed weighting func-
tions. The equation projected onto the space of resolved 
scales reads as

for all (�h, qh) ∈ h
�
× h

p
 and the equation projected onto 

the space of unresolved scales as

(25)� = �
h + �̂,

(26)pkin = ph
kin

+ p̂kin.

(27)
NS(�, q;�

h, ph
kin
)

+ 1

NS
(�, q;�h, �̂, p̂kin) + 2

NS
(�;�̂) =

�NS(�),

(28)

1
NS
(�, q;�h, �̂, p̂kin) :=(

�,
𝜕�̂

𝜕t

)
Ω
+
(
�, �h ⋅ ∇�̂ + �̂ ⋅ ∇�h

)
Ω

−
(
∇ ⋅ �, p̂kin

)
Ω
+ (�(�), 2𝜈�(�̂))Ω + (q,∇ ⋅ �̂)Ω

(29)2
NS
(�;�̂) := (�, �̂ ⋅ ∇�̂)Ω.

(30)� = �
h + �̂,

(31)q = qh + q̂,

(32)
NS(�

h, qh;�h, ph
kin
)

+ 1
NS
(�h, qh;�h, �̂, p̂kin) + 2

NS
(�h;�̂) =

�NS(�
h)

for all (�̂, q̂) ∈ ̂
�
× ̂p. The resolved-scale equation is 

solved for (�h, ph
kin
) ∈ h

�
× h

p
, while the unresolved-scale 

equation, yielding (�̂, p̂kin) ∈ ̂
�
× ̂p, is usually omitted. 

Hence, the resolved-scale equation is not closed, and the 
unresolved-scale contributions have to be appropriately 
modeled. Eventually, the variational multiscale formula-
tion (32) is split up as follows:

where

is the projection of the cross-stress tensor and

the projection of the subgrid-scale Reynolds-stress tensor 
onto the space of resolved scales. The form

contains the remaining linear terms in the unresolved-
scale quantities. The variational multiscale formulation 
(34) represents an analogue to the filtered Navier–Stokes 
equations and provides an alternative mathematical 
framework for LES. Converting the particularly relevant 
convective term as well as the cross- and subgrid-scale 
Reynolds-stress terms of the variational multiscale for-
mulation into their respective filter-based form leads to  
�̄ ⋅ ∇�̄, �̄ ⋅ ∇��� + ��� ⋅ ∇�̄ and ��� ⋅ ∇���, respectively. 
These filtered terms may be compared to their counterparts 
in Eq. (17). The filtered form, given in Eq. (17) and specifi-
cally suggested for implicit filtering, is thus obtained natu-
rally, with the important difference that the assumption of 
commutation between partial derivatives and filter opera-
tion is not required (see also, e.g., [51, 214]).

3.4 � Three‑Scale Decomposition

For a three-scale decomposition, the variables are further split 
up into three scale groups, larger resolved, smaller resolved 
and unresolved scales. That is, velocity and pressure solution 
and weighting functions are decomposed as follows:

(33)
NS(�̂, q̂;�

h, ph
kin
)

+ 1
NS
(�̂, q̂;�h, �̂, p̂kin) + 2

NS
(�̂;�̂) =

�NS(�̂)

(34)
NS(�

h, qh;�h, ph
kin
) + (�h;�h, �̂) +(�h;�̂)

+ 1,lin

NS
(�h, qh;�̂, p̂kin) =

�NS(�
h),

(35)
(�h;�h, �̂) := (

�h, �h ⋅ ∇�̂ + �̂ ⋅ ∇�h
)
Ω
=(

�h, �h ⋅ ∇�̂
)
Ω
+
(
�h, �̂ ⋅ ∇�h

)
Ω

(36)(�h;�̂) :=2
NS
(�h;�̂) =

(
�
h, �̂ ⋅ ∇�̂

)
Ω

(37)

1,lin

NS
(�h, qh;�̂, p̂kin) :=(

�h,
𝜕�̂

𝜕t

)
Ω
−
(
∇ ⋅ �h, p̂kin

)
Ω

+
(
�(�h), 2𝜈�(�̂)

)
Ω
+
(
qh,∇ ⋅ �̂

)
Ω
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These decompositions are in accordance with direct sum 
decompositions of the underlying function spaces into 
finite-dimensional subspaces of larger and smaller resolved 
scales and an infinite-dimensional subspace of unresolved 
scales: 

�
= h

�
⊕  �h

�
⊕ ̂

�
, p = h

p
⊕  �h

p
⊕ ̂p as well 

as 
�
= h

�
⊕  �h

�
⊕ ̂

�
, p = h

p
⊕  �h

p
⊕ ̂p.

The three-scale decomposition allows for replacing the 
resolved-scale equation (32) by two equations, an equation 
projected onto the space of larger resolved scales,

for all (�
h
, q

h
) ∈ h

�
× h

p
, which is solved for 

(�
h
, p

h

kin
) ∈ h

�
× h

p
, and an equation projected onto the 

space of smaller resolved scales,

for all (��h, q�h) ∈  �h
�
×  �h

p
, which determines 

(��h, p�h
kin
) ∈  �h

�
×  �h

p
. In (42) and (43) (as well as the unre-

solved-scale equation (33)), the resolved parts of velocity 
and pressure may be further separated into a large- and a 
small-scale part, as given in (38) and (39).

4 � Residual‑Based and Stabilized Methods

Stabilized FEMs have been developed for and applied to 
various problems of computational mechanics, among 
others, Computational Fluid Dynamics (CFD). In fact, 
flow problems have always been and remain one of the 
main applications of residual-based and stabilized meth-
ods. In the following, residual-based stabilization meth-
ods leading to the RBVMM for LES of turbulent flow will 
be reviewed in detail. Similar stabilized methods may be 
derived via Finite Increment Calculus (FIC), as originally 

(38)
� = �

h
+ �

�h

���
�h

+�̂,

(39)
pkin = p

h

kin
+ p�h

kin
�������

ph
kin

+p̂kin,

(40)
� = �

h
+ �

�h

���
�h

+�̂,

(41)
q = q

h
+ q�h

���
qh

+q̂.

(42)
NS(�

h
, q

h
;�h, ph

kin
)

+ 1
NS
(�

h
, q

h
;�h, �̂, p̂kin) + 2

NS
(�

h
;�̂)

= �NS(�
h
)

(43)
NS(�

�h, q�h;�h, ph
kin
)

+ 1
NS
(��h, q�h;�h, �̂, p̂kin) + 2

NS
(��h;�̂)

= �NS(�
�h)

demonstrated in [161]. Applications of FIC-based meth-
ods to turbulent flows were reported, e.g., in  [162]. Other 
approaches to stabilization are provided by so-called Face- 
(or edge-) Oriented Stabilization (FOS) methods, origi-
nally proposed in [29] for convection–diffusion problems, 
and Local-Projection Stabilization (LPS) methods, which 
were originally introduced for the Stokes equations in [12]. 
Later, FOS and LPS methods were further developed for 
the Oseen problem in [28] and [20], respectively. A review 
of residual-based stabilization methods comparing them to 
FOS and LPS methods can be found in [21].

4.1 � Overview

The foundations of residual-based stabilization methods 
were laid towards the end of the 1970s, that is, almost 
four decades ago. The Streamline/Upwind Petrov-Galer-
kin (SUPG) method was developed at that time and later 
published in detail in [26]. This approach was alterna-
tively termed streamline diffusion method in [123]. The 
respective SUPG term is added to prevent numerical insta-
bilities due to dominant convection by introducing dis-
sipation in streamline direction. The Pressure Stabilizing 
Petrov–Galerkin (PSPG) method was originally proposed 
in [108] (and later named this way in [208]). The presence 
of a PSPG term allows for circumventing the inf-sup condi-
tion (see, e.g., [24]), a mixed finite element formulation is 
subject to, and enables the convenient choice of equal-order 
interpolated elements for velocity and pressure. The inclu-
sion of a bulk-viscosity term was suggested for the first 
time in [62]. This term, which is also referred to as grad-
div term (see, e.g., [21]) or least-squares incompressibility 
constraint (see, e.g., [209]), was more closely investigated 
in [54]. Among other things, it provides improved discrete 
mass conservation, which comes along with an additional 
numerical dissipation; see, e.g.,  [165]. The benefits and 
drawbacks related to this term are still discussed in the lit-
erature, both from a mathematical and an engineering point 
of view; see, e.g., [165] and [147] for recent contributions 
to this discussion.

After initial considerations with a view on the suit-
ability of residual-based stabilization methods for LES had 
already been outlined in [47], the RBVMM was eventu-
ally proposed in [9], founding on the original idea of the 
VMM and thus on the concept of ILES. This method takes 
the non-linearity of the Navier–Stokes equations particu-
larly into account and may thus be considered an advanced 
stabilized method. After all, two further stabilizing terms, 
a cross- and a subgrid-scale Reynolds-stress term, were 
introduced by this approach. Extending the aforementioned 
quasi-static residual-based stabilization methods, time-
dependent residual-based subgrid-scale approximations 
were originally introduced in [49] and later investigated for 
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LES for the first time in [68]. In [96, 147], bubble functions 
were defined on the element interior for devising a more 
sophisticated stabilization operator for RBVMMs (see also, 
e.g., [25] for details on residual-free bubble functions). A 
specific edge-based implementation of residual-based sta-
bilization methods was proposed in  [142]. Furthermore, 
it is remarked that the application of residual-based sub-
grid-scale approximations, apart from stabilized methods, 
was recently proposed for a (two-scale) subgrid-viscosity 
approach in [163]. In that study, the subgrid viscosity was 
determined using a residual-based approximation for the 
subgrid-scale velocity.

4.2 � Evolution of Subgrid Scales

Starting point of the derivation of RBVMMs is the two-
scale decomposition introduced in Sect. 3.3. Equation (33), 
governing the evolution of the unresolved scales, enables 
an estimation of the subgrid-scale quantities based on 
mathematical considerations without any explicit physi-
cally-motivated modeling. Various strategies to recover 
the subgrid-scale quantities from Eq. (33), ranging from 
the elementwise numerical solution of local subproblems 
to approximate analytical expressions for  �̂ and  p̂kin, have 
been proposed in the literature; see, e.g., [107] for an over-
view and the relationship between them.

Rearranging Eq. (33) and splitting again into momentum 
and continuity equation yields

where the projections of the resolved-scale residuals onto 
the space of unresolved scales constitute the right-hand 
sides and drive the unresolved-scale equations.

While the subgrid-scale velocity �̂ is directly obtained 
from momentum equation (44), the subgrid-scale pressure 
p̂kin is governed by a Poisson equation resulting from tak-
ing the divergence of the momentum equation and using 
the continuity equation. Assuming the influence of p̂kin on 
the evolution of �̂ negligible as well as the residual of the 
momentum equation divergence-free and simplifying other 
terms, the following projected equations are obtained for �̂ 
and p̂kin:

(44)

(
�̂,

𝜕�̂

𝜕t

)

Ω

+
(
�̂, �h ⋅ ∇�̂ + �̂ ⋅ ∇�h + �̂ ⋅ ∇�̂

)
Ω

+ (�(�̂), 2𝜈�(�̂))Ω −
(
∇ ⋅ �̂, p̂kin

)
Ω
=

− M(�̂;�
h, ph

kin
) + 𝓁NS(�̂),

(45)(q̂,∇ ⋅ �̂)Ω = −C(q̂, �
h).

(46)
𝜕�̂

𝜕t
+
(
�
h + �̂

)
⋅ ∇�̂ − 𝜈Δ�̂ = −�h,⋅̂

M
,

(47)− Δp̂kin = −
𝜕rh

C

𝜕t
− (�h + �̂) ⋅ ∇rh

C
+ 𝜈Δrh

C
,

where

denote the residual of momentum and continuity equation, 
respectively. Here, �h,⋅̂

M
 additionally includes the convective 

term �̂ ⋅ ∇�h, which depends on the subgrid-scale veloc-
ity, in contrast to the discrete residual �h

M
 of the momentum 

equation, which will also be used below. Instead of a direct 
inclusion of the residuals, as done in Eqs.  (46) and  (47),  
L2-projections of the residuals orthogonal to the finite ele-
ment space were suggested in  [47], leading to so-called 
orthogonal subgrid scales.

For every term in Eqs.  (46) and  (47), a corresponding 
algebraic scaling can be deduced. The scaling of the tran-
sient term of the unresolved scale momentum equation is 
given by

The convective term scales as

and the viscous term as

The scalings of the respective terms of the pressure Poisson 
equation read analogously, with �̂ being replaced by rh

C
. For 

the Laplacian of the subgrid-scale pressure, it is given by

4.3 � Subgrid‑Scale Approximation

Residual-based subgrid-scale modeling aims at provid-
ing an approximate analytical solution for �̂ and p̂kin; see, 
e.g.,  [9, 47]. For this purpose, the scalings introduced 
above are used to approximate the partial differential equa-
tions (46) and (47) for the unresolved-scale quantities by 
ordinary differential equations or algebraic relations. As 
a result of the respective procedure, algebraic scalings 
are combined to one scaling parameter for each equation, 
which can be identified as the inverse stabilization parame-
ter of classical stabilized FEMs, reviewed in Sect. 4.1. That 
is,

(48)
�
h,⋅̂

M
=

𝜕�h

𝜕t
+ (�h + �̂) ⋅ ∇�h + ∇ph

kin

− 2𝜈∇ ⋅ �(�h) − � ,

(49)rh
C
= ∇ ⋅ �

h

(50)
𝜕�̂

𝜕t
: ∼

1

Δt
�̂.

(51)
�
�
h + �̂

�
⋅ ∇�̂: ∼

‖�h + �̂‖
h

�̂

(52)𝜈Δ�̂: ∼
𝜈

h2
�̂.

(53)Δp̂kin: ∼
1

h2
p̂kin.

(54)
𝜕

𝜕t
(⋅) +

((
�
h + �̂

)
⋅ ∇

)
(⋅) − 𝜈Δ(⋅) ∼ 𝜏−1

M
,
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depending on whether the time derivative is included or 
not. Furthermore, the parameter �C is introduced, which 
scales as

The parameter �C∕Δt is defined analogously based on �M∕Δt.
Using the approximations excluding the time derivative, 

the following ordinary differential equations for the sub-
grid-scale velocity and pressure are obtained:

In  [49], the subgrid scales were considered this way for 
the first time, and it was referred to this strategy as time-
dependent residual-based subgrid-scale modeling.

Quasi-static subgrid-scales are obtained when consider-
ing the time derivatives as a part of the differential operator 
as in equation (54) (or when omitting them completely and 
using �M∕Δt and �C∕Δt). As a result, algebraic relations for �̂ 
and p̂kin are obtained as

The convective terms �̂ ⋅ ∇�̂ and �̂ ⋅ ∇�h of equation  (46) 
are typically neglected; that is, �̂ is not considered in the 
velocity magnitude of scaling (51) and the residual of the 
momentum equation (48). The consideration of these terms 
in the context of quasi-static subgrid scales was discussed, 
e.g., in [38].

Various definitions for the stabilization parameters �M 
and �C can be found in the literature, e.g., the following 
ones proposed in [206, 220]:

where

is the covariant metric tensor related to the mapping 
between global coordinates � and local element coordi-
nates �. The time-step length of the temporal discretization 
is denoted by Δt, and CI is a positive constant independent 

(55)
((
�
h + �̂

)
⋅ ∇

)
(⋅) − 𝜈Δ(⋅) ∼ 𝜏−1

M∕Δt
,

(56)�−1
C

∼
�M

h2
.

(57)
𝜕�̂

𝜕t
+ 𝜏−1

M∕Δt
�̂ = −�h,⋅̂

M
,

(58)𝜏−1
C∕Δt

p̂kin = −rh
C
− 𝜏M∕Δt

𝜕rh
C

𝜕t
.

(59)�̂ = −𝜏M�
h
M
,

(60)p̂kin = −𝜏Cr
h
C
.

(61)
�M =

1√
4

Δt2
+ �h ⋅��h + CI�

2�:�

,

(62)�C =
1

�Mtr(�)
,

(63)Gij =

3∑
k=1

��k

�xi

��k

�xj

of the characteristic element length. The alternative defi-
nitions of the stabilization parameters, �M∕Δt and �C∕Δt, 
respectively, are obtained by omitting the term depending 
on Δt in �M.

It is remarked that, for quasi-static subgrid scales, Δt 
and h cannot be chosen independent of each other if the 
dependency on the time-step length is omitted in the defi-
nition of the stabilization parameters, i.e., if �M∕Δt and 
�C∕Δt are applied. However, if Δt is included, �M → 0 and 
�C → ∞ for Δt → 0. For small time-step lengths, chosen 
independent of the resolution, time-dependent subgrid-
scales demonstrated good performance in various numeri-
cal studies; see, e.g., [49, 68]. Aside from this brief remark, 
we would merely like to refer the reader to the literature on 
the topic of small time-step lengths in the context of semi-
discrete stabilized finite element methods, such as [16, 99].

4.4 � Final Residual‑Based Variational Multiscale 
Formulation

In the following, merely the algebraic relations  (59) 
and (60) are considered exemplarily. An elaborate presenta-
tion of the closed variational multiscale formulation with 
time-dependent subgrid-scales may be found, e.g., in [49]. 
Introducing the subgrid-scale approximations (59) and (60) 
into the unclosed terms (35) to (37) of the variational mul-
tiscale formulation  (34), integrating by parts some terms 
and omitting some other terms, the following residual-
based stabilization (or multiscale) terms are obtained:

It is assumed that the domain Ω is partitioned into nel non-
overlapping elements e with domain Ωe and characteristic 
element length h. The resulting triangulation is denoted 
by  h. Moreover, Ω∗ represents the union of all element 
interiors, i.e., Ω∗ :=

⋃nel
e=1

Ωe, and (⋅, ⋅)Ω∗ :=
∑

e∈ h(⋅, ⋅)Ωe. 
To eliminate potential boundary terms arising from integra-
tion by parts, it is assumed that the subgrid-scale quanti-
ties vanish on the element boundaries; see, e.g.,  [106] for 
elaboration.

The first cross-stress term constitutes the SUPG term. 
Moreover, the grad-div term, the first term of the modeled 
form of 1,lin

NS
(�h, qh;�̂, p̂kin), and the PSPG term, the sec-

ond term, arise. For the present quasi-static subgrid scales, 
the transient term of 1,lin

NS
(�h, qh;�̂, p̂kin) is neglected. The 

(64)
(�h;�h, �̂) ≈(
�
h
⋅ ∇�h, 𝜏M�

h
M

)
Ω∗ −

(
�
h, 𝜏M�

h
M
⋅ ∇�h

)
Ω∗ ,

(65)(�h;�̂) ≈ −
(
𝜏M�

h
M
⋅ ∇�h, 𝜏M�

h
M

)
Ω∗ ,

(66)
1,lin

NS
(�h, qh;�̂, p̂kin) ≈(

∇ ⋅ �
h, 𝜏Cr

h
C

)
Ω∗ +

(
∇qh, 𝜏M�

h
M

)
Ω∗ .
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viscous term of 1,lin

NS
(�h, qh;�̂, p̂kin) is likewise omitted in the 

present form, following, e.g.,  [9]. Note that, for orthogonal 
subgrid scales, independent of whether they are considered 
quasi-static or time-dependent, both terms vanish anyway. 
Deriving the aforementioned stabilization terms in the con-
text of the VMM gives rise to two further terms: the second 
cross-stress term as well as the subgrid-scale Reynolds-stress 
term. As analyzed in [112], the second cross-stress term ena-
bles global momentum conservation for the convective form 
of the momentum equation. The subgrid-scale Reynolds-
stress term may be interpreted as a convective stabilization of 
the second cross-stress term, acting analogously to the SUPG 
term for the standard Galerkin convective term. Since all 
residual-based stabilization terms vanish for the exact solu-
tion, consistency is ensured for the overall approach.

The formulation incorporating terms  (64) to  (66) 
eventually constitutes a complete RBVMM: find 
(�h, ph

kin
) ∈ h

�
× h

p
 such that

for all (�h, qh) ∈ h
�
× h

p
.

5 � Small‑Scale Subgrid Viscosity

Subgrid-scale modeling in form of a small-scale subgrid-vis-
cosity term within a VMM for LES was originally proposed 
in [110]. It was later pointed out, e.g., in [51] that a three-
scale separation as given by (38) to (41) represents the basis 
for this approach, which was reviewed in [1, 80, 118]. The 
basic idea of adding an artificial diffusion term for stability 
reasons on the second level of a two-scale decomposition 
goes back to [94], though, with an interesting, more general 
variant of this idea later proposed in [136]. Two solution strat-
egies were distinguished in [80]: either explicitly solving both 
constituents of the two-equation system [i.e., the large-scale 
equation (42) and the small-scale equation (43)] or solving 
a formally reunified resolved-scale equation, for which the 
separation of scales remains identifyable merely due to the 
subgrid-viscosity term still acting directly only on the smaller 
resolved scales. These two strategies will be described in the 
following two subsections. Finally, small-scale subgrid-vis-
cosity models which are usually applied are discussed.

5.1 � Explicit Solution of Large‑ and Small‑Scale 
Equation

Methods for an explicit solution strategy appear to have only 
been developed in the context of FEMs: one in [91] using 
residual-free bubble functions on the small-scale level as 

(67)
NS(�

h, qh;�h, ph
kin
) +

(
�h ⋅ ∇�h, �M�

h
M

)
Ω∗

−
(
�h, �M�

h
M
⋅ ∇�h

)
Ω∗ −

(
�M�

h
M
⋅ ∇�h, �M�

h
M

)
Ω∗

+
(
∇qh, �M�

h
M

)
Ω∗ +

(
∇ ⋅ �h, �Cr

h
C

)
Ω∗ = 𝓁NS(�

h)

earlier proposed, e.g., in [63, 90] and one in [144] using spec-
tral elements on the small-scale level. The former approach 
will be briefly outlined in the following.

Large- and small-scale equation (42) and (43) are modeled 
as follows: find (�h, ph

kin
) ∈ h

�
× h

p
 such that

for all (�h, qh) ∈ h

�
× h

p
, and find (��h, p�h

kin
) ∈  �h

�
×  �h

p
 

such that

for all (��h, q�h) ∈  �h
�
×  �h

p
, where �′

sgs
 denotes the small-

scale subgrid viscosity. Note that both large- and small-
scale equation are modeled equations. While the modeling 
of the small-scale equation via the subgrid-viscosity term is 
obvious, the modeling assumption for the large-scale equa-
tion reads

based on the assumption of a clear separation of the 
large-scale space and the space of unresolved scales. 
Equations  (68) and  (69) are a pair of coupled non-linear 
variational equations. As a result of an iterative solution 
procedure, the large- and the small-scale part of the solu-
tion are obtained, their sum representing the complete 
solution.

For the particular method presented here, residual-
free bubbles are used for a localized solution of the 
small-scale equation. The reasonability of a localization 
strategy for the smaller resolved scales is supported by 
perceptions from turbulence theory, that is, the tendency 
of decorrelation in a turbulent flow with increasing spa-
tial separation of two points in the flow domain. This 
tendency was revealed by analyzing two-point correla-
tions in turbulent flows (see, e.g., [173]). The smaller the 
scales are, the shorter is the distance over which a rather 
strong correlation of the scales has to be expected. There-
fore, a locally confined resolution of the smaller scales 
appears to be a reasonable strategy.

By using residual-free bubbles (see, e.g., [25]), it is 
aimed at satisfying the respective governing partial differ-
ential equation by the complete solution in strong form on 
each individual element domain Ωe of the basic discretiza-
tion. For this purpose, zero Dirichlet boundary conditions 
are assumed for the small-scale part of the solution on the 
boundaries of Ωe. For the underlying case of a separation 
of the resolved solution into a large- and a small-scale part, 
it is solved for the small-scale bubble part of the solution, 
while the residual of the large-scale part of the solution 
appears on the right-hand side of the residual-free bubble 
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equation, representing the driving force of this equation. 
Residual-free bubbles for the stabilization of a linearized 
stationary Navier–Stokes problem were first proposed 
in [187]. According to [187], the bubble space exclusively 
enhances the velocity approximation, that is, it is assumed 
that p�h

kin
= 0. Among other things, it is aimed at the fulfill-

ment of the inf-sup condition by this assumption.
Consequently, the strong form of the small-scale 

momentum equation is given by

where �h
M

 denotes the aforementioned residual of the large-
scale part of the solution. Equation (71) is similar to equa-
tion (46) for the unresolved scales in the context of resid-
ual-based stabilization methods. When numerically solving 
equation (71) in the present context, further residual-based 
stabilization terms, as described in Sect. 4, may be added 
for additional stabilization besides the subgrid-viscosity 
term. Having solved equation (71) for �′h, this small-scale 
solution may then be inserted into the variational large-
scale equation (68), to obtain the large-scale part of the 
solution.

Despite the aforementioned assumption p�h
kin

= 0, ena-
bling formulation (71), it turned out to be advantageous to 
include a small-scale pressure which is completely inde-
pendent of the small-scale momentum equation (71) in 
the large-scale equation  (68). However, it is not advisable 
to solve, for instance, a Poisson equation for the pressure 
aside from momentum equation  (71) on the small-scale 
level; it is rather intended to incorporate the effect of the 
small-scale pressure into the final large-scale equation via 
an additional term in the form of a residual-based stabiliza-
tion term. Thus, p′h

kin
 is approximated analogously to (60) as

In general, the fulfillment of the continuity condition is 
well known to become more important with increasing 
Reynolds number (see, e.g., [93, 209]). Therefore, approxi-
mation  (72) is a crucial ingredient of the overall solution 
strategy, particularly for the simulation of flows at high 
Reynolds numbers.

In summary, residual-free bubbles are used to solve the 
small-scale momentum equation. Additionally, the effect of 
the small-scale pressure is taken into account via a resid-
ual-based stabilization term in the final large-scale equa-
tion. Thus, it amounts to a combined residual-free bubble/
stabilizing strategy. After all, the main assumption p�h

kin
= 0 

in the small-scale momentum equation results in the fact 
that, analogously to residual-based stabilization methods as 
addressed in Sect. 4, the small-scale velocity is exclusively 
driven by the residual of the large-scale momentum equa-
tion and not by the residual of the continuity equation; see, 

(71)���h

�t
+ �

h
⋅ ∇��h − ∇ ⋅

(
2
(
� + ��

sgs

)
�(��h)

)
= −�

h

M
,

(72)p�h
kin

= −�Cr
h

C
.

e.g.,  [47]. Further discussion of this assumption may also 
be found in [90].

To obtain the discrete solution of the small-scale 
momentum equation, a submesh is introduced on each indi-
vidual element domain Ωe of the basic discretization. The 
characteristic element length of the latter is denoted by 
h. The submesh on a second level or, more precisely, the 
number of nel discretizations on a second level, where nel 
denotes the number of elements of the basic discretization, 
is the support for the small-scale part of the solution (i.e., 
the small-scale momentum equation (71) subject to the 
residual-free bubble assumption). Its characteristic element 
length is denoted by h′. Details of a particular approach 
which aims at solving directly for shape-function compo-
nents of the small-scale velocity as well as further assump-
tions which enable such a separation into shape function 
components are described in [90]. The resulting shape-
function components of the small-scale velocity are eventu-
ally substituted into the large-scale equation in the course 
of a static condensation procedure.

5.2 � Solution of a Monolithic Equation System

Reunifying the modeled large- and small-scale equation 
(68) and (69) results in: find (�h, ph

kin
) ∈ h

�
× h

p
 such that

for all (�h, qh) ∈ h
�
× h

p
. Note that the small-scale sub-

grid-viscosity term in Eq. (73) is given in weighted residual 
form and not yet integrated by parts, allowing for different 
subsequent integration by parts for, e.g., an FEM or FVM. 
The majority of methods which include a small-scale sub-
grid viscosity follow this second strategy of solving Eq. 
(73), and they have been developed based on a variety of 
numerical methods. Examples are (continuous Galerkin) 
FEMs as addressed, for instance, in [40, 83, 114, 119, 135], 
discontinuous Galerkin methods as, e.g., in [50], combined 
finite element/volume methods as in [129], FVMs as in 
[79], combined finite volume/spectral methods as in [175], 
spectral methods as in [111, 216], and spectral element 
methods as in [158, 219].

Most of the method developments were done for the 
incompressible Navier–Stokes equations; exceptions 
are [50, 129, 158], wherein the compressible Navier-Stokes 
equations were addressed, though the respective numerical 
examples often considered flow at lower Mach numbers. 
A theoretical investigation of the three-scale variational 
multiscale approach to the compressible Navier–Stokes 
equations (i.e., without supporting numerical examples) 
was provided in  [19]. A method with small-scale subgrid 
viscosity for variable-density turbulent flow at low Mach 

(73)
NS(�

h, qh;�h, ph
kin
) −

(
��h,∇ ⋅

(
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number, which will be focused on in Sect. 9, was proposed 
in [87].

Besides the numerical method, another important issue 
is how the resolved scales are separated into larger and 
smaller ones. Different approaches to scale separation for 
the reunified resolved-scale equation (73) were proposed. 
In [80], two different scale-separating approaches were dis-
tinguished: a p-type scale separation and an h-type scale 
separation. The former refers to scale separation based on 
the polynomial order of the shape functions (e.g., in FEMs) 
and the latter to scale separation based on a coarser grid. 
Some of them will be briefly presented in the following 
two subsections. Before, however, it is noted that analo-
gous filter-based methods were also proposed, which aim 
at subgrid-scale modeling via a small-scale subgrid-viscos-
ity term, while using a more traditional filtering approach 
instead of variational projection. This idea was outlined 
in  [214] and used therein based on FDMs. Further exam-
ples can be found in the context of FDMs in  [116, 127]. 
This strategy was also considered, for instance, based 
on FVMs (see, e.g.,  [189]) and spectral methods (see, 
e.g., [205]).

5.2.1 � p‑Type Scale Separation

In this section, two approaches to p-type scale separation 
for continuous Galerkin FEMs are presented, and the reader 
is referred to, e.g., [50] for similar ideas in the context of 
discontinuous Galerkin FEMs.

In [114], hierarchical shape functions within a (continu-
ous) FEM, an alternative concept compared to (standard) 
Lagrangian shape functions, were exploited for scale sepa-
ration in the context of VMMs for LES. More details on 
hierarchical shape functions can be found in textbooks on 
the FEM such as [223]. The essential feature in this context 
is a natural scale separation within the set of shape func-
tions of order k. All polynomials up to a certain order k are 
chosen for the polynomial representation of the space of 
larger resolved scales. These large-scale polynomials and 
further polynomials up to a necessarily higher order k are 
then chosen for the representation of the complete range of 
resolved scales. The polynomial(s) of order k′ defined by

where [k, k�, k] ∈ ℕ, are then assigned to the smaller 
resolved scales. Note that both large- and small-scale parts 
of the solution are subject to the same discretization with 
characteristic element length h, merely distinguished by the 
shape functions of the respective polynomial order.

L2-projections based on velocity-deformation tensors 
were proposed as a p-type scale separation in [119], among 
others, based on ideas published earlier in [136]. In that 
approach, in contrast to (73), where the subgrid-viscosity 

(74)k < k′ ≤ k,

term is directly applied to the smaller resolved scales, the 
subgrid-viscosity term is first applied to all scales and then 
subtracted from the larger resolved scales, resulting in the 
following system of equations: find (�h, ph

kin
) ∈ h

�
× h

p
 

and �h ∈ h

�
 such that

for all (�h, qh) ∈ h
�
× h

p
 and �

h
∈ h

�
, where appropriate 

solution and weighting function spaces h

�
 and h

�
 for �h 

and the corresponding weighting function �
h
 are assumed. 

Furthermore, it is assumed: if the L2-projection onto the 
large-scale space h

�

:� → h

�
 is defined for 

�(�) → h

�

[�(�)] with

then it holds that

that is, �h is indeed the large-scale part of the rate-of-defor-
mation tensor �(�h).

Inserting (78) into (75) yields: find (�h, ph
kin
) ∈ h

�
× h

p
 

such that

for all (�h, qh) ∈ h
�
× h

p
. The definition of the large scales 

by an L2-projection commutes with differentiation, as 
proven in [119], that is,

Note that such a commutation as defined by (80) cannot be 
proven for traditional filtering approaches in general. As a 
result of (80), Eq. (79) may be simplified to

where it is taken advantage of the following definitions: 
�
h
= h

�

[
�h
]
 and �h = h

�

[
�h
]
. It is easily observable that 
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(the second part of) Eq. (81) is equal to Eq. (73) when 
being integrated by parts.

The space h

�
 represents the large scales in this approach. 

There are two options for defining h

�
: either it may be 

defined on a coarser grid, which would amount to an h-type 
scale separation, or it may be defined by the respective 
polynomial orders (i.e., a p-type scale separation). In the 
numerical simulations presented in the original publication 
[119], the authors chose the second option, which is the 
reason to address it here in the context of the p-type scale 
separation. In fact, they used hexahedral elements with 
continuous triquadratic functions for the velocity approxi-
mation and discontinuous linear functions for the pressure 
approximation. This is an element definition well known to 
fulfill the inf-sup condition; see [93]. Discontinuous con-
stant and linear functions are then chosen to represent the 
large-scale space h

�
, using L2-orthogonal bases of piece-

wise Legendre polynomials. Mathematical analysis of such 
projection-based methods as described above was provided, 
e.g., in [40, 120, 186].

5.2.2 � h‑Type Scale Separation

An h-type scale separation relies on a level of complete 
resolution indicated by the characteristic discretization 
length h. With respect to this complete resolution level, a 
large-scale resolution level is identified a priori. This level 
is characterized by the length h, where h > h. Usually, this 
large-scale resolution level is a multiple of the complete 
resolution level, that is, h = �h, with typical values for the 
factor � being two or three, respectively. The separation of 
the velocity in the three-scale decomposition (38) is speci-
fied for this particular case of an h-type scale separation to 
be

where, according to Harten’s notation [101], ��h denotes 
the small-scale part, highlighting the fact that this small-
scale part is indeed obtained as the difference between the 
complete resolved and the larger resolved scale:

Note that, typically, the h-type three-scale decomposition 
defined by (82) is merely applied to the velocity solution 
and weighting functions for the methods presented below, 
and a two-scale decomposition is kept up for the pressure 
solution and weighting function.

Three different variants of h-type scale separations for 
LES within the variational multiscale framework were pro-
posed in the literature:

(82)
� = �

h
+ 𝛿�h

�����
�h

+�̂,

(83)��h = �
h − �

h
.

–– a Volume-Agglomeration (VA) procedure according to 
[129] (realized within a mixed FEM/FVM),

–– a Geometric MultiGrid (GMG) method as proposed in 
[79] (realized within an FVM) and

–– an Algebraic MultiGrid (AMG) method as presented in 
[83] (realized within an FEM).

Crucial aspects for such h-type scale separations are, 
among others, the generation of grids and the actual way 
of separating the scales based on the generated grids, which 
will be detailed in the following. Although the aforemen-
tioned approaches were realized on the basis of a particular 
computational method, they are typically not restricted to 
that one.

Two alternative techniques for generating grids may be 
distinguished in principle: one generating the grid for the 
large-scale resolution level from the grid for the complete 
resolution level and one proceeding in the opposite direc-
tion (i.e., from the grid for the large-scale resolution level 
to the grid for the complete resolution level). For the VA 
procedure in [129], the problem domain is initially discre-
tized by a grid with tetrahedral elements, from which a dual 
grid defined by control volumes is derived. This dual grid 
represents the grid for the complete resolution level. By 
a VA procedure as proposed in [132], macro-volumes are 
created. The characteristic large-scale length h and, hence, 
the ratio of h and h may be varied by varying the exten-
sion of the macro-volumes, which depends on the number 
of subsets of neighbors included in the macro-volumes.

For the GMG method in [79], two grids are created as 
well: a coarser grid, called the parent grid, and a finer grid, 
called the child grid, proceeding in the opposite direc-
tion, though. Starting from the parent grid, the child grid 
is obtained by an isotropic hierarchical subdivision of the 
parent grid. Typically, the factor � is chosen to be two, such 
that h = �h = 2h. The denotation “parent” and “child” mir-
rors usual namings in multigrid methods. However, in con-
trast to a usual parent-child relationship in multigrid solv-
ers, where the parent needs to know only the number of its 
children, a complete parent-child data base needs to be set 
up. As a result, every parent knows about every child and 
vice versa.

The AMG-based method originally proposed in [84] and 
later used for LES within the variational multiscale frame-
work for the first time in [83] makes use of aggregation- 
or agglomeration-based AMG as published in [212]. More 
precisely, the scale separation is based on level-transfer 
operators arising in Plain Aggregation Algebraic MultiGrid 
(PA-AMG); see, e.g., [141]. Though conceptually differ-
ent, PA-AMG is closely related to the aforementioned VA 
methods; see, e.g.,  [132, 148]. Compared to GMG meth-
ods, AMG methods obviate the usually challenging gen-
eration of additional grids besides the basic one due to the 
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use of algebraic principles for the generation of prolonga-
tion and restriction (i.e., level-transfer) operator matrices. 
Here, a factor � = 3 is usually chosen for the generation 
of aggregates, which will be described below, such that 
h = �h = 3h.

In [79], a general class of scale-separating operators 
based on multigrid operators was defined:

where the multigrid scale-separating operator Sm consists 
of the sequential application of a restriction operator R and 
a prolongation operator P. Applying the restriction operator 
to �h yields a large-scale velocity �h defined at the degrees 
of freedom of the coarser grid, which is then prolongated 
to obtain a large-scale velocity �h defined at the degrees of 
freedom of the finer grid. Different restriction as well as 
prolongation operators were used for the aforementioned 
scale-separating approaches.

The restriction operator for the GMG method in [79] was 
defined to be a volume-weighted average over all child con-
trol volumes of one parent control volume subject to

where �h
c
 denotes the large-scale velocity at the center of 

the parent control volume c with domain Ω
c, ncop the num-

ber of child control volumes c with domain Ωc in Ω
c and 

volume V(Ωc). Compared to a non-projective smoothed 
prolongation operator, superior results were obtained in 
[79] when using a projective prolongation operator in form 
of a constant prolongation defined by

for all Ωc ⊂ Ω
c
 and zero elsewhere. It was shown in [79] 

that the scale-separating operator defined as Spm :=Pp
◦R is 

indeed a projector, indicated by the additional superscript 
“p”. This projector is exactly the operator also used for the 
VA procedure in [129], although it was not derived from 
the general formulation (84) and hence not split up into a 
restriction and prolongation operator there. Moreover, this 
operator was also addressed in [215].

For the AMG method, PA-AMG is used for generating 
level-transfer operator matrices based on algebraic multi-
grid principles. The plain aggregation prolongation operator 
matrix is denoted by �h

3h
, where the aforementioned factor 

� = 3 is already made apparent by the subscript. It consists of 
first deriving its sparsity pattern and then specifying its non-
zero values. The sparsity pattern is specified by decomposing 
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[
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]
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h
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h
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c

the set of degrees of freedom associated with the respective 
system matrix on the basic grid level h, denoted here by �hh, 
into a set of so-called aggregates h

i
 such that

for all 1 ≤ i, j ≤ n3h
nb

 with i ≠ j, where nh
dof

 denotes the total 
number of degrees of freedom on level h and n3h

nb
 is the total 

number of nodal blocks on level 3h. A symbolic visualiza-
tion of resulting aggregates is given in Fig. 1.

Each aggregate h
i
 is defined by its root node with all its 

associated degrees of freedom d
h
i

j
∈ {1, ..., nh

dof
} and all 

adjacent degrees of freedom that share a non-zero off-diago-
nal entry with d

h
i

j
. Aggregates can be formed based on the 

connectivity and the strength of connections in �hh. For an 
overview of serial and parallel aggregation strategies, the 
reader is referred to [211, 212]. Populating the sparsity struc-
ture of �h

3h
 derived from aggregation with appropriate values 

is the second step, which will not be outlined here for brevity, 
though. The reader is referred to [84] for more details.

The restriction operator matrix �3h
h

 is chosen to be the 
transpose of the prolongation operator matrix:

It holds that

due to the disjoint construction of the adjacent aggregates 
(87), among others. A coarse-scale system matrix may then 
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Fig. 1   Symbolic visualization of (plain) aggregates on a structured 
grid by grey boxes
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be computed via the Galerkin product �3h3h = �
3h
h
�hh�

h
3h

 
in a variationally consistent way.

A scale-separating operator matrix yielding the larger 
resolved scales is eventually defined as

The scale-separating operator matrix is applied to the 
discrete (i.e., nodal) values of the resolved velocity field. 
Using the usual finite element expansion of the resolved 
velocity field, which can be written as

the small-scale velocity field is obtained as

Here, �h denotes the vector of resolved velocity degrees 
of freedom �A, ��h the vector of nodal values ��h

A
 of the 

small-scale velocity field, � a matrix containing the shape 
functions NA and  the set of all nodes A of the discretiza-
tion. The method with AMG-based h-type scale separation 
was named Algebraic Variational Multiscale–Multigrid 
Method (AVM3) in [83], expressing its roots from both the 
VMM and AMG methods.

5.3 � Small‑Scale Subgrid‑Viscosity Models

The majority of the aforementioned references used the 
rather simple constant-coefficient Smagorinsky model orig-
inally proposed in [196], one of the most popular functional 
models, as already mentioned in Sect.  2.3. Adopting the 
usual filter-based notation with filter width Δ to the present 
situation, where the resolved part of the velocity is defined 
by the discretization with characteristic length scale h, the 
subgrid viscosity can be expressed as

where CS denotes the constant parameter of the Smagor-
insky model. There are several well-known weak points 
related to the Smagorinsky model, as already addressed 
in Sect.  2.3, which are related to the fact that it depends 
on this a priori unknown constant parameter CS. Among 
others, the constant-coefficient Smagorinsky model is not 
a reasonable approach for the simulation of transitional 
flows, since it does not vanish in laminar regimes. Another 
problem with this model is the complete exclusion of any 
backscatter mechanism due to the strictly dissipative char-
acter of the model, which results in �sgs ≥ 0 everywhere in 
the flow domain at any point in time.

Despite all these well-known flaws of the constant-coef-
ficient Smagorinsky model, the integration of this simple 
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CSh
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model into the framework of the VMM has led to very 
good results for a number of test cases. The specific modifi-
cation of the model restricting the dependence on the small 
scales as

which was named small-small model in [110], appears 
to be the most natural version within the present multi-
scale framework. Other versions are a large-small model 
using only the large-scale part of the velocity for the cal-
culation of the rate-of-deformation tensor � in (94), which 
was mainly introduced for achieving some gain in com-
putational efficiency in [110], and the use of the complete 
velocity as an all-small model.

The aforementioned drawbacks of the Smagorinsky 
model can be traced back to the preliminary fixing of the 
constant CS. Therefore, it was proposed in  [73] to “unfix” 
the constant and allow it to change in space and time (i.e., 
CS = CS(�, t)) by way of a dynamic algorithm. The original 
idea was slightly modified in [140] and generalized to inho-
mogeneous flows in [76] by the introduction of a dynamic 
localization model. A consistent version for this dynamic 
localization model based on a variational formulation as 
given above was proposed in  [78]. In  [164], the so-called 
variational Germano identity for dynamic modeling was 
proposed in the context of turbulent incompressible flow; 
this idea was also later adopted in [60].

6 � Multifractal Subgrid‑Scale Modeling

The form of the cross- and subgrid-scale Reynolds-stress 
terms, (35) and (36), respectively, of the variational multi-
scale formulation (34) also suggests closure by a structural 
subgrid-scale model that directly provides an approxima-
tion for the subgrid-scale velocity. Therefore, the consider-
ation of the multifractal subgrid-scale modeling approach, 
originally presented in [35, 36], was proposed in [180]. The 
resulting method is reviewed in the following, starting with 
a brief introduction into multifractal structures in turbulent 
flows.

6.1 � Multifractals in Turbulent Flows

Gradient-magnitude fields in high-Reynolds-number flows, 
such as the kinetic-energy dissipation rate, the enstrophy 
and the scalar-variance diffusion rate, are subject to the 
repeated stretching and folding mechanism of the strain-
rate and vorticity field. As a result of this multiplicative 
process, these fields show multifractal structures in the 
inertial subrange, which were identified both experimen-
tally and numerically (see, e.g.,  [33, 151, 157, 174]). The 

(94)��
sgs

=
�
CSh

�2‖�(��h)‖,
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multifractal properties are reflected by the significant inter-
mittent features observed for these fields. A comprehensive 
review of multifractal structures in turbulent flows as well 
as the related mathematical formalism can be found, e.g., 
in [201].

Multifractal structures emerge from the repeated appli-
cation of a scale-invariant multiplicative process on an ini-
tial field. This process can be described by deterministic or 
stochastic multiplicative cascades. The considered field is 
mapped from one cell to smaller subcells in consecutive cas-
cade steps. The set of multipliers , with 0 <  < 1, gov-
erning the (unequal) distribution of the field of interest con-
tained in one cell among the corresponding subcells, can be 
either prescribed a priori or obtained randomly from a scale-
invariant distribution P(), depending on whether a deter-
ministic or stochastic cascade is considered. After a sufficient 
number of cascade steps, the generated field becomes highly 
intermittent and exhibits multifractal scaling properties. Fur-
thermore, all fields obtained from one multiplier distribution 
P() are statistically indistinguishable from each other.

The multiplicative cascade for an (integral) measure Θ, for 
instance, mass, is mathematically expressed as

where Θ0 denotes the total amount of the measure to be 
distributed within the considered domain and   the num-
ber of cascade steps. At each stage of the cascade, an nsd-
dimensional parent cell of size �n−1 (e.g., the edge length 
for a square or a cube) is split into nnsdsc  subcells of equal size 
�n, where nsc is also called the base of the process. After   
steps, the size � of the smallest subcells is related to the 
size �0 of the initial cell via

Expressed for a cell-averaged distributed measure � (i.e., 
�n = Θn∕(�n)

nsd), for instance, density, the multiplicative 
cascade reads

For illustration, a one-dimensional stochastic binomial 
cascade, displayed in Fig. 2, is considered. In each step of 

(95)Θ(�) = Θ0

∏
n=1

n(�),

(96)
�0

�
= n

sc
.

(97)�(�) = �0

(
n
sc

)nsd
∏
n=1

n(�).

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

step 0

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

step 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

step 2

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

step 3

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

step 4

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

step 5

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

step 6

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

step 8

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

step 10

Fig. 2   One-dimensional stochastic binomial cascade with imposed conservation of the measure: initial field as well as resulting fields after 
 = 1, 2, 3, 4, 5, 6, 8 and 10 cascade steps normalized by the respective maximum values
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the process, the measure contained in one cell is divided 
between two subcells, each half the size of the parent cell. 
The scale-invariant distribution of the multipliers is given 
by �-functions as

such that only two values are possible for . In every cas-
cade step, conservation of the measure is enforced by ran-
domly selecting the multiplier n for the first subcell and 
assigning the multiplier 1 −n to the second one. Figure 2 
depicts the initial field as well as the resulting fields after 1, 
2, 3, 4, 5, 6, 8 and 10 cascade steps. All fields are scaled by 
their maximum value. When passing through the cascade, 
the intermittency is increased, and the field becomes con-
centrated onto successively smaller parts of the domain.

6.2 � Modeling Strategy

The multifractal subgrid-scale modeling approach makes 
use of the vorticity �(�, t), which is defined as

and the enstrophy Q(�, t), given by

Using a multifractal reconstruction of the subgrid-scale 
vorticity  �̂ over inertial-subrange scales, the associated 
subgrid-scale velocity �̂ is recovered via the Biot–Savart 
operator:

The reconstruction of the subgrid-scale vorticity field, 
expressed via its magnitude ‖�̂‖(�, t) and orientation vec-
tor �̂�(�, t) of unit length as

consists of two steps. First, the magnitude ‖�̂‖ of the sub-
grid-scale vorticity field is derived by a multiplicative cas-
cade distributing the total subgrid-scale enstrophy within 
each element. In a second step, the orientation  �̂� of the 
subgrid-scale vorticity field is determined using an additive 
decorrelation cascade.

Both cascades start at a scale of the size of the element 
length h and proceed down to the viscous (or inner) length 
scale ��. The viscous length scale �� defines the scale at 
which the competing effects of local strain rates and vis-
cous diffusion are in equilibrium; see, e.g.,  [27, 157]. 
Assuming that each parent element decays into two child 
elements per spatial direction, i.e., nsc = 2, which is a rea-
sonable value for turbulent flow (see, e.g.,  [64, 202]), the 
number of steps 

�
 of both cascades is given by the ratio 

of the element length h to the viscous length scale �� via

(98)P() = 0.5(�( − 0.4) + �( − 0.6)),

(99)� = ∇ × �,

(100)Q = � ⋅ �.

(101)�̂(�, t) =
1

4𝜋 ∫ �̂(�̌, t) ×
� − �̌

‖� − �̌‖3 d�̌.

(102)�̂ = ‖�̂‖�̂�,

which follows directly from Eq.  (96). The local element 
Reynolds number Reh enables a scaling for the ratio of the 
element length to the viscous length scale as

6.3 � Vorticity‑Magnitude Cascade

The magnitude of the subgrid-scale vorticity ‖�̂‖ in each sub-
element of the size of the viscous length scale is derived from 
the distribution of the total subgrid-scale enstrophy contained 
in the considered element. Therefore, the average subgrid-
scale enstrophy Q̂ over the element is estimated using the 
inertial-subrange scaling of the enstrophy spectrum:

The required proportionality constant in relation  (105) is 
eliminated by determining Q̂ as a function of the average 
enstrophy �Qh at the smaller resolved scales, i.e., a scale 
range between  h and a larger length scale h = �h, where 
𝛼 > 1, which is assumed to be located in the inertial sub-
range. As in Sect.  5.2.2, quantities corresponding to the 
larger resolved scales are marked by  (⋅)

h
 and quantities 

associated with the smaller resolved scales by �(⋅)h. Fig-
ure 3 depicts the enstrophy spectrum, including the inertial-
subrange scaling, as well as its decomposition according 
to the introduced scale ranges. The enstrophy spectrum is 
integrated both from the wave number kh associated with 
the basic discretization to the viscous wave number k�

(103)
�
= log2

(
h

��

)
,

(104)
h

��
∼ Re

3

4

h
.

(105)ZQ(k) ∼ �
2

3 k
1

3 .

(106)Q̂ =

k𝜈

∫
kh

cQ𝜀
2

3 k
1

3 dk,

∼ k
1
3

Q̂

kνkh

δQh

logZQ(k)

log k
kh

Fig. 3   Decomposition of enstrophy spectrum
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where cQ > 0 is the associated proportionality constant, 
and from the smaller wave number k

h
 to kh

which enables a formulation for the subgrid-scale enstro-
phy depending on the enstrophy of the smaller resolved 
scales:

The enstrophy at the smaller resolved scales is obtained 
from the resolved velocity field. Therefore, the resolved 
velocity �h is further decomposed as given in  Eq. (82), 
where the larger resolved velocity scales �h are obtained by 
explicitly separating the velocity field at a scale h = �h. By 
this decomposition, the enstrophy is formally split up as

The enstrophies Q
h
, �Qh and Q̂, associated with the three 

scale ranges, are identified as

Averages over the cross terms are neglected owing to the 
decorrelation of widely separated scales in the vorticity 
field.

A three-dimensional stochastic multiplicative cas-
cade  (97) distributes the average subgrid-scale enstrophy 
as given in Eq. (108) along with Eqs. (110) and (112) over 
each element. This results in the following expression for 
the magnitude of the subgrid-scale vorticity in each subele-
ment of the size of the viscous length scale:

6.4 � Vorticity‑Orientation Cascade

The second cascade, which describes the reconstruction 
of the orientation �̂� of the subgrid-scale vorticity, is like-
wise based on physical reasoning. Various experimental 
and computational studies indicate that the velocity fields 
of adjacent scale ranges are highly correlated; see, e.g, [6, 

(107)�Qh =

kh

∫
k
h

cQ�
2

3 k
1

3 dk,

(108)Q̂ =
(
1 − 𝛼−

4

3

)−1
[(

k𝜈

kh

) 4

3

− 1

]
𝛿Qh.

(109)
Q = �

h
⋅ �

h
+ 𝛿�h

⋅ 𝛿�h + �̂ ⋅ �̂

+ 2
(
�
h
⋅ 𝛿�h + �

h
⋅ �̂ + 𝛿�h

⋅ �̂
)
.

(110)Q
h
= �

h
⋅ �

h
,

(111)�Qh = ��h
⋅ ��h,

(112)Q̂ = �̂ ⋅ �̂.

(113)

‖�̂‖(�, t) =
��

1 − 𝛼−
4

3

�−1
��

k𝜈

kh

� 4

3

− 1

�

×
�
2�

�3 �∏
n=1

n(�, t)

� 1

2

‖𝛿�h‖.

7] for early investigations of scale similarities in the con-
text of LES, [143] for a comprehensive experimental study 
and [150] for a review. Building on these findings, the ori-
entation �̂� in the subgrid-scale vorticity field is assumed 
to decorrelate at successively smaller scales from the local 
orientation ��h

�
 of the smaller resolved scales. Accordingly, 

the additive cascade is given as

where �n denotes stochastic-decorrelation increments 
between adjoining scale ranges. Consistent with the isot-
ropy observed at the smallest scales in high-Reynolds-
number flows, the cascade leads to an increasingly isotropic 
decorrelation of the subgrid-scale orientations from the ele-
ment length scale to the viscous length scale. At each stage 
n of the cascade, �n is defined by two stochastic spherical 
decorrelation angles � and �. Figure 4 shows a single step 
of the additive decorrelation cascade, leading to �̂�,n at the 
current stage n. Assuming �̂�,n−1 = (0, 0, 1)T for the orien-
tation vector of the preceding stage n − 1, the components 
of �n are given by

An isotropic probability distribution is assumed for �, as 
also implied in Fig. 4, such that � quantifies the decorre-
lation of the vorticity orientation at two adjoining scales 
in the subgrid-scale field. Evaluation of DNS data in  [35] 
revealed correlations between the probability distribution 
of � and the value of the multiplier n. While there is 
only a weak correlation between the orientation vectors at 
two successive scales for lower multiplier values, the vec-
tors �̂�,n−1 and �̂�,n are almost identical for higher ones. This 
behavior reflects the observation that the strongest vortical 
structures, which are identified by larger multiplier values, 

(114)�̂�(�, t) = 𝛿�h
�
+

�∑
n=1

�n(�, t),

(115)�n =

⎛⎜⎜⎝

sin� cos �

sin� sin �

cos� − 1

⎞⎟⎟⎠
.

δn,1

δn,3

δn,2
ψ

êω,n−1

êω,n

β

Fig. 4   Single step of additive decorrelation cascade



Recent Developments in Variational Multiscale Methods for Large‑Eddy Simulation of Turbulent…

1 3

display a preferred alignment with the local strain rate ten-
sor over a relatively large range of scales.

As a result of these considerations, an intermittency factor 
� can be defined from a correlation between �̂ and ��h as

where � is expected to depend on the number of cascade 
steps 

�
 in the decorrelation cascade. The orientation of 

the subgrid-scale vorticity after 
�
 cascade steps can then 

be reformulated using the intermittency factor �:

where �∗
n
 are modified decorrelation increments due to the 

introduction of the intermittency factor �, which will be 
further specified below.

6.5 � Subgrid‑Scale Velocity Approximation

The combination of cascades (113) and (117) yields the sub-
grid-scale vorticity �̂, which is a stochastic field due to the 
stochastic nature of both the multipliers and the modified 
decorrelation increments. Assuming that (i) the correlations 
between n and �∗

n
 are sufficiently weak, (ii) the decorrela-

tion cascade is isotropic (i.e., the expectation value of �∗
n
 van-

ishes) and (iii) the multipliers are statistically independent, 
the subgrid-scale vorticity �̂, which is taken to be approxi-
mately equal to its expectation value, may be simplified as

with the expectation value ⟨ 1

2 ⟩ for the square root of the 
multipliers. After introducing expression  (118) into the 
Biot–Savart operator (101), the subgrid-scale velocity can 
be computed as

where it is assumed that the distribution P() is independ-
ent of �. Moreover, k�∕kh is replaced by using Eq. (103). 
In the high-Reynolds-number limit, a proper behavior of 
the model has to be ensured. Therefore, the subgrid-scale 
velocity �̂ should become independent of Reh for Reh → ∞ 
and, consequently, 

�
→ ∞, implying the following scal-

ing for the intermittency factor subject to 
�
:

(116)� =
∫ �̂ ⋅ 𝛿�hd�

∫ ‖�̂‖ ‖𝛿�h‖d� ,

(117)�̂�(�, t) = �𝛿�
h
�
+
(
1 − �

) �∑
n=1

�∗
n
(�, t),

(118)
�̂(�, t) =

[(
1 − 𝛼−

4

3

)−1
((

k𝜈

kh

) 4

3

− 1

)

×
(
2�

)3]
1

2⟨ 1

2

⟩��𝛿�
h(�, t),

(119)
�̂(�, t) =

(
1 − 𝛼−

4

3

)−
1

2

2
3�

2

(
2

4�

3 − 1
) 1

2

×
⟨ 1

2

⟩��𝛿�
h(�, t),

Finally, the subgrid-scale velocity �̂ reads as

where

The parameter CB
sgs

 is the associated proportionality con-

stant. Approximation (121) depends on the smaller resolved 
velocity  ��h, covering the scales between h and a larger 
length scale h = �h. To extract the smaller resolved veloc-
ity from �h, the application of level-transfer operators from 
PA-AMG as introduced in Sect.  5.2.2 was suggested 
in [180]. Hence, � = 3 is chosen in this case.

Using approximation (121), the modeled forms of the 
cross- and subgrid-scale Reynolds-stress terms, (35) and (36), 
read

The remaining terms containing unresolved-scale quan-
tities are not incorporated by multifractal subgrid-scale 
modeling.

6.6 � Number of Cascade Steps and Model Parameters

To compute the subgrid-scale velocity from Eqs. (121) 
and (122), the necessary number of cascade steps has to be 
defined, and a proper value for the proportionality constant 
CB
sgs

 has to be chosen. According to Eq. (103), the number of 

cascade steps is given by the ratio of the element length to the 
viscous length scale, which in turn can be approximated by 
the local element Reynolds number Reh. The respective rela-
tion (104) requires a proper definition of Reh as well as the 
introduction of a proportionality constant c�, i.e.,

Possible definitions for the element Reynolds number are:

–– based on the strain rate tensor, as proposed in [35], 

–– and based on the resolved velocity, as suggested in [180], 

(120)�(�
) ∼ 2

−
(

2

3
+

3

2

)�

⟨ 1

2

⟩−�

.

(121)�̂(�, t) = B𝛿�h(�, t),

(122)B = CB
sgs

(
1 − �−

4

3

)−
1

2

2
−

2�

3

(
2

4�

3 − 1
) 1

2

.

(123)
(�h;�h, �̂) ≈(
�
h, �h ⋅ ∇

(
B𝛿�h

)
+ B𝛿�h ⋅ ∇�h

)
Ω∗ ,

(124)(�h;�̂) ≈
(
�
h,B𝛿�h ⋅ ∇

(
B𝛿�h

))
Ω∗ .

(125)
h

��
= c�Re

3

4

h
.

(126)ReS
h
=

(
�(�h):�(�h)

) 1

2 h2

�
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The element length h may be approximated by the cubic root 
of the element volume V(Ωe) as done in [180]:

For setting 1∕c�, results from experimental studies are con-
sidered. Among others, the experimental study in  [157] 
aimed at estimating 1∕c� from direct measurements of the 
enstrophy field in a turbulent flow. In that study, a mean 
value of ⟨1∕c�⟩ = 12.3 was reported. In an earlier experi-
mental work in [27], ⟨1∕c�⟩ = 11.2 was obtained indirectly 
from measurements in scalar fields. Based on these values, 
c� = 0.1 was assumed for LES in [180].

In  [35], CB
sgs

 was first introduced as a universal con-

stant, and it was suggested that CB
sgs

≈ 0.37, resulting 

from a priori investigations of DNS data for forced homo-
geneous isotropic turbulence. However, subsequent appli-
cations (see, e.g.,  [34, 36, 180]) indicated a Reynolds-
number dependence of CB

sgs
 which reflects a 

proportionality to the subgrid-scale energy transfer. The 
corresponding function should approach a finite value in 
the high-Reynolds-number limit (i.e., Re → ∞) and tend 
to zero as Re → 1.

In [180], this aspect was further addressed in the context 
of the application of the multifractal subgrid-scale mod-
eling approach to wall-bounded turbulent flow. Therefore, 
an enhancement of the multifractal subgrid-scale modeling, 
referred to as near-wall limit, was derived for wall-resolved 
LES in [180] to particularly account for the involved near-
wall effects. Important aspects of wall-bounded turbulent 
flow, affecting the multifractal subgrid-scale modeling, are 
the decrease of the local element Reynolds number as the 
wall is approached as well as the higher anisotropy of the 
vorticity field in the near-wall region. The reduction in Reh 
results in a decrease of the number of cascade steps, which 
in turn leads to a significant decrease of B towards the wall. 
As the local element Reynolds number should decrease 
towards the wall, definition (127) based on the norm of the 
resolved velocity was considered particularly appropriate 
for this flow type in [180].

As aforementioned, the vorticity field becomes highly 
anisotropic in the near-wall region. This strong anisotropy 
leads to strong correlations in the orientation of the sub-
grid-scale vorticity. These stronger correlations in turn 
cause an increase of the intermittency factor �, which is 
defined by the correlation between the subgrid-scale vorti-
city and the vorticity of the smaller resolved scales. In 
equation (120), the intermittency factor � has only been 
determined up to the proportionality constant CB

sgs
. Pre-

(127)ReR
h
=

‖�h‖h
�

.

(128)h = (V(Ωe))
1

3 .

cisely this factor allows for modifying the derivation of the 
multifractal subgrid-scale modeling approach to provide a 
near-wall limit. Higher intermittency factors � owing to 
stronger correlations are associated with an increase of CB

sgs
. 

Therefore, CB
sgs

 becomes non-uniform and also depends on 

local flow features.
Based on these considerations, CB

sgs
 is multiplied by an 

anisotropy factor fai for wall-bounded turbulent flow, yield-
ing an enhanced proportionality coefficient CB,nw

sgs
:

The aforementioned limits of CB
sgs

 depending on the Reyn-

olds number have to be maintained by the enhanced param-
eter CB,nw

sgs
. The intermittency factor  � is bounded as 

0 ≤ � ≤ 1. Furthermore, the norm of the strain rate tensor 
is taken to be an appropriate measure for anisotropy. Comb-
ing all three requirements, the following form of the anisot-
ropy factor for wall-bounded turbulent flow was suggested 
in [180]:

where the element Reynolds number according to Eq. (126) 
is used. The exponent −3∕16 was defined based on applica-
tions to wall-bounded flow problems. In doing so, the ele-
ment Reynolds number is introduced into the final propor-
tionality coefficient CB,nw

sgs
. According to  [180], this 

procedure allows for a fixed value for CB
sgs

 for a wide range 

of Reynolds numbers and resolutions. The parameter CB
sgs

 

was set to 0.25 in [180].

6.7 � Residual‑Based Subgrid‑Scale Modeling

The multifractal subgrid-scale modeling approach intro-
duced so far is based on physical reasoning. In particular, 
the multifractal subgrid-scale modeling approach aims at 
capturing the physical interaction that leads to the actual 
energy transfer between the larger and the smaller scales 
in turbulent flows, i.e., the resolved and the subgrid scales 
in the respective LES. Therefore, it is not purely dissipa-
tive and allows for physical backscatter of energy, among 
other things. An introduction of additional artificial (or 
subgrid-scale) dissipation to also stabilize numerical 
schemes is not intended by the multifractal subgrid-scale 
modeling approach. In fact, incorporating the multifrac-
tal subgrid-scale approximation into the variational mul-
tiscale formulation does not ensure the stability of the 
final numerical method in general. Therefore, potentially 

(129)CB,nw
sgs

= faiC
B
sgs
.

(130)fai =

(
1 −

(
ReS

h

)− 3

16

)
,
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destabilizing effects induced by the numerical scheme 
have to be accounted for otherwise, as elaborately dis-
cussed in [36]. For the multifractal subgrid-scale modeling 
approach in its original form, a backscatter limiter was pro-
posed in [36] and in a more advanced adaptive form in [34] 
to overcome this limitation.

In  [180], the multifractal subgrid-scale modeling 
approach was embedded into a residual-based vari-
ational multiscale formulation. A mathematically solid 
foundation, as outlined in Sect. 4, renders residual-based 
subgrid-scale approximations, which lead to stabilized 
methods, a reliable means for taking care of stability 
issues not addressed by the multifractal subgrid-scale 
modeling. Hence, the following solely numerically moti-
vated stabilization terms are included:

As shown in Eq. (66), the PSPG and grad-div term emanate 
from 1,lin

NS
(�h, qh;�̂, p̂kin), which has not been addressed by 

the multifractal subgrid-scale modeling. The SUPG term, 
formally arsing from (�h;�h, �̂), as explained in Sect. 4.4, 
provides convective stabilization and, hence, the neces-
sary dissipation on the subgrid-scale level. Since the terms 
given in Eq. (131) arise from a residual-based approxima-
tion of the subgrid scales, their inclusion may also be inter-
preted as a second subgrid-scale modeling step.

6.8 � The Algebraic Variational Multiscale–Multigrid–
Multifractal Method

Inserting expressions (123), (124) as well as (131) into 
Eq. (34), the modeled variational multiscale formulation 
is given as follows: find (�h, ph

kin
) ∈ h

�
× h

p
 such that

for all (�h, qh) ∈ h
�
× h

p
. The multifractal subgrid-scale 

modeling terms are show in the second and third line and 
the residual-based stabilization terms in the fourth and fifth 
line (first term). This formulation combines all ingredients 
presented in the preceding sections, that is,

–– the derivation within the framework of the VMM,
–– the evaluation of the subgrid-scale velocity based on 

the multifractal subgrid-scale modeling approach,
–– the identification of the required smaller resolved 

scales by level-transfer operators from PA-AMG and

(131)
RBStab(�

h, qh;�h, ph
kin
) :=

(
�h ⋅ ∇�h, �M�

h
M

)
Ω∗

+
(
∇qh, �M�

h
M

)
Ω∗ +

(
∇ ⋅ �h, �Cr

h
C

)
Ω∗ .

(132)

NS(�
h, qh;�h, ph

kin
)

+
(
�h, �h ⋅ ∇

(
B��h

)
+ B��h ⋅ ∇�h

)
Ω∗

+
(
�h,B��h ⋅ ∇

(
B��h

))
Ω∗

+
(
�h ⋅ ∇�h, �M�

h
M

)
Ω∗ +

(
∇qh, �M�

h
M

)
Ω∗

+
(
∇ ⋅ �h, �Cr

h
C

)
Ω∗ = 𝓁NS(�

h)

–– the inclusion of additional residual-based stabiliza-
tion terms to primarily shield against potentially 
destabilizing effects due to the numerical scheme.

The resulting method was thus referred to as the Alge-
braic Variational Multiscale–Multigrid–Multifractal 
Method (AVM4) in [180].

7 � Comparison of Variational Multiscale Methods 
for Incompressible Flow

To asses the performance of approaches to LES, they are 
commonly applied to classical benchmark examples of 
canonical flow type, such as homogeneous isotropic turbu-
lence and turbulent channel flow. These test cases were also 
considered for validating the various VMMs introduced 
in the preceding sections and for comparing them to each 
other. In the following, first, an overview of the respective 
studies will be given. As turbulent channel flow appears 
to be the numerical example mostly used in the literature 
for evaluating the computational methods discussed in this 
review, we will choose this flow problem exemplarily for 
showing selected computational results in the second part 
of this section.

7.1 � Overview

The RBVMM exemplified in Sect. 4.4 was investigated for 
forced homogeneous isotropic turbulence and turbulent 
channel flow in  [9]. Instead of using standard finite ele-
ment shape functions, Non-Uniform Rational B-Splines 
(NURBS) shape functions of various orders were applied 
in that study. Its extension by time-dependent subgrid-
scale approximations was investigated for LES of turbulent 
channel flow in [68]. For the considered range of time-step 
lengths, the time-dependent approach did not provide sig-
nificantly better results than the quasi-static one. Recently, 
another comparative study on RBVMMs for LES of tur-
bulent incompressible flow was provided in  [52]. In that 
study, time-dependent and quasi-static subgrid-scales with 
and without L2-projection of the residuals orthogonal to the 
finite element space were distinguished. Additionally, for-
mulations without cross- and subgrid-scale Reynolds-scale 
terms were considered for the time-dependent cases. Three 
different benchmark examples were investigated: decaying 
homogeneous isotropic turbulence, the Taylor–Green vor-
tex and turbulent channel flow. Overall, similar results were 
obtained for all methods. However, the authors observed 
that the results were sensitive to the scaling coefficients of 
the stabilization parameters. In particular, they omitted the 
grad-div term, which introduces strictly positive numeri-
cal dissipation. In contrast, the numerical dissipation of the 
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SUPG term, the second cross-stress term and the subgrid-
scale Reynolds-stress term can locally be either positive or 
negative. Their averaged dissipation rate is always positive, 
though. This behavior reflects (local) backscatter of energy, 
commonly not taken into account in ILES approaches; 
see [52].

In  [91], the VMM with explicit solution of large- and 
small-scale equation based on residual-free bubbles, pre-
sented in Sect.  5.1, was applied to turbulent recirculating 
flow in a lid-driven cavity and to a plane two-dimensional 
mixing layer. Moreover, the small-scale subgrid viscosity 
was determined dynamically by using an additional sub-
submesh. The L2-projection-based VMM with p-type scale 
separation, reviewed in Sect.  5.2.1, was tested for turbu-
lent channel flow, a plane three-dimensional mixing layer 
and turbulent flow past a square-section cylinder in [119]. 
A comparison of these two aforementioned VMMs was 
shown for turbulent channel flow in [121]. The evaluations 
of the L2-projection-based VMM revealed that the results 
are more sensitive to the choice of the large-scale space 
than to the small-scale subgrid-scale viscosity model, as 
outlined Sect.  5.3. Several deficiencies of the VMM with 
explicit solution of large- and small-scale equation were 
also detected in [121]. The parameter of the Smagorinsky 
model had to be chosen rather large for the coarse sub-
meshes used in that study. Furthermore, a blow-up of the 
VMM with explicit solution of large- and small-scale equa-
tion was observed for simulations without grad-div term. 
The introduction of the grad-div term as a subgrid-scale 
model for the pressure into the L2-projection-based VMM 
was later considered in  [186] and examined for decaying 
homogeneous isotropic turbulence. For this example, the 
grad-div term appeared to be rather unimportant. An adap-
tive large-scale space allowing for an increase or attenua-
tion of the direct influence of the small-scale subgrid vis-
cosity term depending on the local flow structures was 
suggested in  [122] and investigated for turbulent channel 
flow and turbulent flow past a square-section cylinder. For 
turbulent channel flow, somewhat improved results com-
pared to the basic method with fixed large-scale space were 
obtained.

The VMM with h-type scale separation based on a VA 
procedure, described in Sect.  5.2.2, was applied to turbu-
lent flow past a square-section cylinder in [129] as well as 
its dynamic version to turbulent flow past a prolate spheroid 
and a forward swept scaled wing in [60]. In [79], the VMM 
with h-type scale separation based on a GMG method was 
investigated for turbulent channel flow, and later in [81], for 
turbulent flow in an asymmetric diffuser. Results obtained 
with the methods proposed in [60, 79, 129] were compared 
to constant-coefficient as well as dynamic Smagorinsky 
models applied in the traditional way (i.e., acting on all 
scales), among others. Notably improved predictions could 

be achieved particularly for turbulent channel flow and tur-
bulent flow past a square-section cylinder when checking 
them against, for instance, DNS and experimental data. 
In  [83], the AVM3 was applied to turbulent channel flow 
and turbulent recirculating flow in a lid-driven cavity. In 
a subsequent study in  [85], turbulent flow past a square-
section cylinder was investigated. Since trilinearly interpo-
lated hexahedral elements were used for the velocity and 
the pressure field, a PSPG term was additionally included. 
Although the SUPG and the grad-div term were actually 
not required, the application to turbulent recirculating flow 
in a lid-driven cavity as well as to turbulent flow past a 
square-section cylinder revealed their beneficial impact on 
the convergence of the iterative solution procedure. While 
the AVM3 performed only slightly better than the consid-
ered RBVMM with quasi-static subgrid-scales for the latter 
two test cases, notably improved results were observed for 
turbulent channel flow when using the AVM3.

Applications of the AVM4 to forced homogeneous iso-
tropic turbulence may be found in  [177] and to turbulent 
channel flow at friction Reynolds numbers up to 950, tur-
bulent flow over a backward-facing step as well as past 
a square-section cylinder in  [180]. Additionally, results 
obtained with the RBVMM as suggested in  [9] were con-
sidered for a comparison. Particularly for turbulent channel 
flow, the AVM4 produced results significantly closer to ref-
erence results from DNS than the considered RBVMM.

7.2 � Application to Turbulent Channel Flow

Turbulent channel flow, as considered in most of the afore-
mentioned studies, is characterized by the friction Reyn-
olds number,

which is defined based on the channel half-width �c and the 
friction velocity,

where �W denotes the wall-shear stress and � the density. 
No-slip boundary conditions are imposed at the top and the 
bottom wall. Periodic boundary conditions are assumed in 
homogeneous streamwise and spanwise directions. A con-
stant pressure gradient in streamwise direction, imposed as 
a volume force, drives the flow.

For a juxtaposition of the three concepts reviewed 
in Sects.  4–6, one representative form for each of them 
is chosen: the RBVMM based on quasi-static subgrid-
scales as given in Eq.  (68), the AVM3 with small-scale 
subgrid-viscosity term and additional PSPG term as an 

(133)Re� =
u��c

�

(134)u� =

√
�W

�
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example for three-scale VMMs and the AVM4 represent-
ing a structural subgrid-scale modeling strategy. Addition-
ally, results obtained with a basic SUPG/ PSPG/Grad-div 
Stabilized Method (SPGSM) are included. Data for the 
AVM3 and the AVM4 shown in the following are extracted 
from [83] and [180] and additionally marked by the exten-
sions “GGKW10” and “RG13”, respectively. Moreover, 
data for the SPGSM and the RBVMM are likewise taken 
from [180] and identified accordingly.

Here, turbulent channel flow at Re� = 395 in a chan-
nel of dimensions 2��c in streamwise, 2�c in wall-normal 
and 2∕3��c in spanwise direction is considered. As usual, 
�c is set to 1.0. DNS data for turbulent channel flow at 
this friction Reynolds number are provided in  [155]. Ref-
erence data taken from that study are marked by “DNS 
MKM99” in the following. Trilinearly interpolated hexahe-
dral elements are used for the velocity and pressure field. 
In wall-normal direction, the distribution of the elements 
is refined towards the walls, such that a better resolution 
in the vicinity of the walls is obtained. For temporal dis-
cretization, the generalized-� time-integration scheme, 
originally introduced in [46] for problems of solid mechan-
ics and later extended to problems of fluid mechanics in 
[115], is applied. Here, generalized-� time integration 
is applied in the particular form presented for the incom-
pressible Navier–Stokes equations in [85]. The parameters 
of the generalized-� scheme are chosen such that second-
order accuracy in time is achieved. The time-step length, 
expressed in non-dimensional form as Δt+ = Δtu2

�
∕� (see, 

e.g., [44]), is set to Δt+ = 0.7. After the flow has reached a 
statistically stationary state, statistics are collected in homo-
geneous directions and in time during 5000 time steps. Sta-
tistical averages are denoted by ⟨⋅⟩ and fluctuations by (⋅)�
. The root mean square, labeled by rms (⋅), is defined as 
rms (⋅) := ⟨((⋅)�)2⟩ 1

2 = (⟨(⋅)2⟩ − ⟨(⋅)⟩2) 1

2. All velocity results 
are normalized by the friction velocity u�, i.e., u+

i
= ⟨ui⟩∕u� 

with i = 1, 2, 3, and plotted in wall units x+
2
= (u�x2)∕�, i.e., 

as a function of the normalized distance from the wall.
Figure 5 displays the mean streamwise velocity u+

1
 and 

the root-mean-square values of the velocity fluctuations 
in all three spatial directions, rms u+

i
, obtained with the 

SPGSM, the RBVMM, the AVM3 and the AVM4. For the 
SPGSM, the RBVMM and the AVM4, three discretiza-
tions of increasing resolution are considered. The coarser 
discretization with 323 elements exhibits a minimum non-
dimensional element length of h+

2,min
= (u�h2,min)∕� = 1.43 

in wall-normal direction, the medium one with 643 ele-
ments a minimum element length of h+

2,min
= 1.32 and the 

finer one with 1283 elements a minimum element length of 
h+
2,min

= 1.00. A coarser grid with 323 elements and a mini-
mum non-dimensional element length of h+

2,min
= 1.32 and 

a medium grid with 643 elements and h+
2,min

= 0.60 are used 

for the AVM3. While the coarser grid used for the AVM3 
is comparable to the respective one used for the other three 
methods considered here, the medium one exhibits a con-
siderably different near-wall resolution. For all methods, 
convergence to DNS is observed for all quantities. Differ-
ences between the SPGSM and the RBVMM are only mar-
ginal for all results, indicating that the inclusion of the sec-
ond cross- and the subgrid-scale Reynolds-stress term into 
the residual-based variational multiscale formulation does 
not necessarily improve the results. Using the coarser dis-
cretization, the profiles for u+

1
 obtained from the AVM3 and 

the AVM4 are substantially closer to the DNS profile than 
the profiles from the SPGSM and the RBVMM. However, a 
generally large deviation is observed for all methods, which 
has to be attributed to the applied second-order accurate 
method in combination with the coarse discretization used 
here. When using the medium discretization, the profile 
by the AVM3 is considerably more accurate. The profile 
obtained with the AVM4 is already for the medium discre-
tization quite close to the DNS profile, and the improve-
ment due to the finer discretization is only of small amount. 
In contrast, the SPGSM and the RBVMM provide profiles 
which substantially deviate from the DNS data using the 
medium discretization. Even with the finer discretization, 
there are still some deviations from the DNS results for the 
SPGSM and the RBVMM, while the AVM4 results match 
them almost exactly. An overall similar picture is obtained 
for rms u+

1
. For the root-mean-square velocities in wall-nor-

mal and spanwise direction, all methods somewhat devi-
ate from the DNS data for the coarser discretization. Both 
the AVM3 and the AVM4 as well as the SPGSM and the 
RBVMM, respectively, yield good approximations for the 
medium discretization. The AVM4, the SPGSM and the 
RBVMM capture rms u+

2
 and rms u+

3
 very accurately for the 

finer one.
Further insights into the behavior of the various VMMs 

is gained from an analysis of the subgrid-scale dissipation. 
For the basic approach, i.e., the SPGSM, the subgrid-scale 
dissipation consists of the contributions by the SUPG, 
PSPG and grad-div term and is denoted by �SPGSM. The 
individual contributions due to the SUPG and the grad-div 
term read:

An analogous measure for the dissipation introduced by the 
PSPG term is defined as

and provides, in general, a contribution of negligi-
ble amount. For the subgrid-scale dissipation  �AVM4 
of the AVM4, the dissipation owing to the cross- and 

(135)𝜀SUPG =
(
𝜏M�

h
M
⊗ �

h
)
:∇�h,

(136)�GD = �Cr
h
C
�:∇�h = �Cr

h
C
(∇ ⋅ �

h).

(137)�PSPG = ∇ph
kin

⋅ �M�
h
M
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subgrid-scale Reynolds-stress terms, �MFS-C and �MFS-R

, respectively, modeled by the multifractal subgrid-scale 
modeling approach have to be included in addition to the 
aforementioned terms. They are defined as

The contributions by the second cross- and the subgrid-
scale Reynolds-stress term of the RBVMM are given by

resulting, together with the respective contributions by the 
SUPG, PSPG and grad-div term, in the subgrid-scale dis-
sipation �RBVMM of the RBVMM. The contribution of the 
small-scale subgrid-viscosity term of the AVM3 is obtained 
as

The subgrid-scale dissipation of the AVM3, including 
potential contributions from an SUPG, PSPG and grad-div 
term, is then denoted by �AVM3. In non-dimensionalized 
form, the mean subgrid-scale dissipation is defined as 
�+ = ⟨�⟩�∕u4

�
.

To evaluate the dissipative properties of the various 
methods, the subgrid-scale dissipation estimated from 
filtered DNS data is considered as a reference. In  [100], 
DNS of turbulent channel flow at Re� = 211 was exam-
ined, and the energy transfer between resolved and unre-
solved scales that has to be captured in LES was esti-
mated. To identify the subgrid-scale quantities, filtering 
corresponding to a resolution of h+

1
= 75 and h+

3
= 39 

was applied in homogeneous directions. In the following, 
data taken from  [100] are marked by “DNS HKUF94”. 
For LES, the channel dimensions are 2��c in streamwise, 
2�c in wall-normal and 4∕3��c in spanwise direction. 
The domain is discretized by 323 elements such that the 
minimal non-dimensional element length in wall-nor-
mal direction amounts to h+

2,min
= 1.63 and the element 

lengths in the homogeneous directions to h+
1
= 41.43 and 

h+
3
= 27.62. Figure 6 displays the distribution of the sub-

grid-scale dissipation in wall-normal direction introduced 
by the SPGSM, the RBVMM and the AVM4 as well as 
the data determined from filtered DNS. Respective data 
for the AVM3 are not available. Excellent agreement is 
observed between the AVM4 and filtered DNS. Both fil-
tered DNS data as well as the results from the AVM4 
demonstrate a predominant subgrid-scale dissipation in 
the vicinity of the channel walls. In the core region, the 
subgrid-scale dissipation almost vanishes. The increased 
subgrid-scale dissipation particularly occurs within the 

(138)𝜀MFS-C = −
(
B𝛿�h ⊗ �

h + �
h ⊗ B𝛿�h

)
:�(�h),

(139)𝜀MFS-R = −
(
B𝛿�h ⊗ B𝛿�h

)
:�(�h).

(140)𝜀RBVMM-C =
(
�
h ⊗ 𝜏M�

h
M

)
:∇�h,

(141)𝜀RBVMM-R = −
(
𝜏M�

h
M
⊗ 𝜏M�

h
M

)
:∇�h,

(142)�SV = 2��
sgs
�(��h):�(��h).

buffer layer of the channel flow. The peak value is located 
at approximately x+

2
= 12. Taking into account that the 

buffer layer constitutes the region of vigorous turbu-
lence dynamics with the turbulent energy production rate 
reaching its maximum value at approximately x+

2
= 12 

(see, e.g.,  [207]), a very intense dissipation has to be 
expected in that region. A detailed investigation of the 
individual contributions to �AVM4 reveals that the contri-
bution �MFS-C of the cross-stress terms is responsible for 
the pronounced peak in the vicinity of the wall and, thus, 
the excellent agreement between the subgrid-scale dissi-
pation �AVM4 and the filtered DNS data in the buffer layer. 
In contrast, the contribution �MFS-R of the subgrid-scale 
Reynolds-stress term is only of very small amount. The 
distribution of the subgrid-scale dissipation of the AVM3, 
merely analyzed in the context of turbulent variable-den-
sity flow at low Mach number in [87] and, therefore, not 
explicitly included here, exhibits a similar pronounced 
peak in the buffer-layer and approaches zero in the core 
of the channel. The SPGSM and the RBVMM provide 
considerably different curves in the buffer layer as well as 
towards the core of the channel. Although the respective 
distributions exhibit their maximum values close to the 
buffer layer, these maximum values are clearly smaller 
and less pronounced than the peak value of the AVM4 and 
filtered DNS. Additionally, a higher subgrid-scale dissi-
pation in the core of the channel is observed.

8 � Wall‑Layer Modeling

For wall-bounded turbulent flow at already moderately 
high Reynolds number, the resolution of the flow regions 
in the vicinity of the wall causes a prohibitive raise in 
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computational effort required for LES of such a flow over-
all. This was already outlined in [42], which estimates were 
recently revisited in [45]. Thus, it is often aimed at mod-
eling those layers close to the walls in lieu of adequately 
resolving them. In fact, already for early applications of 
LES such as the one in [55], it was either inevitable, par-
ticularly in the early years, or desired to separately treat 
the near-wall regions, that is, the wall layers, which usu-
ally require the majority of the degrees of freedom for an 
adequate resolution. In the last two decades, the interest in 
approaches to wall-layer modeling has notably increased. In 
the following, first, a brief overview on such approaches in 
the context of traditional LES will be provided. Afterwards, 
two ideas on wall-layer modeling which were recently pro-
posed in combination with VMMs will be outlined. On the 
one hand, the weak enforcement of Dirichlet boundary con-
ditions as well as a mixed/hybrid Dirichlet formulation will 
be addressed. On the other hand, a recent approach aim-
ing at wall-layer modeling via function enrichment will be 
presented.

8.1 � Wall‑Layer Modeling for Traditional Large‑Eddy 
Simulation

General overviews on wall-layer modeling for traditional 
LES were provided in [168], updating an earlier article 
of the same name by the author, among others, in [169], 
and recently in [133]. A review article focusing on hybrid 
LES/RANS methods can be found in [67]. One particu-
larly well-known representative of such hybrid LES/RANS 
methods referred to as Detached-Eddy Simulation (DES) is 
reviewed in [197].

According to [168], the concepts for wall-layer modeling 
may be classified as follows:

–– equilibrium-stress models,
–– zonal approaches and
–– hybrid LES/RANS methods.

This classification appears to be debatable, at least, since 
methods assigned to the second class, zonal approaches, in 
[168] are included in the class of hybrid LES/RANS meth-
ods in [67], for instance. However, in the following, it will 
be stuck to the classification above, and this ambiguity will 
be addressed in the context of a brief presentation of some 
representative concepts for each of the classes.

Equilibrium-stress models were the first wall-layer mod-
els and still remain the simplest ones. The basic idea relies 
on the assumption of the validity of the law of the wall, 
particularly including a logarithmic layer towards the outer 
end of the wall layer. This assumption was exploited, e.g., 
in the early works on LES in [55, 195] in various forms. 
Such simple models were more recently investigated in 

comparison to more complex zonal approaches in [217], for 
example.

The probably best-known form of a zonal approach 
is the Two-Layer Model (TLM) proposed in [5]. Another 
version of a TLM was later provided in [37], named Thin 
Boundary Layer Equations (TBLE). In a TLM approach as 
proposed in [5, 37], additional grids, which are embedded 
in the basic grid, are located in the respective wall-layer 
regions. In those studies, the grids were arranged between 
the first (finite) volume center away from the wall in wall-
normal direction and the wall. On the embedded grids, sim-
plified forms of the Navier–Stokes equations are solved, the 
TBLE,

for the velocity components in both directions xti, with 
i = 1, 2, tangential to the wall, that is, orthogonal to the 
wall-normal direction xn; see, e.g.,  [37]. The wall-normal 
velocity is then obtained via mass conservation:

Boundary conditions for this equation system are given by 
the no-slip condition imposed by the wall on one side and 
a matching condition for the velocity with respect to the 
values at the respective volume centers (or nodes) of the 
basic grid on the other side. Furthermore, the pressure in 
Eq. (143) is usually assumed to be independent of the wall-
normal direction xn and thus equal to the matching pressure 
Pm. Two simpler variants are obtained by either assuming 
the complete left-hand side of Eq. (143) to be zero or con-
stituted by the pressure-gradient term only; see, e.g., [217]. 
In Eq. (143), a subgrid viscosity �sgs is included, which was 
determined by a simple mixing-length model in [5, 37, 
217]. The TLM enables computational savings compared 
to a complete LES including the wall layer owing to the 
following reasons:

–– Due to the fact that the pressure is assumed constant in 
wall-normal direction, merely (non-linear) scalar trans-
port equations have to be solved on the embedded grids 
for two velocity components ut1 and ut2 in wall-parallel 
directions instead of a coupled velocity-pressure equa-
tion system. The third velocity component un is obtained 
via Eq. (144).

–– The embedded grids need only be refined in wall-nor-
mal direction, and not in the wall-parallel directions.

As aforementioned, it is interesting to note that such zonal 
approaches are categorized in [67] as hybrid LES/RANS 
methods in the form of “unified LES/RANS methods with 

(143)
�uti
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hard interface layering RANS and LES”. Among other 
things, this differing classification shows that the border-
lines between the respective methods are rather soft, among 
other things. For an overview on the multitude of hybrid 
LES/RANS methods, the reader is referred to [67]. The 
probably most famous representative, DES, was originally 
proposed in [199]. Various improved versions, such as 
Delayed Detached-Eddy Simulation (DDES), introduced in 
[198], were subsequently published.

8.2 � Weak Enforcement of Dirichlet Boundary 
Conditions and Mixed/Hybrid Dirichlet 
Formulation

A weak enforcement of no-slip boundary conditions was 
originally proposed for the Stokes equations in [134], which 
was based either on a Lagrange-multiplier approach or a 
penalty method. The issue of weakly enforcing Dirichlet 
boundary conditions for flow problems was revisited in [10], 
using Nitsche’s method [160]. The reader is referred also 
to  [203] for a comparative review of Nitsche’s method and 
a Lagrange-multiplier approach for imposing boundary con-
ditions in general. In a subsequent publication, the authors 
of  [10], among others, proposed an alternative version to 
their original one, which determines the model parameter of 
Nitsche’s method based on the law of the wall due to [200], 
e.g., in [11].

In [69], a new method for weakly imposing Dirichlet 
boundary conditions based on an embedded Dirichlet for-
mulation and utilizing an additional discontinuous stress 
field was proposed. It is based on the embedded Dirichlet 
method introduced in [74], including a wall-stress model to 
impose a tangential traction boundary condition. Moreover, 
it guarantees the correct impermeability of the wall by a con-
sistent modification of the approach developed in [10, 11]. 
The impermeability of the wall is ensured despite the weak 
enforcement of the Dirichlet boundary condition in both tan-
gential and normal directions. This allows for a straightfor-
ward handling of complex, curved geometries, since local 
coordinate systems are not required to enforce a strong Dir-
ichlet boundary condition in the wall-normal direction.

The incompressible Navier–Stokes equations  (1) and (2) 
may be extended to a mixed/hybrid formulation by adding the 
following equation:

where the stress tensor � is introduced as an additional 
independent variable. Moreover, the Dirichlet boundary 
condition (4) is reformulated in residual form as

(145)
1

2�

(
� + pkin�

)
− �(�) = � in Ω,

(146)� − �D = � on ΓD,�.

Equations (145) and (146) are introduced into an enhanced 
finite element formulation of the mixed/hybrid approach: 
find (�h, ph

kin
) ∈ h

�
× h

p
 and �h ∈ h

�
 such that

for all (�h, qh) ∈ h
�
× h

p
 and �h ∈ h

�
, where appropriate 

discrete solution and weighting function spaces h
�
 and h

�
 

for �h and the stress weighting function �h are assumed. 
The form on the left-hand side of Eq. (147) is defined by

with the outward normal vector � on the boundary.
The additional stress-based terms in the last three 

lines of Eq. (148) are only introduced for elements next 
to a boundary or the boundaries themselves, respectively. 
According to the embedded Dirichlet method in [74], these 
discontinuous discrete stresses are locally eliminated within 
each element. The introduction of two parameters, �B,n and 
�B,t, allows for separately treating the wall-normal and the 
tangential direction. For �B,n = �B,t = 1.0, the original for-
mulation in [74] is recovered.

Such a separate treatment of wall-normal and tangential 
direction is particularly beneficial for wall-bounded turbu-
lent flow. On the one hand, in tangential direction, a weak 
enforcement of the velocities subject to the law of the wall 
is enabled. For this purpose, as in [11], the law of the wall 
according to [200] and given by

is used, where �lw denotes the von Kármán constant and 
Blw the log-law constant. Moreover, the distance to the wall 
as well as the velocity are expressed in wall units; see also 
Sect. 7.2 for definitions.

On the other hand, a strict enforcement of the non-
penetration condition in normal direction is ensured. The 
improved control of the boundary value in wall-normal 
direction avoids undesired transport of momentum across 
the (weakly enforced) boundary. It is also consistent 
with properties of turbulent channel flows as shown, e.g., 
in [173]. In fact, it is known that, in the vicinity of the wall 
(i.e., within the viscous sublayer), the root-mean-square 
values of the velocity fluctuations in tangential direction 
scale as O(x+

2
), while the wall-normal fluctuations scale as 

O((x+
2
)2), and are much smaller close to the wall, as a result.

The mixed/hybrid Dirichlet formulation together with 
an RBVMM was investigated for turbulent channel flow at 

(147)NS- MH(�
h, qh, �h;�h, ph

kin
,�h) = �NS(�

h),

(148)

NS-MH(�
h, qh, �h;�h, ph

kin
,�h) :=

NS(�
h, qh;�h, ph

kin
)

+
(
�h,

1

2𝜈
�h

)
Ω
+
(
�h,

ph
kin

2𝜈
�

)
Ω

−
(
�h, �(�h)

)
Ω
−
(
�h, 𝜏B,t

(
�D − �h

)
⊗ �

)
ΓD,�

−
(
�h,

(
𝜏B,n − 𝜏B,t

)[(
�D − �h

)
⋅ �

]
�⊗ �

)
ΓD,�

,

(149)
x+
2
= u+ + e−�lwBlw

(
e�lwu

+

− 1 − �lwu
+

−
(�lwu+)

2

2!
−

(�lwu+)
3

3!
−

(�lwu+)
4

4!

)
,
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moderate friction Reynolds number of Re� = 395 in  [69]. 
Grids with and without adequate resolution of the bound-
ary layer were considered. Compared to strongly-imposed 
boundary conditions, the mixed/hybrid Dirichlet for-
mulation showed an error reduction of up to 50% for 
mean velocity results in the core of the channel on coarse 
discretizations.

8.3 � Wall‑Layer Modeling via Function Enrichment

This modeling approach based on function enrichment 
was recently proposed in  [130]. The idea underlying this 
approach follows the paradigm of DES that not all turbu-
lent scales need to be resolved at the wall. Rather, their 
ensemble-averaged solution is merely computed. There-
fore, specific solution functions are incorporated that are 
able to recover the mean velocity profile. As a result, if the 
solution function space is capable of resolving the mean 
gradient, the resolution in wall-normal direction may be 
very coarse. A (local) enhancement of the function space 
by problem-specific shape functions is enabled, e.g., by 
the eXtended Finite Element Method (XFEM). The XFEM 
was originally proposed to recover discontinuities in the 
element interior for crack-propagation problems in solid 
mechanics in [13, 152] and later broadened to various other 
applications, as reviewed, e.g., in [65].

Following the concept of the XFEM, the discrete veloc-
ity �h is given by

Therein, the standard finite element expansion reads

where NA denote the standard polynomial shape functions 
and �std

A
 the standard velocity degrees of freedom at node A. 

The enrichment part, using additional degrees of freedom 
�
enr
A

, is given by

Moreover,  denotes the set of all nodes and enr a subset of 
enriched nodes in the near-wall region.

An appropriate choice for the enrichment func-
tion Ψ(�, t) is the crucial feature of the overall approach. 
This function enables the inclusion of information a priori 
known about boundary layers into the function space with-
out prescribing the solution itself. In [130], the enrichment 
function was determined based on the law of the wall (149) 
by setting u+ = Ψ∕�lw:

(150)�
h(�, t) = �

h,std(�, t) + �
h,enr(�, t).

(151)�
h,std(�, t) =

∑
A∈

NA(�)�
std
A
(t),

(152)
�h,enr(�, t) =∑
A∈enr

NA(�)
�
Ψ(�, t) − Ψ(�A, t)

�
�
enr
A
(t).

It is emphasized that the law of the wall is not prescribed 
a priori as the targeted velocity profile; the numerical 
method is rather enabled to utilize a law of the wall besides 
the standard polynomial shape functions. The method is 
then required to find the best possible solution in a vari-
ationally consistent manner from the complete function 
space consisting of standard polynomial shape functions 
and the functions according to the law of the wall. Figure 7 
depicts the decomposition of the mean velocity in the inner 
layer into a standard polynomial component (i.e., a linear 
one for the present illustration) as well as an enrichment 
component.

Together with the unresolved scales in LES, the over-
all approach may also be interpreted as a particular form 
of a three-scale decomposition of the velocity field. The 
scales �h,std associated with the standard function space 
resolve larger turbulent scales, which are at least of the 
size of the characteristic element length, in the sense of 
an LES. The scales �h,enr associated with the enhancement 
of the function space are supposed to cover flow scales in 
a statistical sense without resolving the turbulent scales 
in the near-wall region explicitly. For the modeling of the 
unresolved scales in LES, the mutifractal subgrid-scale 
model as described in Sect. 6 was used in [130].

Wall-layer modeling via function enrichment was 
tested for turbulent channel flow at moderate and moder-
ately high friction Reynolds numbers between Re� = 590 
and 5 000, flow past periodic hills and a backward-facing 
step in [130]. Excellent agreement with experimental and 

(153)
x+
2
=

Ψ

�lw
+ e−�lwBlw

(
eΨ − 1 − Ψ

−
Ψ2

2!
−

Ψ3

3!
−

Ψ4

4!

)
.
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Fig. 7   Decomposition of mean velocity in inner layer into standard 
and enrichment components where symbols indicate locations of 
nodes
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DNS data was stated for turbulent-channel-flow simu-
lations with the first node located at up to a distance of 
x+
2
= 500 away from the wall and, in particular, for flows 

exhibiting adverse pressure gradients and separation.

9 � Passive and Active Scalar Transport

Extensions of LES methods to turbulent mixing of sca-
lar fields are also of particular relevance. Passive scalar 
fields, occurring, for instance, in electrochemical pro-
cesses, have no influence on the flow field. In contrast, 
active scalar fields such as the temperature in weakly 
compressible flows, for example, encountered in turbu-
lent combustion, may give rise to substantial density vari-
ations. For these applications, new length scales in the 
scalar field as well as additional physics have to be incor-
porated into the approach to LES. An introduction into 
LES of scalar transport in turbulent flow, including a sur-
vey of selected subgrid-scale models further developed 
for that purpose, may be found, e.g., in [188]. In the fol-
lowing, extensions of the VMMs introduced in Sect. 4–6 
to passive and active scalar transport will be presented, 
including a brief introduction into the dynamics of a sca-
lar field evolving in a turbulent flow.

9.1 � Problem Statement: The Convection–Diffusion 
Equation

Scalar transport in the domain Ω is described by the con-
vection–diffusion equation, given in convective form here, 
as:

where �(�, t) denotes a scalar quantity, for instance, a con-
centration, and D, which is assumed constant, the kine-
matic diffusivity. The velocity field �(�, t) is obtained from 
the incompressible Navier–Stokes equations. For the sake 
of completeness, a potential source term f� is additionally 
included. Dirichlet boundary conditions are provided on 
the part ΓD,� of the boundary �Ω, while Neumann boundary 
conditions are imposed on ΓN,�, assuming ΓD,� ∩ ΓN,� = � 
and ΓD,� ∪ ΓN,� = �Ω:

(154)
��

�t
+ � ⋅ ∇� − DΔ� = f� in Ω,

(155)� = �D on ΓD,�,

(156)− �(� ⋅ �) + D∇� ⋅ � = h� on Γin
N,�

,

(157)D∇� ⋅ � = h� on Γout
N,�

.

Analogously to the Neumann boundary condition for the 
momentum equation (see Sect.  2.1), the diffusive flux is 
prescribed on the outflow part Γout

N,�
(t) = {� ∈

ΓN,�|�(�, t) ⋅ �(�) ⩾ 0} and the total flux on a potential 
inflow part Γin

N,𝜙
(t) = {� ∈ ΓN,𝜙|�(�, t) ⋅ �(�) < 0}, with 

Γout
N,�

∩ Γin
N,�

= � and Γout
N,�

∪ Γin
N,�

= ΓN,�. The initial condi-

tion is given by

9.2 � Scalar Subgrid Scales in Large‑Eddy Simulation

The passive scalar field undergoes different transport 
regimes depending on Reynolds and Schmidt number (see, 
e.g., [207]). The ratio of kinematic viscosity � and diffu-
sivity D defines the Schmidt number as Sc = �∕D. The 
aforementioned transport regimes are caused by the occur-
rence of different length scales in the flow and scalar field 
and need to be considered in the subgrid-scale modeling 
procedure.

For small Schmidt numbers (i.e., Sc ≤ 1), the scalar-
variance spectrum possesses an inertial-convective range 
similar to the inertial range of the kinetic-energy spectrum. 
In this range, the scalar-variance spectrum scales depend-
ing on the wave number k as E� ∼ k

−
5

3. Analogously to 
the Kolmogorov scale �K = (�3∕�)

1

4 for the velocity field, 
the Obukhov–Corrsin scale �OC = (D3∕�)

1

4 defines the dif-
fusive scale associated with the smallest turbulent struc-
tures in the scalar field. The ratio of these scales depends 
on the Schmidt number as �OC∕�K = Sc−

3

4. Flows at large 
Schmidt numbers (i.e., Sc ≫ 1) exhibit a more complex 
situation, as two distinct inertial ranges exist. For scales 
within the inertial range of the underlying fluid field, that 
is, scales much larger than the Kolmogorov scale, an iner-
tial-convective range similar to Sc ≤ 1 emanates. At smaller 
scales, velocity fluctuations are already affected by dissipa-
tion, while scalar diffusion is not yet effective. Therefore, 
a second inertial range, referred to as viscous-convective 
range, emerges in the scalar field. Within this range, the 
scalar-variance spectrum scales as E� ∼ k−1. Furthermore, 
the diffusive scale is defined by the Batchelor scale as 
�B = (�D2∕�)

1

4. The ratio of the Batchelor scale to the Kol-
mogorov scale is obtained as �B∕�K = Sc−

1

2.
Figure  8 illustrates the various modeling situations 

encountered in LES of passive scalar transport by means of 
the scalar-variance spectrum E�(k) and the kinetic-energy 
spectrum  E(k). The particular case Sc ≈ 1 is shown sepa-
rately. The diffusive wave number is denoted by kD and the 
viscous one by k�. The wave number corresponding to the 
discretization is kh. While in LES of passive scalar trans-
port at low Schmidt numbers both velocity and scalar field 

(158)� = �0 in Ω.
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are usually underresolved, two different situations need to 
be distinguished in the high-Schmidt-number case. If kh 
is located within the inertial-convective range (marked by 
the additional index “ic” in the right diagram of Fig. 8), the 
same modeling situation as for Sc ≤ 1 is encountered. The 
situation is different if kh lies within the viscous-convective 
range (marked by the additional index “vc”). In this case, 
subgrid-scale modeling is merely required in the scalar 
field as the velocity scales are resolved. Hence, different 
approaches are needed depending on the Schmidt-number 
regime, the resolution of velocity and scalar field as well 
as the physical mechanisms driving the subgrid-scale scalar 
field.

9.3 � Variational Multiscale Formulation 
of the Convection–Diffusion Equation

For the variational formulation of the convection–dif-
fusion equation  (154), an appropriate solution function 
space � for � as well as a weighting function space � 
for the scalar weighting function w are assumed. The con-
vection–diffusion equation is then multiplied by w ∈ � 
and integrated over the domain Ω. The diffusive term is 
further integrated by parts, with boundary conditions 
(155) as well as (156) and (157) applied to the result-
ing boundary integral. The variational formulation of the 
convection–diffusion equation is thus given as follows: 
find � ∈ � such that

for all w ∈ �. The form on the left-hand side is given as
(159)CD(w;�) = �CD(w)

where the last term arises due to the inflow part of the Neu-
mann boundary condition. Again, this term is not subject 
to the following scale separation and omitted in the subse-
quent derivations. The linear form on the right-hand side, 
including the Neumann boundary condition, is given as

For a basic variational multiscale formulation of the con-
vection-diffusion equation following a two-scale decompo-
sition, analogous to Sect. 3.3, the scalar quantity is decom-
posed into a resolved and subgrid-scale component as

implying a direct sum decomposition of the underlying 
function space in the form 𝜙 = h

𝜙
⊕ ̂𝜙. Based on the 

variational multiscale concept, a variational projection 
for separating resolved and unresolved scales is assumed. 
Therefore, a direct sum decomposition of weighting func-
tion space 𝜙 = h

𝜙
⊕ ̂𝜙 is introduced as well. Accord-

ingly, the weighting function is decomposed as

Inserting decomposition  (162) into the variational 
form  (159), weighting separately by the resolved and the 
subgrid-scale part of the decomposed weighting func-
tion  (163) and omitting the equation projected onto the 
space of unresolved scales, the variational multiscale 

(160)

CD(w;�) :=(
w,

��

�t

)
Ω
+ (w,� ⋅ ∇�)Ω + (∇w,D∇�)Ω

− (w,�(� ⋅ �))Γin

N,�
,

(161)�CD(w) :=
(
w, f�

)
Ω
+
(
w, h�

)
ΓN,�

.

(162)𝜙 = 𝜙h + 𝜙̂,

(163)w = wh + ŵ.

log k
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∼ k−
5
3
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5
3

logE(k) ; logEφ(k)
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kD kν ≈ kDkh
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Fig. 8   Modeling situations in LES of passive scalar transport
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formulation of the convection-diffusion equation is 
obtained as follows:

for all wh ∈ h
�
, where

and

are the projections of the convective subgrid-scale flux vec-
tors onto the space of resolved scales. Since these terms are 
analogous to the cross- and subgrid-scale Reynolds-stress 
terms of the momentum equation (see Sect. 3.3), they are 
likewise referred to as cross-stress terms and subgrid-scale 
Reynolds-stress term, respectively. The form

contains the remaining linear terms in the unresolved-scale 
quantity. To solve the variational multiscale formulation 
for �h ∈ h

�
, the cross- and subgrid-scale Reynolds-stress 

terms as well as 1,lin

CD
(wh;𝜙̂) have to be modeled. For pas-

sive scalar transport, which constitutes a one-way-coupled 
problem, subgrid-scale modeling in the momentum equa-
tion remains unaffected.

A three-scale decomposition, analogous to Sect.  3.4, 
assumes the scalar quantity to be decomposed into a large 
resolved-, small resolved- and subgrid-scale component as

implying a direct sum decomposition of the underlying 
function space in the form 𝜙 = h

𝜙
⊕  �h

𝜙
⊕ ̂𝜙. This goes 

along with a direct sum decomposition of the weighting 
function space as 𝜙 = h

𝜙
⊕  �h

𝜙
⊕ ̂𝜙, resulting in the fol-

lowing split-up of the weighting function:

The three-scale decomposition allows for replacing Eq. 
(164) by two equations, an equation projected onto the 
space of larger resolved scales,

(164)
CD(w

h;𝜙h) + CD(w
h;�h, �̂,𝜙h, 𝜙̂)

+CD(w
h;�̂, 𝜙̂) + 1,lin

CD
(wh;𝜙̂) = �CD(w

h)

(165)CD(w
h;�h, �̂,𝜙h, 𝜙̂) :=

(
wh, �h ⋅ ∇𝜙̂ + �̂ ⋅ ∇𝜙h

)
Ω

(166)CD(w
h;�̂, 𝜙̂) :=

(
wh, �̂ ⋅ ∇𝜙̂

)
Ω

(167)1,lin

CD
(wh;𝜙̂) :=

(
wh,

𝜕𝜙̂

𝜕t

)

Ω

+
(
∇wh,D∇𝜙̂

)
Ω

(168)
𝜙 = 𝜙

h
+ 𝜙�h

�����
𝜙h

+𝜙̂,

(169)
w = w

h
+ w�h

�����
wh

+ŵ.

(170)
CD(w

h
;𝜙h) + CD(w

h
;�h, �̂,𝜙h, 𝜙̂)

+CD(w
h
;�̂, 𝜙̂) + 1,lin

CD
(w

h
;𝜙̂) = �CD(w

h
)

for all wh
∈ h

�
, which is solved for �

h
∈ h

�
, and an equa-

tion projected onto the space of smaller resolved scales,

for all w�h ∈  �h
�

, which governs ��h ∈  �h
�

. In (170) 
and (171), the resolved part of the scalar quantity and the 
velocity may be further separated into a large- and a small-
scale part, as given in (168) and (38).

9.4 � Active Scalar Transport: Variable‑Density Flow 
at Low Mach Number

VMMs for LES of turbulent flow including scalar transport 
in general are barely addressed in literature so far. Regard-
ing active scalar transport in particular, mainly turbulent 
variable-density flow at low Mach number is considered. 
Therefore, with respect to the subsequent discussion of 
VMMs for LES of passive and active scalar transport, a 
brief summary of the corresponding governing equation 
system is presented here. Comprehensive derivations of the 
system of equations may be found, e.g., in  [61, 156, 183] 
and with emphasis on combustion, e.g., in [145].

Variable-density flow at low Mach number in the 
domain Ω is described by the following form of the conser-
vation equations of mass, momentum and energy, the latter 
expressed in terms of temperature:

Momentum and energy equation are again given in convec-
tive form. Furthermore, �(�, t) denotes the density, �(�, t) 
the velocity, phyd(�, t) the hydrodynamic pressure, �(�, t) 
the dynamic viscosity, � a potential volume force vector, 
T(�, t) the temperature, �(�, t) the thermal conductivity and 
cp the specific heat capacity at constant pressure, which is 
assumed constant. The thermodynamic pressure pthe(t), 
which is constant in space, is either assumed constant 
in time as well or determined from global conservation 
principles over the domain Ω depending on the boundary 
conditions.

Continuity and momentum equation are coupled to the 
energy equation via the equation of state for an ideal gas,

(171)
CD(w

�h;𝜙h) + CD(w
�h;�h, �̂,𝜙h, 𝜙̂)

+CD(w
�h;�̂, 𝜙̂) + 1,lin

CD
(w�h;𝜙̂) = �CD(w

�h)

(172)
��

�t
+ ∇ ⋅ (��) = 0 in Ω,

(173)
�
��

�t
+ �� ⋅ ∇� + ∇phyd

− ∇ ⋅

(
2�

(
�(�) −

1

3
(∇ ⋅ �)�

))
= �� in Ω,

(174)�
�T

�t
+ �� ⋅ ∇T − ∇ ⋅

(
�

cp
∇T

)
=

1

cp

dpthe

dt
in Ω.
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determining the density �. The gas constant is denoted by 
R. Moreover, the dynamic viscosity �(T) is assumed to 
depend on T according, for instance, to Sutherland’s law. 
The thermal conductivity �(T), likewise depending on T, 
can be expressed as � = (cp�)∕Pr, where Pr denotes the 
Prandtl number. The Prandtl number, which is assumed 
constant, estimates the ratio of kinematic viscosity � = �∕� 
and (kinematic) thermal diffusivity  DT = �∕(�cp) and is 
the analogue to the Schmidt number in the context of heat 
transfer.

The derivation of the variational multiscale formulation 
of the low-Mach-number equation system,  (172) to (174), 
parallels the ones for the incompressible Navier–Stokes 
equations and the convection–diffusion equation, thor-
oughly presented in Sects.  3.2 and  9.3. Therefore, it is 
refrained from explicitly presenting the variational mul-
tiscale formulation. A a step-by-step derivation may be 
found, e.g., in [178].

9.5 � Residual‑Based Variational Multiscale Methods

Stabilized methods for convection-dominated flow prob-
lems, as discussed in Sect. 4.1, are commonly derived start-
ing from the convection–diffusion equation; see, e.g.,  [26, 
29, 161]. Thus, the SUPG method, already mentioned in 
that section, also plays an essential role in FEMs for sca-
lar-transport problems. The considerations and approaches 
towards RBVMMs for LES, that is, the incorporation of 
all cross- and subgrid-scale Reynolds-stress terms via 
residual-based subgrid-scale approximations and the con-
cepts of time-dependent or quasi-static as well as potential 
orthogonal subgrid-scales, may also be transferred to the 
variational multiscale formulation of the convection–diffu-
sion equation.

Using an extension to passive-scalar-transport prob-
lems of the method suggested in  [9] for incompressible 
flow, multi-ion transport at high Schmidt numbers in tur-
bulent Taylor-Couette flow was examined in [8]. Thermal/
velocity boundary-layer simulations, where temperature 
was assumed as a passive scalar, were considered with 
an RBVMM in  [3]. Thermally coupled flow problems 
described via the Bousinessq approximation as well as 
turbulent flow over a surface-mounted obstacle with pas-
sive scalar transport were investigated in  [48], comparing 
quasi-static and time-dependent orthogonal residual-based 
subgrid-scale approximations. Applications of an RBVMM 
based on the one presented in [9] to LES of turbulent varia-
ble-density flow at low Mach number can be found in [88]. 
Therein, laminar and turbulent flow problems, among 

(175)�(T) =
pthe

RT
,

others, recirculating flow in a lid-driven cavity with heating 
and cooling of the walls, were examined. Another RBVMM 
with time-dependent and othogonal subgrid scales was pro-
posed in  [4]. Therein, residual-based subgrid scales were 
included in all non-linear terms arising in the VMM as well 
as in the evaluation of the physical parameters. The method 
was applied to turbulent channel flow with a heated and 
cooled wall as well as to natural convection in a cavity.

The evolution of the subgrid-scale scalar quantity is 
governed by the equation projected onto the space of 
unresolved scales, similar to �̂. An analytical approxima-
tion for 𝜙̂ is obtained from this equation by considerations 
analogous to the ones outlined in Sects. 4.2 and 4.3. In the 
following, merely the residual-based variational multiscale 
formulation corresponding to the one presented in elaborate 
form for the Navier–Stokes equations in Sect. 4.4 is given 
in some more detail. Other variants, such as formulations 
based on time-dependent residual-based subgrid-scales, are 
obtained in a similar manner.

Assuming quasi-static subgrid-scales, the subgrid-scale 
part 𝜙̂ of the scalar quantity is given as

based on the resolved-scale part. The discrete residual of 
the convection–diffusion equation reads as

Again, various definitions for the stabilization parameter 
�CD are provided in the literature, for instance, the form cor-
responding to the definition of �M for the momentum equa-
tion (see Eq. (61)):

Approximation  (176) for the subgrid-scale scalar quantity 
as well as approximation (59) for the subgrid-scale velocity 
are introduced into the cross- and subgrid-scale Reynolds-
stress terms of the variational multiscale formulation of the 
convection–diffusion equation. Integrating by parts some 
terms and neglecting the transient and diffusive term con-
tained in 1,lin

CD
(wh;𝜙̂) as well as potential boundary terms 

for the same reasons as given for the respective terms of the 
momentum equation in Sect.  4.4, the following residual-
based stabilization terms are obtained:

(176)𝜙̂ = −𝜏CDr
h
CD

(177)rh
CD

=
��h

�t
+ �

h
⋅ ∇�h − DΔ�h − f�.

(178)
�CD =

1√
4

Δt2
+ �h ⋅��h + CID

2�:�

.

(179)
CD(w

h;�h, �̂,𝜙h, 𝜙̂) ≈(
�
h
⋅ ∇wh, 𝜏CDr

h
CD

)
Ω∗ −

(
wh, 𝜏M�

h
M
⋅ ∇𝜙h

)
Ω∗ ,

(180)CD(w
h;�̂, 𝜙̂) ≈ −

(
𝜏CDr

h
CD

∇wh, 𝜏M�
h
M

)
Ω∗ ,
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The first term of CD(w
h;�h, �̂,𝜙h, 𝜙̂) constitutes the SUPG 

term for the convection–diffusion equation.
A closed residual-based variational multiscale formula-

tion for the convection–diffusion equation thus reads: find 
�h ∈ h

�
 such that

for all wh ∈ h
�
.

9.6 � Small‑Scale Subgrid Diffusivity

Starting from the three-scale decomposition  (168) 
and  (169), modeling the large- and small-scale equa-
tion  (170) and  (171) analogously to  (68) and  (69) and 
reunifying the two equations according to (73) results in: 
find �h ∈ h

�
 such that

for all wh ∈ h
�
. Note that the small-scale subgrid-diffusiv-

ity term, i.e., the second term on the left-hand side, is inte-
grated by parts, in contrast to the small-scale subgrid-vis-
cosity term in (73). This is due to the fact that, to the best 
of the authors’ knowledge, the present approach introduc-
ing a small-scale subgrid diffusivity has so far only been 
applied in the context of FEMs, where such an integration 
by parts is usually done. The idea of adding such a small-
scale subgrid-diffusivity term for reasons of stability goes 
back to [94]. A more general variant of this idea can also 
be found in [136]. In [94], a rather general definition for the 
small-scale subgrid diffusivity reading

where h denotes an (unspecified) characteristic ele-
ment length and Ct a bounded constant, which necessar-
ily assumes the dimension of a velocity for consistency 
of (184), was proposed.

To the best of the authors’ knowledge, the only appli-
cation of a small-scale subgrid-diffusivity formulation 
according to Eq. (183) to turbulent flow was reported in 
[87] for LES of turbulent variable-density flow at low 
Mach number, as addressed in Sect. 9.4. In this context, 
in accordance with (174), the general notation for the 
small-scale subgrid diffusivity D′

sgs
 in Eq. (183) is speci-

fied to be 
(
�∕cp

)�
sgs

. For an appropriate definition of this 

small-scale subgrid diffusivity, for instance, the literature 

(181)1,lin

CD
(wh;𝜙̂) ≈ 0.

(182)

CD(w
h;�h) +

(
�
h
⋅ ∇wh, �CDr

h
CD

)
Ω∗

−
(
wh, �M�

h
M
⋅ ∇�h

)
Ω∗

−
(
�CDr

h
CD

∇wh, �M�
h
M

)
Ω∗ = 𝓁CD(w

h).

(183)CD(w
h;�h) +

(
∇w�h,D�

sgs
∇��h

)
Ω
= �CD(w

h).

(184)D�
sgs

= Cth,

on traditional (all-scale) subgrid-scale modeling for LES 
of turbulent compressible flow might be consulted. In 
most of those studies, the version of the dynamic Sma-
gorinsky model developed in  [154], which extended the 
original proposal in  [73] for incompressible flow to the 
compressible case and scalar transport, is used as the 
subgrid-scale model. For the scalar-transport equation, a 
subgrid diffusivity is used which is defined by the ratio of 
the subgrid viscosity used in the momentum equation and 
a turbulent Prandtl or Schmidt number, respectively, as 
proposed, e.g., in [59]. An overview on traditional sub-
grid-scale models for turbulent compressible flow can 
also be found in [146].

A small-scale subgrid diffusivity in analogy to the 
respective all-scale form used, e.g., in [154] is given as

where Prsgs denotes the turbulent Prandtl number. For the 
numerical examples in [87], a constant value Prsgs = 0.9 
was assumed. That choice was based on numerical evi-
dence in [125, 139] for turbulent variable-density flow 
in a channel configuration. In [87], the resolved scales 
were separated into larger and smaller resolved scales via 
level-transfer operators from PA-AMG as addressed in 
Sect.  5.2.2, leading to a variable-density extension of the 
AVM3. After such a scale separation, all small-scale values 
such as the small-scale part of the scalar quantity required 
for (183) are available.

The extension of the AVM3 to variable-density flow at low 
Mach number was applied to two turbulent flow configura-
tions with heating in [87]. For both examples, channel flow 
and flow over a backward-facing step, superior results were 
achieved with the AVM3 compared to the RBVMM.

9.7 � Multifractal Subgrid‑Scale Modeling for Scalar 
Fields

The concept of structural subgrid-scale modeling is again 
represented by the AVM4, which makes use of multifractal 
subgrid-scales and was further developed to passive scalar 
transport in  [179]. Multifractal subgrid-scale modeling for 
passive scalar quantities was originally proposed in [34] and 
further enhanced in [179]. An elaborate derivation may also 
be found in [177].

To explicitly calculate the subgrid-scale scalar field, inte-
gration of its gradient field ∇𝜙̂(�, t) based on Green’s func-
tion for the Laplacian is considered:

(185)
(

�

cp

)�

sgs

=
��
sgs

Prsgs
,

(186)𝜙̂(�, t) =
1

4𝜋 ∫
∇ ⋅ (∇𝜙̂(�̌, t))

‖� − �̌‖ d�̌.
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This relation represents the scalar analogue to the law of 
Biot–Savart (101). Analogously to the subgrid-scale vorti-
city field, the subgrid-scale scalar gradient field is recon-
structed within each element by a two-step cascade process, 
separately recovering its magnitude ‖∇𝜙̂‖(�, t) and orienta-
tion vector �̂∇𝜙(�, t), which is of unit length; that is,

The ratio of the element length h to the diffusive length 
scale �D estimates the required number of cascade steps � 
in the subgrid-scale scalar gradient cascade via

As already mentioned in Sect. 6.1, several studies showed 
that the diffusion-rate field of a passive scalar quantity 
exhibits multifractal scale similarity. Therefore, the multi-
plicative cascade distributes the total subgrid-scale diffu-
sion within each element to obtain a multifractal expression 
for the magnitude ‖∇𝜙̂‖ of the gradient of the subgrid-scale 
scalar quantity. The scalar-variance diffusion is defined as

The diffusion spectrum Z� (k) associated with the afore-
mentioned transport regimes scales as

where � = 1∕3 at inertial-convective scales and � = 1 at 
viscous-convective scales. The average subgrid-scale dif-
fusion  𝜒̂ is determined depending on the average diffu-
sion ��h at smaller resolved scales. Further decomposing 
the resolved scalar field �h according to the h-type three-
scale separation shown in Eq. (82) for the velocity as

the diffusion rates associated with the smaller resolved 
scales and the subgrid scales are given by

The length scale h = �h, which separates larger and smaller 
resolved scales, is assumed to be located in the inertial-con-
vective or the viscous-convective range depending on the 
Schmidt number. The diffusion spectrum is integrated both 
from the wave number kh to the diffusive wave number kD,

(187)∇𝜙̂ = ‖∇𝜙̂‖�̂∇𝜙.

(188)� = log2

(
h

�D

)
.

(189)� = D∇� ⋅ ∇�.

(190)Z� (k) ∼ k� ,

(191)
𝜙 = 𝜙

h
+ 𝛿𝜙h

�����
𝜙h

+𝜙̂,

(192)��h = D∇��h
⋅ ∇��h,

(193)𝜒̂ = D∇𝜙̂ ⋅ ∇𝜙̂.

(194)𝜒̂ =

kD

∫
kh

c𝜒k
𝛾dk,

where c𝜒 > 0 denotes the associated proportionality con-
stant, and from k

h
 to kh,

leading to an expression for the subgrid-scale diffusion that 
depends on the diffusion at the smaller resolved scales:

Applying the multiplicative cascade to the resulting aver-
age subgrid-scale diffusion and introducing Eqs. (192) and 
(193) yields the following expression for the magnitude of 
the subgrid-scale scalar gradient:

To determine the orientation �̂∇𝜙 of the gradient of the sub-
grid-scale scalar field, an additive decorrelation cascade is 
set up analogously to the one for the subgrid-scale vorticity 
field:

based on the orientation ��h
∇�

 of the gradient of the smaller 
resolved scales and the (modified) stochastic-decorrelation 
increments �∗

n
. The scalar-gradient intermittency factor ∇� 

is defined from the relative orientation of ∇𝜙̂ and ∇��h as

After combining cascades (197) and (198) and introduc-
ing the resulting subgrid-scale scalar gradient ∇𝜙̂, which is 
assumed approximately equal to its expectation value, into 
Eq. (186), the subgrid-scale scalar field is calculated as

where assumptions analogous to the ones discussed in 
Sect.  6.5 for the subgrid-scale vorticity are incorporated. 
Furthermore, kD∕kh is replaced by relation  (188). The 
required independence of 𝜙̂ from � as � → ∞, i.e., the 
high-Reynolds-number limit, constrains ∇� as

(195)��h =

kh

∫
k
h

c�k
�dk,

(196)𝜒̂ =
(
1 − 𝛼−(𝛾+1)

)−1
[(

kD

kh

)(𝛾+1)

− 1

]
𝛿𝜒h.

(197)

‖∇𝜙̂‖(�, t) =
��
1 − 𝛼−(𝛾+1)

�−1

×

��
kD

kh

�(𝛾+1)

− 1

��
2𝜙

�3 𝜙∏
n=1

n(�, t)

� 1

2

‖∇𝛿𝜙h‖.

(198)�̂∇𝜙(�, t) = ∇𝜙𝛿�
h
∇𝜙

+
(
1 − ∇𝜙

) 𝜙∑
n=1

�∗
n
(�, t),

(199)∇𝜙 =
∫ ∇𝜙̂ ⋅ ∇𝛿𝜙hd�

∫ ‖∇𝜙̂‖ ‖∇𝛿𝜙h‖d� .

(200)
𝜙̂(�, t) =

(
1 − 𝛼−(𝛾+1)

)− 1

2 2
3𝜙

2

×
(
2(𝛾+1)𝜙 − 1

) 1

2

⟨ 1

2

⟩𝜙∇𝜙𝛿𝜙
h(�, t),

(201)∇� ∼ 2
−
(

�+1

2
+

3

2

)�

⟨ 1

2

⟩−�

.
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Eventually, the subgrid-scale scalar quantity 𝜙̂ reads

where

The required proportionality constant is denoted by CB�

sgs. 
Parameter CB�

sgs should exhibit a universal dependence on 
the Reynolds number and satisfy the same characteristics 
as discussed for CB

sgs
 in Sect. 6.6. Based on the evaluations 

presented in  [34], CB�

sgs is expected to be approximately 
equal to or somewhat higher than CB

sgs
 depending on the 

Reynolds number.
With respect to low- and high-Schmidt-number passive 

scalar mixing and the resulting transport regimes, it is cru-
cial to explicitly distinguish between the number of cascade 
steps 

�
 in the vorticity cascade and the number of cas-

cade steps � in the scalar-gradient cascade. According to 
Fig. 8, different levels of resolution have to be considered 
in the velocity and scalar field for Sc ≠ 1, and a poten-
tially different number of cascade steps in both cascades is 
expected. The number of cascade steps 

�
 in the vorticity 

cascade is estimated via the ratio of the element length h 
to the viscous length scale �� as given in equation (103). 
According to Eq. (125), the ratio of h to �� is approximated 
using the local element Reynolds number Reh. The ratio of 
�D to �� may be estimated based on the Schmidt number:

where � = 3∕4 for Sc ≤ 1 and � = 1∕2 for Sc ≫ 1, as pre-
sented in Sect. 9.2. Combining this relation with Eq. (125) 
leads to an approximation for the ratio of h to �D:

resulting in a higher number of steps � in the scalar gra-
dient cascade than in the vorticity cascade for Sc ≫ 1 and 
vice versa for Sc < 1.

The final modeled variational multiscale formula-
tion of the convection–diffusion equation is obtained by 
inserting approximation  (202) into the cross- and sub-
grid-scale Reynolds-stress terms, (165) and  (166), and 
adding an appropriate residual-based stabilization term 
to ensure proper stabilization of the numerical method as 
discussed in Sect. 6.7: find �h ∈ h

�
 such that

(202)𝜙̂(�, t) = B𝜙𝛿𝜙
h(�, t),

(203)B� = C
B�

sgs

(
1 − �−(�+1)

)− 1

2 2−
(�+1)�

2

(
2(�+1)� − 1

) 1

2 .

(204)
�D

��
= Sc−�,

(205)
h

�D
= c�Re

3

4

h
Sc�,

(206)

CD(w
h;�h)

+
(
wh, �h ⋅ ∇

(
B���

h
)
+ B��h ⋅ ∇�h

)
Ω∗

+
(
wh,B��h ⋅ ∇

(
B���

h
))

Ω∗

+
(
�h ⋅ ∇wh, �CDr

h
CD

)
Ω∗ = 𝓁CD(w

h)

for all wh ∈ h
�
. The modeled forms of the cross- and sub-

grid-scale Reynolds-stress terms can be found in the second 
and third line. The residual-based stabilization term, i.e., 
the SUPG term, is given in the fourth line on the left-hand 
side. Again, the required small-scale scalar field is obtained 
from the resolved field by scale separation based on level-
transfer operators from PA-AMG as outlined in Sect. 5.2.2.

The resulting AVM4 was applied to turbulent chan-
nel flow with passive scalar transport in [179]. A broad 
range of Schmidt numbers from 1 up to 1000 was con-
sidered. Compared to an RBVMM, improved results 
were obtained for all Schmidt numbers. Moreover, 
the predicted values for the transfer coefficient, which 
describes the transfer of the scalar quantity from the wall 
to the fluid, replicated the theoretical correlation with 
the Schmidt number for the entire considered range up 
to 1000.

In a subsequent study by the same authors, published 
in [178], the AVM4 was further enhanced to active sca-
lar transport in the context of turbulent variable-density 
flow at low Mach number. Therefore, the multifrac-
tal reconstruction procedure for subgrid-scale scalar 
quantities described above was applied to the tempera-
ture field. A variable-density extension was considered 
for subgrid-scale modeling in the momentum equation. 
Applications of the AVM4 to turbulent flow in a chan-
nel with a heated and a cooled wall as well as to turbu-
lent flow over a backward-facing step with heating were 
investigated in  [178], and improved results compared 
to the ones predicted by a form of the RBVMM were 
obtained.

10 � Turbulent Two‑Phase Flow and Combustion

In this section, the ensemble of turbulent flow problems 
which have been addressed by VMMs is extended by taking 
into account two of the most important applications involv-
ing moving interfaces: two-phase flow and combustion. 
These two problems share several aspects such as an inter-
face usually assumed to be very thin. However, there are 
also differences, e.g., related to diffusive–reactive processes 
propagating the interface, that is, the flame front, in com-
bustion or related to surface-tension effects encountered at 
the phase interface in two-phase flow. At the outset of this 
section, it has to be emphasized that the presence of mov-
ing interfaces in the flow field, such as phase interfaces in 
two-phase flow and flame fronts in premixed combustion, 
comes along with additional requirements regarding the 
computational method. The method predominantly chosen 
in the studies reviewed in this section to enhance the basic 
VMM to enable the handling of the interfaces appearing in 
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two-phase flow and combustion is the XFEM, which has 
already been briefly addressed in Sect. 8.3.

10.1 � Two‑Phase Flow

Two contiguous bulk fluids separated by a deformable 
interface are assumed. Each of the two individual fluid 
flows may be turbulent, and interactions of the turbulent 
structures with the interface may occur. In LES of such 
configurations, the subdomains occupied by the two flu-
ids are covered by the computational grid. Hence, there 
is the same modeling situation for the flow in each fluid 
subdomain as for turbulent single-phase flow. Depending 
on whether the interface may be assumed as resolved in a 
DNS-like manner or not, additional subgrid-scale modeling 
regarding underresolved interfaces may have to be taken 
into account; see, e.g., [131] for theoretical considerations 
on this issue. In fact, the derivation of appropriate interfa-
cial subgrid-scale models is still in its infancy.

The interface Γint(t) is commonly assumed infinitely thin 
and thus considered as a discontinuity in the flow field. A 
localized surface-tension force acts at the interface, and the 
density as well as the viscosity change discontinuously, giv-
ing rise to strong and/or weak discontinuities in the pres-
sure field p and the velocity field �, which are expressed in 
terms of two jump conditions:

These conditions, making use of the jump operator 
[[⋅]] := (⋅)− − (⋅)+, are obtained from the conservation prin-
ciples of mass and momentum across the interface (see, 
e.g., [210]) and couple the fluid flows in both subdomains, 
each governed by the Navier–Stokes equations. Variables 
and subdomains corresponding to the first and the second 
fluid are labeled by (⋅)+ and (⋅)−, respectively. By defini-
tion, the unit normal vector �int(t) on the interface points 
from the subdomain Ω+(t) to the subdomain Ω−(t). Further-
more, � denotes the dynamic viscosity, � the surface-ten-
sion coefficient, which is assumed constant, and � = ∇ ⋅ �int 
the curvature of the interface.

Various strategies to represent the interface in two-
phase-flow simulations may be found in the literature, 
for instance, the Arbitrary Lagrangian-Eulerian (ALE) 
approach, the level-set method and the volume-of-fluid 
method; see, e.g., [192] for a review and [58] for an over-
view with an emphasis on FEMs. In the context of VMMs 
for LES of turbulent two-phase flow, merely the level-set 
method appears to have been applied. The level-set method 
describes the interface implicitly via the zero iso-contour 
of a signed distance function �(�, t) and, thus, constitutes 

(207)[[�]] = 0 on Γint,

(208)[[−phyd� + 2��(�)]] ⋅ �int = ���int on Γint.

a convenient way to represent interfaces that are subject to 
large and complex deformations as encountered in turbu-
lent flow. Based on �, the two fluid subdomains Ω+ and Ω− 
as well as the interface are identified as

The evolution of � is mathematically governed by the 
advection equation

where the velocity �(�, t) is obtained from the 
Navier–Stokes equations. Using �, the unit normal vector 
on the interface is given by �int = −∇�∕‖∇�‖. Residual-
based stabilization methods for the level-set equation (210) 
were suggested, e.g., in [126, 159].

However, capturing the interface implicitly by means 
of the level-set method leads to elements (or cells) that 
are cut by the interface, such that the aforementioned 
discontinuities occur within the element itself. Two 
approaches to cope with discontinuities inside elements 
are commonly distinguished, which both have already 
been considered for LES within the framework of the 
VMM. A straightforward way to deal with discontinuities 
in the element interior consists of artificially thickening 
the interface over several elements. As a result, physical 
parameters are smoothly blended from one fluid to the 
other, and surface tension is incorporated via a local vol-
ume force, for instance, by using the continuum surface 
force model proposed in [22]. LESs based on RBVMMs, 
making use of smeared interfaces, were presented, e.g., 
in [2, 184]. Alternatively, the interface may be treated in 

(209)𝜑(�, t)

⎧
⎪⎨⎪⎩

< 0 ∀ � ∈ Ω−(t),

= 0 ∀ � ∈ Γint(t),

> 0 ∀ � ∈ Ω+(t).

(210)
��

�t
+ � ⋅ ∇� = 0 in Ω,
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Fig. 9   Jump-enriched shape function corresponding to node 4 of a 
bilinearly-interpolated quadrilateral element
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a sharp fashion, as enabled, e.g., by the XFEM. XFEMs 
and similar methods for two-phase flow were proposed, 
e.g., in [43, 98, 124, 181, 191, 193]. Based on appropri-
ate enrichment functions that are able to represent jumps 
and/or kinks in the pressure and velocity field, disconti-
nuities in the element interior are recovered.

For instance, the face-oriented stabilized Nitsche-type 
XFEM suggested in [193] incorporates jump enrichments 
for both the velocity and the pressure field. The applied 
jump enrichment is based on a symmetric Heaviside 
function and allows for reproducing discontinuities in the 
primary field as well as in its gradient. Figure 9 illustrates 
the enriched shape function for one node of a two-dimen-
sional bilinearly-interpolated quadrilateral element. As 
the velocity field merely exhibits a kink, but not a jump, 
Nitsche’s method [160], which was originally considered 
for elliptic problems with embedded interfaces in [97], is 
used to weakly couple the two individual fluid flows. For 
further details on Nitsche’s method, the reader is referred 
to the references already provided in Sect.  8.2 as well 
as to, e.g.,  [32] for a review in the context of embedded 
interfaces.

Moreover, face-oriented ghost-penalty and fluid sta-
bilization terms are applied to intersected elements. 
Face-oriented ghost-penalty stabilization terms, first 
presented for elliptic problems in  [30] and later further 
developed for problems governed by the Stokes equations 
by the same authors in  [31], ensure numerical stability 
for arbitrary interface locations. Further face-oriented 
fluid stabilization terms in the interface region enhance 
the method to high-Reynolds-number flows governed 
by the Navier–Stokes equations; see also Section  4 for 
FOS methods in general as well as  [194] for application 
together with face-oriented ghost-penalty stabilization 
terms to incompressible flow problems with embedded 
boundaries. Residual-based stabilization terms in the 
interior of the fluid subdomains complete the Nitsche-
type XFEM proposed in [193].

In [182], the Nitsche-type XFEM as introduced in [193] 
was applied in conjunction with the AVM4, which has 
been presented in Sect. 6.8, to LES of turbulent two-phase 
flow; that is, the effect of the subgrid scales was taken into 
account by multifractal subgrid-scale modeling. The entire 
method was referred to as the XAVM4. For application to 
LES of turbulent channel flow carrying a bubble of the size 
of the channel half-width in [182], it was assumed that the 
interface is represented in a DNS-like manner.

10.2 � Combustion

Combustion processes are encountered in a variety of 
technical systems; see, e.g., [172, 218, 221] for textbooks 
introducing into the topic. Gaseous combustion, one of the 

main types of combustion in practice, represents a react-
ing flow, characterized by a strong and irreversible heat 
release within very thin flame fronts. Mathematically, prob-
lems of combustion in the predominant form of deflagra-
tions (i.e., flames at low speed) are usually described by a 
variable-density formulation of the Navier–Stokes equa-
tions for low-speed flows as addressed in Sect. 9.4. Three 
different types of combustion are usually distinguished: 
non-premixed, premixed and partially premixed combus-
tion. For a premixed flame, which will be focused on in the 
following, a perfect mixing of the reactants before entering 
the reaction zone is assumed. The characteristic feature of 
premixed combustion is the propagation of the flame front 
towards the unburned gases as a result of diffusive–reactive 
processes.

In technical processes, combustion almost always takes 
place in a turbulent form; see, e.g., [15, 39, 166]. The scales 
of turbulent combustion are even smaller than the smallest 
turbulent flow scales. More precisely, the aforementioned 
very thin flame fronts, within which the chemical reactions 
proceed, are usually smaller than the Kolmogorov scale. 
Hence, the combustion-related scales are distinctly sepa-
rated from the scales of turbulence. Due to this, according 
to [166], almost all turbulent combustion models explicitly 
or implicitly assume scale separation. This assumption is 
reflected, among others, by the so-called laminar flamelet 
concept, which is elaborated on in [166]. Based on such 
flamelet models, a turbulent flame is considered as an 
ensemble of thin quasi-laminar structures, the flamelets. 
These flamelets are embedded in an otherwise non-reacting 
turbulent flow field. From a scale-separation or flamelet 
perspective, respectively, the propagating flame front char-
acterizing turbulent premixed combustion is typically con-
sidered as an almost infinitely thin interface within the tur-
bulent flow field, separating the burned from the unburned 
gas.

LES of turbulent combustion still represents a relatively 
new field of research, which mostly started to develop not 
until the end of the 1990s; see, e.g., [77, 113, 171] for 
reviews. Beyond the closure problems also appearing in 
turbulent flow/transport problems, which have already 
been addressed above, the closure problem characteristic 
for turbulent combustion is related to the chemical source 
term appearing in the respective system of equations. A 
particular problem related to LES of premixed combus-
tion is due to the fact that, in most of the cases, the flame is 
entirely on a subgrid scale. An adequate resolution would 
require a substantially increased number of computational 
degrees of freedom, as outlined, e.g., in [171]. According 
to [113], the majority of contributions dealing with LES for 
turbulent combustion focus on the applicability of RANS-
type combustion models to LES to provide a closure for 
the filtered chemical source term. These closures are 
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typically developed from physical analysis. Three different 
approaches may be distinguished in this context according 
to [213]: a geometrical approach, an approach based on tur-
bulent mixing, and a purely statistical approach. In the fol-
lowing, it will be focused on two geometrical approaches, 
the progress-variable (or c-equation) and the level-set/G-
equation approach, which represent the state of the art in 
the context of premixed combustion modeling according to 
[113], aside from linear eddy modeling (see, e.g., [41]) and 
models based on probability density functions. Both mod-
els, which will be focused on in the remainder of this sec-
tion, are based on the laminar flamelet concept, and their 
tight relationship is detailed, e.g., in [39].

Underlying the progress-variable approach is the Bray-
Moss-Libby (BML) modeling assumption originally pro-
posed in [23]. Based on the progress variable  c, the con-
servation equations for mass fractions and energy, which 
are part of the system of equations for combustion, are 
replaced by the (single) conservation equation for c. This 
progress-variable equation reads

where 𝜔̇c denotes the chemical source term of this c-equa-
tion and DT the thermal diffusivity (see Sect. 9.4 for defi-
nition). It is assumed that the progress variable takes the 
value c = 0 in the unburned phase and the value c = 1 in 
the burned phase. As shown in [89], defining a reaction 
coefficient � subject to

for which a certain chemical kinetics, such as Arrhenius 
chemical kinetics, may be chosen, the progress-variable 
equation may be reformulated in the schematic form of an 
instationary convection-diffusion-reaction equation with 
non-zero right-hand side:

The RBVMM and the AVM3 were applied to the numeri-
cal example case of a flame-vortex interaction assuming 
Arrhenius chemical kinetics in [89]. This actually laminar 
reactive flow problem may serve as a model problem for 
interactions of turbulent flows and (premixed) flames. The 
evolution of both a pocket of unburned gas and a secluded, 
drop-like structure, which detaches itself and moves into 
the burned gas, were accurately predicted already for a rel-
atively coarse discretization in [89].

A level-set/G-equation valid for both the corrugated-
flamelets and the thin-reaction-zones regime, the most impor-
tant regimes of turbulent premixed combustion, according 
to [166] (to which the reader is also referred for more details 
on those regimes) reads

(211)𝜌
𝜕c

𝜕t
+ 𝜌� ⋅ ∇c − ∇ ⋅

(
𝜌DT∇c

)
= 𝜔̇c in Ω,

(212)𝜔̇c = 𝜌𝜎(1 − c),

(213)�
�c

�t
+ �� ⋅ ∇c − ∇ ⋅

(
�DT∇c

)
+ ��c = �� in Ω.

where G(�, t) replaces � of the level-set equation  (210). 
Hence, the location of the flame front, representing the 
interface Γint in the present case, is given by the zero level 
set of G, that is, G(�, t) = 0. The burned phase is identi-
fied as the subdomain defined by G > 0 and the unburned 
phase as the subdomain defined by G < 0. Accordingly, the 
unit normal vector �int at the flame front points from the 
burned phase into the unburned phase. The curvature of the 
flame front is denoted by � and also calculated as shown in 
Sect. 10.1. In Eq. (214), the laminar burning velocity of the 
unstretched planar flame s0

L
 (i.e., the burning velocity with-

out curvature effects, in particular) is used, which is related 
to the laminar burning velocity sL via

based on the Markstein length LM.
As aforementioned, the flame front, which propagates with 

the laminar burning velocity according to the laminar flame-
let concept, is assumed to be infinitely thin. Consequently, 
constant densities �u in the unburned and �b in the burned 
phase can be assumed. However, jump conditions need to 
be formulated at the flame front. These jump conditions are 
derived from mass and momentum conservation across the 
interface (see, e.g., [221]). Assuming continuity of the tan-
gential velocity components, among others, the jump condi-
tions may eventually be formulated as

By comparing mass-conservation equation (216) to the 
respective equation (207) for two-phase flow, one of the 
main differences between these two phenomena, that is, 
the acceleration through the flame front for combustion in 
contrast to the continuity of the velocity at the interface for 
two-phase flow, may easily be observed as a consequence 
of the non-zero right-hand side of (216).

In [18], among others, using a level-set/G-equation for-
mulation, a piloted Bunsen burner flame was investigated 
by an XFEM including a distributed Lagrange multiplier 
approach for enforcing the interface conditions at the 
flame front, which has not been explicitly addressed here. 
An RBVMM for the level-set/G-equation formulation and 
an XFEM using Nitsche’s method for enforcing the inter-
face conditions at the flame front together with a semi-
Lagrangian time-integration procedure proposed in [103] 
was applied to several combustions problems such as a 
spherical flame, two- and three-dimensional Bunsen burner 
flames and a flame-vortex interaction in [102].

(214)
�G

�t
+ � ⋅ ∇G +

(
s0
L
− DT�

)
�int ⋅ ∇G = 0 in Ω,

(215)sL = s0
L

(
1 − LM�

)
,

(216)[[�]] = −�usL[[�
−1]]�int on Γint,

(217)
[[−phyd� + 2��(�)]] ⋅ �int =

(
�usL

)2
[[�−1]]�int

on Γint.
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11 � Conclusions

The variational multiscale method was introduced about 
twenty years ago, and it has been exploited for developing 
computational methods for large-eddy simulation of tur-
bulent flow since the beginning of this century. Already in 
2006, articles reviewing the early years of the variational 
multiscale method for large-eddy simulation were pub-
lished in [80, 118]. Now, a decade later, the developments 
in this context have broadened and intensified considerably, 
such that the time has come for reviewing again, glancing 
at the progress which has been made in the meantime. In 
contrast to another review article published almost simulta-
neously in [1] as well as the aforementioned earlier reviews, 
which all entirely focused on large-eddy simulation of tur-
bulent incompressible flow, the present one has aimed at 
additionally covering further aspects of numerically simu-
lating turbulent flow as well as applications beyond incom-
pressible single-phase flow.

After having introduced the incompressible 
Navier–Stokes equations, the fundamental concepts of and 
traditional approaches to large-eddy simulation, respec-
tively, as well as the variational multiscale formulation, the 
core part of this review article has been dedicated to the 
various concepts for subgrid-scale modeling within the var-
iational multiscale method for large-eddy simulation pro-
posed by researchers in this field to date. These concepts 
comprise (i) implicit large-eddy simulation, represented 
by residual-based and stabilized methods, (ii) functional 
subgrid-scale modeling via small-scale subgrid-viscosity 
models and (iii) structural subgrid-scale modeling, which 
has so far merely been realized via the introduction of mul-
tifractal subgrid scales. All of these subgrid-scale mod-
eling approaches were initially introduced for large-eddy 
simulation of turbulent incompressible flow in the literature 
and, accordingly, have been outlined for this application 
in this article as well. Afterwards, an overview on exem-
plary numerical test cases to which variational multiscale 
methods for large-eddy simulation have been applied in the 
past years has been provided. In particular, computational 
results obtained from turbulent channel flow, which appears 
to be the numerical example mostly used in the literature 
for evaluating the presented methods, have been explicitly 
shown and compared.

In the remainder of this article, as aforementioned, the 
focus was on particularly important issues such as wall-
layer modeling and applications beyond incompressible 
single-phase flow. Wall-layer modeling is an aspect for 
large-eddy simulation of wall-bounded turbulent flow 
which becomes particularly relevant at very high Reynolds 
number. In fact, in the last two decades and thus mostly 
in parallel with the developments for variational multi-
scale methods for large-eddy simulation, the interest in 

approaches to wall-layer modeling has notably increased. 
In the last two sections of this review article, passive and 
active scalar transport has been considered, and develop-
ments for large-eddy simulation of turbulent two-phase 
flow and combustion have been briefly covered. All of 
these applications introduce additional challenges which 
need to be addressed adequately within the overall frame-
work of a variational multiscale method.

Future developments regarding the variational multi-
scale method for large-eddy simulation will most likely be 
found in the context of both focal points of this article. On 
the one hand, advanced subgrid-scale modeling will be a 
key issue to obtain (further) improved results. On the other 
hand, the variational multiscale method for large-eddy sim-
ulation will need to be advanced with a view to further and 
potentially even more complex applications such as mul-
tiphysics problems.

Compliance with Ethical Standards 

Conflicts of interest  The authors declare that they have no conflict 
of interest.

References

	 1.	 Ahmed N, Chacón Rebollo T, John V, Rubino S (2017) A 
review of variational multiscale methods for the simulation of 
turbulent incompressible flows. Arch Comput Methods Eng 
24:115. doi: 10.1007/s11831-015-9161-0

	 2.	 Akkerman I, Bazilevs Y, Kees CE, Farthing MW (2011) 
Isogeometric analysis of free-surface flow. J Comput Phys 
230:4137–4152

	 3.	 Araya G, Bohr E, Jansen K, Castillo L, Peterson K (2006) 
Generation of turbulent inlet conditions for thermal/velocity 
boundary layer simulations. AIAA Paper 2006-0699, Reno, 
NV

	 4.	 Avila M, Codina R, Principe J (2014) Large eddy simulation of 
low Mach number flows using dynamic and orthogonal subgrid 
scales. Comput Fluids 99:44–66

	 5.	 Balaras E, Benocci C, Piomelli U (1996) Two layer approxi-
mate boundary conditions for large-eddy simulations. AIAA J 
34:1111–1119

	 6.	 Bardina J, Ferziger JH, Reynolds WC (1980) Improved sub-
grid models for large eddy simulation. AIAA Paper 1980-1357, 
Snowmass, CO

	 7.	 Bardina J, Ferziger JH, Reynolds WC (1983) Improved turbu-
lence models based on large eddy simulation of homogeneous, 
incompressible, turbulent flows. Technical Report TF-19, Ther-
mosciences Division, Department of Mechanical Engineering, 
Stanford University

	 8.	 Bauer G, Gamnitzer P, Gravemeier V, Wall WA (2013) An 
isogeometric variational multiscale method for large-eddy sim-
ulation of coupled multi-ion transport in turbulent flow. J Com-
put Phys 251:194–208

	 9.	 Bazilevs Y, Calo VM, Cottrell JA, Hughes TJR, Reali A, Scov-
azzi G (2007) Variational multiscale residual-based turbulence 
modeling for large eddy simulation of incompressible flows. 
Comput Methods Appl Mech Eng 197:173–201

http://dx.doi.org/10.1007/s11831-015-9161-0


	 U. Rasthofer, V. Gravemeier 

1 3

	 10.	 Bazilevs Y, Hughes TJR (2007) Weak imposition of Dir-
ichlet boundary conditions in fluid mechanics. Comput Fluids 
36:12–26

	 11.	 Bazilevs Y, Michler C, Calo VM, Hughes TJR (2010) Isogeo-
metric variational multiscale modeling of wall-bounded 
turbulent flows with weakly enforced boundary conditions 
on unstretched meshes. Comput Methods Appl Mech Eng 
199:780–790

	 12.	 Becker R, Braack M (2001) A finite element pressure gradient 
stabilization for the Stokes equations based on local projections. 
Calcolo 38:173–199

	 13.	 Belytschko T, Black T (1999) Elastic crack growth in finite 
elements with minimal remeshing. Int J Numer Methods Eng 
45:601–620

	 14.	 Berselli LC, Iliescu T, Layton WJ (2006) Mathematics of large 
eddy simulation of turbulent flows. Springer, Berlin

	 15.	 Bilger RW, Pope SB, Bray KNC, Driscoll JF (2005) Paradigms 
in turbulent combustion research. Proc Combust Inst 30:21–42

	 16.	 Bochev PB, Gunzburger MD, Lehoucq RB (2007) On stabilized 
finite element methods for the Stokes problem in the small time 
step limit. Int J Numer Methods Fluids 53:573–597

	 17.	 Boris JP, Grinstein FF, Oran ES, Kolbe RL (1992) New insights 
into large-eddy simulation. Fluid Dyn Res 10:199–228

	 18.	 van der Bos F, Gravemeier V (2009) Numerical simulation of 
premixed combustion using an enriched finite element method. 
J Comput Phys 228:3605–3624

	 19.	 van der Bos F, van der Vegt JJW, Geurts BJ (2007) A multi-
scale formulation for compressible turbulent flows suitable for 
general variational discretization techniques. Comput Methods 
Appl Mech Eng 196:2863–2875

	 20.	 Braack M, Burman E (2006) Local projection stabilization for 
the Oseen problem and its interpretation as a variational multi-
scale method. Comput Methods Appl Mech Eng 43:2544–2566

	 21.	 Braack M, Burman E, John V, Lube G (2007) Stabilized finite 
element methods for the generalized Oseen problem. Comput 
Methods Appl Mech Eng 196:853–866

	 22.	 Brackbill JU, Kothe DB, Zemach C (1992) A continuum method 
for modeling surface tension. J Comput Phys 100:335–354

	 23.	 Bray KNC, Moss JB (1977) A unified statistical model of the 
premixed turbulent flame. Acta Astronaut 4:291–319

	 24.	 Brezzi F, Fortin M (1991) Mixed and hybrid finite element 
methods. Springer, New York

	 25.	 Brezzi F, Franca LP, Hughes TJR, Russo A (1997) b = ∫ g. 
Comput Methods Appl Mech Eng 145:329–339

	 26.	 Brooks AN, Hughes TJR (1982) Streamline Upwind/Petrov-
Galerkin formulations for convection dominated flows with 
particular emphasis on the incompressible Navier-Stokes equa-
tions. Comput Methods Appl Mech Eng 32:199–259

	 27.	 Buch KA, Dahm WJA (1998) Experimental study of the fine-
scale structure of conserved scalar mixing in turbulent shear 
flows. Part 2. Sc ≈ 1. J Fluid Mech 364:1–29

	 28.	 Burman E, Fernández MA, Hansbo P (2006) Continuous inte-
rior penalty finite element method for Oseen’s equations. SIAM 
J Numer Anal 44:1248–1274

	 29.	 Burman E, Hansbo P (2004) Edge stabilization for Galerkin 
approximations of convection-diffusion-reaction problems. 
Comput Methods Appl Mech Eng 193:1437–1453

	 30.	 Burman E, Hansbo P (2012) Fictitious domain finite element 
methods using cut elements: II. A stabilized Nitsche method. 
Appl Numer Math 62:328–341

	 31.	 Burman E, Hansbo P (2014) Fictitious domain methods using 
cut elements: III. A stabilized Nitsche method for Stokes’ prob-
lem. ESAIM. Math Model Numer Anal 48:859–874

	 32.	 Burman E, Zunino P (2012) Numerical approximation of large 
contrast problems with the unfitted Nitsche method. In: Blowey 

J, Jensen M (eds) Frontiers in numerical analysis. Lecture Notes 
in Computational Science and Engineering, vol 85. Springer, 
Berlin, pp 227–282

	 33.	 Burton GC (2003) A multifractal subgrid-scale model for large-
eddy simulation of turbulent flows. Dissertation, The University 
of Michigan

	 34.	 Burton GC (2008) The nonlinear large-eddy simulation method 
applied to Sc ≈ 1 and Sc ≫ 1 passive-scalar mixing. Phys Flu-
ids 20:035103

	 35.	 Borton GC, Dahm WJA (2005) Multifractal subgrid-scale mod-
eling for large-eddy simulation. I. Model development and a 
priori testing. Phys Fluid 17:075111

	 36.	 Burton GC, Dahm WJA (2005) Multifractal subgrid-scale mod-
eling for large-eddy simulation. II. Backscatter limiting and a 
posteriori evaluation. Phys Fluids 17:075112

	 37.	 Cabot W, Moin P (1999) Approximate wall boundary condi-
tions in the large-eddy simulation of high Reynolds number 
flows. Flow Turbul Combust 63:269–291

	 38.	 Calo VM (2004) Residual-based multiscale turbulence mod-
eling: Finite volume simulations of bypass transition. Disserta-
tion, Stanford University

	 39.	 Cant RS, Mastorakos E (2008) An introduction to turbulent 
reacting flows. Imperial College Press, London

	 40.	 Chacón Rebollo T, Gómez Mármol M, Rubino S (2015) 
Numerical analysis of a finite element projection-based VMS 
turbulence model with wall laws. Comput Methods Appl Mech 
Eng 285:379–405

	 41.	 Chakravarthy VK, Menon S (2001) Large-eddy simulation of 
turbulent premixed flames in the flamelet regime. Combust Sci 
Technol 162:175–222

	 42.	 Chapman DR (1979) Computational aerodynamics develop-
ment and outlook. AIAA J 17:1293–1313

	 43.	 Chessa J, Belytschko T (2003) An extended finite element 
method for two-phase fluids. J Appl Mech 70:10–17

	 44.	 Choi H, Moin P (1994) Effects of the computational time 
step on numerical solutions of turbulent flow. J Comput Phys 
113:1–4

	 45.	 Choi H, Moin P (2012) Grid-point requirements for large eddy 
simulation: Chapman‘s estimates revisited. J Comput Phys 
24:011702

	 46.	 Chung J, Hulbert GM (1993) A time integration algorithm for 
structural dynamics with improved numerical dissipation: the 
generalized-� method. J Appl Mech 60:371–375

	 47.	 Codina R (2002) Stabilized finite element approximation of 
transient incompressible flows using orthogonal subscales. 
Comput Methods Appl Mech Eng 191:4295–4321

	 48.	 Codina R, Principe J, Avila M (2010) Finite element approxi-
mation of turbulent thermally coupled incompressible flows 
with numerical sub-grid scale modelling. Int J Numer Methods 
Heat Fluid Flow 20:492–515

	 49.	 Codina R, Principe J, Guasch O, Badia S (2007) Time depend-
ent subscales in the stabilized finite element approximation of 
incompressible flow problems. Comput Methods Appl Mech 
Eng 196:2413–2430

	 50.	 Collis SS (2002) The DG/VMS method for unified turbulence 
simulation. AIAA Paper 2002-3124, St. Louis, MO

	 51.	 Collis SS (2001) Monitoring unresolved scales in multiscale 
turbulence modeling. Phys Fluids 13:1800–1806

	 52.	 Colomés O, Badia S, Codina R, Principe J (2015) Assessment 
of variational multiscale models for the large eddy simulation 
of turbulent incompressible flows. Comput Methods Appl Mech 
Eng 285:32–63

	 53.	 Comerford A, Gravemeier V, Wall WA (2013) An algebraic 
variational multiscale-multigrid method for large-eddy simu-
lation of turbulent pulsatile flows in complex geometries with 



Recent Developments in Variational Multiscale Methods for Large‑Eddy Simulation of Turbulent…

1 3

detailed insight into pulmonary airway flow. Int J Numer Meth-
ods Fluids 71:1207–1225

	 54.	 De Mulder T (1998) The role of bulk viscosity in stabilized 
finite element formulations for incompressible flow: a review. 
Comput Methods Appl Mech Eng 163:1–10

	 55.	 Deardorff JW (1970) A numerical study of three-dimensional 
turbulent channel flow at large Reynolds numbers. J Fluid Mech 
41:453–480

	 56.	 Domaradzki JA, Adams NA (2002) Direct modeling of subgrid-
scales of turbulence in large eddy simulation. J Turbul 3:024

	 57.	 Domaradzki JA, Loh K (1999) The subgrid-scale estima-
tion model in the physical space representation. Phys Fluids 
11:2330–2342

	 58.	 Elgeti S, Sauerland H (2016) Deforming fluid domains within 
the finite element method: five mesh-based tracking methods in 
comparison. Arch Comput Methods Eng 23:323–361

	 59.	 Erlebacher G, Hussaini MY, Speziale CG, Zang TA (1992) 
Toward the large-eddy simulation of compressible turbulent 
flows. J Fluid Mech 238:155–185

	 60.	 Farhat C, Rajasekharan A, Koobus B (2006) A dynamic vari-
ational multiscale method for large eddy simulations on 
unstructured meshes. Comput Methods Appl Mech Eng 
195:1667–1691

	 61.	 Fedorchenko AT (1997) A model of unsteady subsonic flow 
with acoustics excluded. J Fluid Mech 334:135–155

	 62.	 Franca LP, Hughes TJR (1988) Two classes of mixed finite ele-
ment methods. Comput Methods Appl Mech Eng 69:89–129

	 63.	 Franca LP, Nesliturk A (2001) On a two-level finite element 
method for the incompressible Navier-Stokes equations. Int J 
Numer Methods Eng 52:433–453

	 64.	 Frederiksen RD, Dahm WJA, Dowling DR (1997) Experimen-
tal assessment of fractal scale similarity in turbulent flows. Part 
3. Multifractal scaling. J Fluid Mech 338:127–155

	 65.	 Fries TP, Belytschko T (2010) The extended/generalized finite 
element method: an overview of the method and its applica-
tions. Int J Numer Methods Eng 84:253–304

	 66.	 Fröhlich J, Rodi W (2002) Introduction to large eddy simulation 
of turbulent flows. In: Launder BE, Sandham ND (eds) Closure 
strategies for turbulent and transitional flows. Cambridge Uni-
versity Press, Cambridge, pp 267–298

	 67.	 Fröhlich J, von Terzi D (2008) Hybrid LES/RANS methods for 
the simulation of turbulent flows. Prog Aerosp Sci 44:349–377

	 68.	 Gamnitzer P, Gravemeier V, Wall WA (2010) Time-depend-
ent subgrid scales in residual-based large eddy simulation 
of turbulent channel flow. Comput Methods Appl Mech Eng 
199:819–827

	 69.	 Gamnitzer P, Gravemeier V, Wall WA (2012) A mixed/
hybrid Dirichlet formulation for wall-bounded flow problems 
including turbulent flow. Comput Methods Appl Mech Eng 
245–246:22–35

	 70.	 Garnier E, Adams N, Sagaut P (2009) Large eddy simulation 
for compressible flows. Springer, New York

	 71.	 Georgiadis NJ, Rizzetta DP, Fureby C (2010) Large-eddy simu-
lation: current capabilities, recommended practices, and future 
research. AIAA J 48:1772–1784

	 72.	 Germano M (1992) Turbulence: the filtering approach. J Fluid 
Mech 238:325–336

	 73.	 Germano M, Piomelli U, Moin P, Cabot WH (1991) A dynamic 
subgrid-scale eddy viscosity model. Phys Fluids A 3:1760–1765

	 74.	 Gerstenberger A, Wall WA (2010) An embedded Dirichlet 
formulation for 3D continua. Int J Numer Methods Eng 
82:537–563

	 75.	 Geurts BJ (2004) Elements of direct and large eddy simulation. 
R. T. Edwards, Philadelphia

	 76.	 Ghosal S, Lund TS, Moin P, Akselvoll K (1995) A dynamic 
localization model for large-eddy simulation of turbulent flows. 
J Fluid Mech 286:229–255

	 77.	 Gicquel LYM, Staffelbach G, Poinsot T (2012) Large eddy sim-
ulation of gaseous flames in gas turbine combustion chambers. 
Prog Energy Combust Sci 38:782–817

	 78.	 Gravemeier V (2006) A consistent dynamic localization model 
for large eddy simulation of turbulent flows based on a vari-
ational formulation. J Comput Phys 218:677–701

	 79.	 Gravemeier V (2006) Scale-separating operators for variational 
multiscale large eddy simulation of turbulent flows. J Comput 
Phys 212:400–435

	 80.	 Gravemeier V (2006) The variational multiscale method for 
laminar and turbulent flow. Arch Comput Methods in Eng 
13:249–324

	 81.	 Gravemeier V (2007) Variational multiscale large eddy simula-
tion of turbulent flow in a diffuser. Comput Mech 39:477–495

	 82.	 Gravemeier V, Comerford A, Yoshihara L, Ismail M, Wall WA 
(2012) A novel formulation for Neumann inflow boundary con-
ditions in biomechanics. Int J Numer Methods Biomed Eng 
28:560–573

	 83.	 Gravemeier V, Gee MW, Kronbichler M, Wall WA (2010) An 
algebraic variational multiscale-multigrid method for large-
eddy simulation of turbulent flow. Comput Methods Appl Mech 
Eng 199:853–864

	 84.	 Gravemeier V, Gee MW, Wall WA (2009) An algebraic vari-
ational multiscale-multigrid method based on plain aggrega-
tion for convection-diffusion problems. Comput Methods Appl 
Mech Eng 198:3821–3835

	 85.	 Gravemeier V, Kronbichler M, Gee MW, Wall WA (2011) An 
algebraic variational multiscale-multigrid method for large-
eddy simulation: generalized-� time integration, Fourier analy-
sis and application to turbulent flow past a square-section cylin-
der. Comput Mech 47:217–233

	 86.	 Gravemeier V, Lenz S, Wall WA (2008) Towards a taxonomy 
for multiscale methods in computational mechanics: building 
blocks of existing methods. Comput Mech 41:279–291

	 87.	 Gravemeier V, Wall WA (2010) An algebraic variational mul-
tiscale-multigrid method for large-eddy simulation of turbu-
lent variable-density flow at low Mach number. J Comput Phys 
229:6047–6070

	 88.	 Gravemeier V, Wall WA (2011) Residual-based variational mul-
tiscale methods for laminar, transitional and turbulent variable-
density flow at low Mach number. Int J Numer Methods Fluids 
65:1260–1278

	 89.	 Gravemeier V, Wall WA (2011) Variational multiscale meth-
ods for premixed combustion based on a progress-variable 
approach. Combust Flame 158:1160–1170

	 90.	 Gravemeier V, Wall WA, Ramm E (2004) A three-level 
finite element method for the instationary incompressible 
Navier-Stokes equations. Comput Methods Appl Mech Eng 
193:1323–1366

	 91.	 Gravemeier V, Wall WA, Ramm E (2005) Large eddy simula-
tion of turbulent incompressible flows by a three-level finite ele-
ment method. Int J Numer Methods Fluids 48:1067–1099

	 92.	 Gresho PM, Sani RL (2000) Incompressible flow and the 
finite element method, volume 1, advection-diffusion. Wiley, 
Chichester

	 93.	 Gresho PM, Sani RL (2000) Incompressible flow and the finite 
element method, volume 2, isothermal laminar flow. Wiley, 
Chichester

	 94.	 Guermond JL (1999) Stabilization of Galerkin approxima-
tions of transport equations by subgrid modeling. Math Model 
Numer Anal 33:1293–1316



	 U. Rasthofer, V. Gravemeier 

1 3

	 95.	 Guermond JL, Oden JT, Prudhomme S (2004) Mathemati-
cal perspectives on large eddy simulation models for turbulent 
flows. J Math Fluid Mech 6:194–248

	 96.	 Hachem E, Rivaux B, Kloczko T, Digonnet H, Coupez T (2010) 
Stabilized finite element method for incompressible flows with 
high Reynolds number. J Comput Phys 229:8643–8665

	 97.	 Hansbo A, Hansbo P (2002) An unfitted finite element method, 
based on Nitsche’s method, for elliptic interface problems. 
Comput Methods Appl Mech Eng 191:5537–5552

	 98.	 Hansbo P, Larson MG, Zahedi S (2014) A cut finite element 
method for a Stokes interface problem. Appl Numer Math 
85:90–114

	 99.	 Harari I, Hauke G (2007) Semidiscrete formulations for tran-
sient transport at small time steps. Int J Numer Methods Fluids 
54:731–743

	100.	 Härtel C, Kleiser L, Unger F, Friedrich R (1994) Subgrid-scale 
energy transfer in the near-wall region of turbulent flows. Phys 
Fluids 6:3130–3143

	101.	 Harten A (1996) Multiresolution representation of data: a gen-
eral framework. SIAM J Numer Anal 33:1205–1256

	102.	 Henke F (2012) An extended finite element method for turbu-
lent premixed combustion. Dissertation, Technische Universität 
München

	103.	 Henke F, Winklmaier M, Gravemeier V, Wall WA (2014) A 
semi-Lagrangean time-integration approach for extended finite 
element methods. Int J Numer Methods Eng 98:174–202

	104.	 Hickel S, Adams NA, Domaradzki JA (2006) An adaptive 
local deconvolution method for implicit LES. J Comput Phys 
213:413–436

	105.	 Hsu TC, Akkerman I, Bazilevs Y (2011) High-performance 
computing of wind turbine aerodynamics using isogeometric 
analysis. Comput Fluids 49:93–100

	106.	 Hughes TJR (1995) Multiscale phenomena: green’s functions, 
the Dirichlet-to-Neumann formulation, subgrid scale models, 
bubbles and the origins of stabilized methods. Comput Methods 
Appl Mech Eng 127:387–401

	107.	 Hughes TJR, Feijóo GR, Mazzei L, Quincy JB (1998) The 
variational multiscale method—A paradigm for computational 
mechanics. Comput Methods Appl Mech Eng 166:3–24

	108.	 Hughes TJR, Franca LP, Balestra M (1986) A new finite ele-
ment formulation for computational fluid dynamics: V. Circum-
venting the Babuška-Brezzi condition: A stable Petrov-Galerkin 
formulation of the Stokes problem accommodating equal-order 
interpolation. Comput Methods Appl Mech Eng 59:85–99

	109.	 Hughes TJR, Franca LP, Hulbert M (1989) A new finite ele-
ment formulation for computational fluid dynamics: VIII. The 
Galerkin/least-squares method for advective-diffusive equa-
tions. Comput Methods Appl Mech Eng 73:173–189

	110.	 Hughes TJR, Mazzei L, Jansen KE (2000) Large eddy simu-
lation and the variational multiscale method. Comput Vis Sci 
3:47–59

	111.	 Hughes TJR, Mazzei L, Oberai AA, Wray AA (2001) The mul-
tiscale formulation of large eddy simulation: decay of homoge-
neous isotropic turbulence. Phys Fluids 13:505–512

	112.	 Hughes TJR, Wells GN (2005) Conservation properties for the 
Galerkin and stabilised forms of the advection-diffusion and 
incompressible Navier-Stokes equations. Comput Methods 
Appl Mech Eng 194:1141–1159

	113.	 Janicka J, Sadiki A (2005) Large eddy simulation of turbulent 
combustion systems. Proc Combust Inst 30:537–547

	114.	 Jansen KE, Tejada-Martínez AE (2002) An evaluation of the 
variational multiscale model for large-eddy simulation while 
using a hierarchical basis. AIAA Paper 2002-0283, Reno, NV

	115.	 Jansen KE, Whiting CH, Hulbert GM (2000) A generalized-� 
method for integrating the filtered Navier-Stokes equations 

with a stabilized finite element method. Comput Methods Appl 
Mech Eng 190:305–319

	116.	 Jeanmart H, Winckelmans GS (2007) Investigation of eddy-
viscosity models modified using discrete filters: a simplified 
“regularized variational multiscale model” and an “enhanced 
field model”. Phys Fluids 19:055110

	117.	 John V (2004) Large eddy simulation of turbulent incompress-
ible flows. Springer, Berlin

	118.	 John V (2006) On large eddy simulation and variational multi-
scale methods in the numerical simulation of turbulent incom-
pressible flows. Appl Math 51:321–353

	119.	 John V, Kaya S (2005) A finite element variational multiscale 
method for the Navier-Stokes equations. SIAM J Sci Comput 
26:1485–1503

	120.	 John V, Kaya S (2008) Finite element error analysis for a pro-
jection-based variational multiscale method with nonlinear 
eddy viscosity. J Math Anal Appl 344:627–641

	121.	 John V, Kindl A (2010) Numerical studies of finite element 
variational multiscale methods for turbulent flow simulations. 
Comput Methods Appl Mech Eng 199:841–852

	122.	 John V, Kindl A (2010) A variational multiscale method for tur-
bulent flow simulation with adaptive large scale space. J Com-
put Phys 229:301–312

	123.	 Johnson C, Nävert U, Pitkäranta J (1984) Finite element meth-
ods for linear hyperbolic problems. Comput Methods Appl 
Mech Eng 45:285–312

	124.	 Kamran K, Rossi R, Oñate E (2015) A locally extended finite 
element method for the simulation of multi-fluid flows using 
the particle level set method. Comput Methods Appl Mech Eng 
294:1–18

	125.	 Kawamura H, Ohsaka K, Abe H, Yamamoto K (1998) DNS of 
turbulent heat transfer in channel flow with low to medium-high 
Prandtl number fluid. Int J Heat Fluid Flow 19:482–491

	126.	 Kees CE, Akkerman I, Farthing MW, Bazilevs Y (2011) 
A conservative level set method suitable for variable-order 
approximations and unstructured meshes. J Comput Phys 
230:4536–4558

	127.	 Knaepen B, Debliquy O, Carati D (2005) Large-eddy simula-
tion without filter. J Comput Phys 205:98–107

	128.	 Kolmogorov AN (1991) The local structure of turbulence in 
incompressible viscous fluid for very large Reynolds num-
bers. In: Proceedings of the Royal Society of London A: 
Mathematical, Physical & Engineering Sciences, vol 434, pp 
9–13 (republished English translation of Doklady Akademii 
Nauk SSSR, vol 30, pp 299–303, 1941 in Russian)

	129.	 Koobus B, Farhat C (2004) A variational multiscale method 
for the large eddy simulation of compressible turbulent flows 
on unstructured meshes - application to vortex shedding. 
Comput Methods Appl Mech Eng 193:1367–1383

	130.	 Krank B, Wall WA (2016) A new approach to wall modeling 
in LES of incompressible flow via function enrichment. J 
Comput Phys 316:94–116

	131.	 Labourasse E, Lacanette D, Toutant A, Lubin P, Vincent S, 
Lebaigue O, Caltagirone JP, Sagaut P (2007) Towards large 
eddy simulation of isothermal two-phase flows: governing 
equations and a priori tests. Int J Multiph Flow 33:1–39

	132.	 Lallemand MH, Steve H, Dervieux A (1992) Unstructured 
multigridding by volume agglomeration: current status. Com-
put Fluids 21:397–433

	133.	 Larsson J, Kawai S, Bodart J, Bermejo-Moreno I (2016) 
Large eddy simulation with modeled wall-stress: recent pro-
gress and future directions. Mech Eng Rev 3:15–00418

	134.	 Layton W (1999) Weak imposition of “no-slip” conditions in 
finite element methods. Comput Math Appl 38:129–142



Recent Developments in Variational Multiscale Methods for Large‑Eddy Simulation of Turbulent…

1 3

	135.	 Layton W, Röhe L, Tran H (2011) Explicitly uncoupled VMS 
stabilization of fluid flow. Comput Methods Appl Mech Eng 
200:3183–3199

	136.	 Layton WJ (2002) A connection between subgrid scale 
eddy viscosity and mixed methods. Appl Math Comput 
133:147–157

	137.	 Leonard A (1974) Energy cascade in large eddy simulation of 
turbulent fluid flow. Adv Geophys A 18:237–248

	138.	 Lesieur M, Métais O (1996) New trends in large-eddy simula-
tions of turbulence. Annu Rev Fluid Mech 28:45–82

	139.	 Lessani B, Papalexandris MV (2006) Time-accurate calcula-
tion of variable density flows with strong temperature gradi-
ents and combustion. J Comput Phys 212:218–246

	140.	 Lilly DK (1992) A proposed modification of the Germano 
subgrid-scale closure method. Phys Fluids 4:633–635

	141.	 Lin PT, Sala M, Shadid JN, Tuminaro RS (2006) Performance 
of fully coupled algebraic multilevel domain decomposition 
preconditioners for incompressible flow and transport. Int J 
Numer Methods Eng 67:208–225

	142.	 Lins EF, Elias RN, Fuerra GM, Rochinha FA, Coutinho 
ALGA (2009) Edge-based finite element implementation of 
the residual-based variational multiscale method. Int J Numer 
Methods Fluids 61:1–22

	143.	 Liu S, Meneveau C, Katz J (1994) On the properties of simi-
larity subgrid-scale models as deduced from measurements in 
a turbulent jet. J Fluid Mech 215:83–119

	144.	 Liu W (2009) A triple level finite element method for large 
eddy simulations. J Comput Phys 228:2690–2706

	145.	 Majda A, Sethian J (1985) The derivation and numerical 
solution of the equations for zero Mach number combustion. 
Combust Sci Technol 42:185–205

	146.	 Martin MP, Piomelli U, Candler GV (2000) Subgrid-scale 
models for compressible large-eddy simulations. Theor Com-
put Fluid Dyn 13:361–376

	147.	 Masud A, Calderer R (2011) A variational multiscale method 
for incompressible turbulent flows: bubble functions and fine 
scale fields. Comput Methods Appl Mech Eng 200:2577–2593

	148.	 Mavriplis DJ, Venkatakrishnan V (1996) A 3D agglomera-
tion multigrid solver for the Reynolds-averaged Navier-Stokes 
equations on unstructured meshes. Int J Numer Methods Flu-
ids 23:527–544

	149.	 Meneveau C (2012) Germano identity-based subgrid-scale 
modeling: a brief survey of variations on a fertile theme. Phys 
Fluids 24:121301

	150.	 Meneveau C, Katz J (2000) Scale-invariance and turbulence 
models for large-eddy simulation. Annu Rev Fluid Mech 
32:1–32

	151.	 Meneveau C, Sreenivasan KR (1991) The multifractal nature of 
turbulent energy dissipation. J Fluid Mech 224:429–484

	152.	 Moës N, Dolbow J, Belytschko T (1999) A finite element 
method for crack growth without remeshing. Int J Numer Meth-
ods Eng 46:131–150

	153.	 Moin P (2002) Advances in large eddy simulation methodology 
for complex flows. Int J Heat Fluid Flow 23:710–720

	154.	 Moin P, Squires K, Cabot W, Lee S (1991) A dynamic subgrid-
scale model for compressible turbulence and scalar transport. 
Phys Fluids 3:2746–2757

	155.	 Moser RD, Kim J, Mansour NN (1999) Direct numerical simu-
lation of turbulent channel flow up to Re�  = 590. Phys Fluids 
11:943–945

	156.	 Müller B (1998) Low-Mach-number asymptotics of the Navier-
Stokes equations. J Eng Math 34:97–109

	157.	 Mullin JA, Dahm WJA (2006) Dual-plane stereo particle image 
velocimetry measurements of velocity gradient tensor fields 

in turbulent shear flow. II. Experimental results. Phys Fluids 
18:035102

	158.	 Munts EA, Hulshoff SJ, de Borst R (2007) A modal-based 
multiscale method for large eddy simulation. J Comput Phys 
224:389–402

	159.	 Nagrath S, Jansen KE, Lahey RT Jr (2005) Computation of 
incompressible bubble dynamics with a stabilized finite ele-
ment level set method. Comput Methods Appl Mech Eng 
194:4565–4587

	160.	 Nitsche J (1971) Über ein Variationsprinzip zur Lösung von 
Dirichlet-Problemen bei Verwendung von Teilräumen, die 
keinen Randbedingungen unterworfen sind. Abhandlungen 
aus dem Mathematischen Seminar der Universität Hamburg 
36:9–15

	161.	 Oñate E (1998) Derivation of stabilized equations for numeri-
cal solution of advective-diffusive transport and fluid flow prob-
lems. Comput Methods Appl Mech Eng 151:233–265

	162.	 Oñate E, Valls A, Garcia J (2007) Computation of turbulent 
flows using a finite calculus-finite element formulation. Int J 
Numer Methods Fluids 54:609–637

	163.	 Oberai AA, Liu J, Sondak D, Hughes TJR (2014) A residual 
based eddy viscosity model for the large eddy simulation of tur-
bulent flows. Comput Methods Appl Mech Eng 282:54–70

	164.	 Oberai AA, Wanderer J (2005) Variational formulation of the 
Germano identity for the Navier-Stokes equations. J Turbul 
6:1–17

	165.	 Olshanskii M, Lube G, Heister T, Löwe J (2009) Grad-div 
stabilization and pressure models for the incompressible 
Navier-Stokes equations. Comput Methods Appl Mech Eng 
198:3975–3988

	166.	 Peters N (2000) Turbulent combustion. Cambridge University 
Press, Cambridge

	167.	 Piomelli U (1999) Large-eddy simulation: Achievements and 
challenges. Prog Aerosp Sci 35:335–362

	168.	 Piomelli U (2008) Wall-layer models for large-eddy simula-
tions. Prog Aerosp Sci 44:437–446

	169.	 Piomelli U, Balaras E (2002) Wall-layer models for large-eddy 
simulations. Annu Rev Fluid Mech 34:349–374

	170.	 Piomelli U, Cabot WH, Moin P, Lee S (1991) Subgrid-scale 
backscatter in turbulent and transitional flows. Phys Fluids A 
3:1766–1771

	171.	 Pitsch H (2006) Large-eddy simulation of turbulent combus-
tion. Annu Rev Fluid Mech 38:453–482

	172.	 Poinsot T, Veynante D (2005) Theoretical and numerical com-
bustion. R.T. Edwards, Philadelphia

	173.	 Pope SB (2000) Turbulent flows. Cambridge University Press, 
Cambridge

	174.	 Prasad RR, Meneveau C, Sreenivasan KR (1988) Multifractal 
nature of the dissipation field of passive scalars in fully turbu-
lent flows. Phys Rev Lett 61:74–77

	175.	 Ramakrishnan S, Collis SS (2006) Partition selection in multi-
scale turbulence modeling. Phys Fluids 18:075105

	176.	 Rasquin M, Smith C, Chitale K, Seol ES, Matthews BA, Martin 
JL, Sahni O, Loy RM, Shephard MS, Jansen KE (2014) Scal-
able implicit flow solver for realistic wing simulations with flow 
control. Comput Sci Eng 16:13–21

	177.	 Rasthofer U (2015) Computational multiscale methods for tur-
bulent single and two-phase flows. Dissertation, Technische 
Universität München

	178.	 Rasthofer U, Burton GC, Wall WA, Gravemeier V (2014) An 
algebraic variational multiscale-multigrid-multifractal method 
(AVM4) for large-eddy simulation of turbulent variable-density 
flow at low Mach number. Int J Numer Meth Fluids 76:416–449

	179.	 Rasthofer U, Burton GC, Wall WA, Gravemeier V (2014) Mul-
tifractal subgrid-scale modeling within a variational multiscale 



	 U. Rasthofer, V. Gravemeier 

1 3

method for large-eddy simulation of passive-scalar mixing in 
turbulent flow at low and high Schmidt numbers. Phys Fluids 
26:055108

	180.	 Rasthofer U, Gravemeier V (2013) Multifractal subgrid-scale 
modeling within a variational multiscale method for large-eddy 
simulation of turbulent flow. J Comput Phys 234:79–107

	181.	 Rasthofer U, Henke F, Wall WA, Gravemeier V (2011) An 
extended residual-based variational multiscale method for two-
phase flow including surface tension. Comput Methods Appl 
Mech Eng 200:1866–1876

	182.	 Rasthofer U, Wall WA, Gravemeier V (2016) An extended 
algebraic variational multiscale-multigrid-multifractal method 
(XAVM4) for large-eddy simulation of turbulent two-phase flow 
(under review)

	183.	 Rehm RG, Baum HR (1978) The equations of motion for ther-
mally driven, buoyant flows. J Res Natl Bur Sci 83:297–308

	184.	 Rodriguez JM, Sahni O, Lahey RT Jr, Jansen KE (2013) A 
parallel adaptive mesh method for the numerical simulation of 
multiphase flows. Comput Fluids 87:115–131

	185.	 Rogallo RS, Moin P (1984) Numerical simulation of turbulent 
flows. Annu Rev Fluid Mech 16:99–137

	186.	 Röhe L, Lube G (2010) Analysis of a variational multiscale 
method for large-eddy simulation and its application to homo-
geneous isotropic turbulence. Comput Methods Appl Mech Eng 
199:2331–2342

	187.	 Russo A (1996) Bubble stabilization of finite element meth-
ods for the linearized incompressible Navier-Stokes equations. 
Comput Methods Appl Mech Eng 132:335–343

	188.	 Sagaut P (2006) Large eddy simulation for incompressible 
flows. Springer, Berlin

	189.	 Sagaut P, Ciardi M (2006) A finite-volume variational mul-
tiscale method coupled with a discrete interpolation filter for 
large-eddy simulation of isotropic turbulence and fully devel-
oped channel flow. Phys of Fluids 18:115101

	190.	 Sagaut P, Deck S, Terracol M (2006) Multiscale and mul-
tiresolution approaches in turbulence. Imperial College Press, 
London

	191.	 Sauerland H, Fries TP (2011) The extended finite element 
method for two-phase and free-surface flows: a systematic 
study. J Comput Phys 230:3369–3390

	192.	 Scardovelli R, Zaleski S (1999) Direct numerical simulation 
of free-surface and interfacial flow. Annu Rev Fluid Mech 
31:567–603

	193.	 Schott B, Rasthofer U, Gravemeier V, Wall WA (2015) A face-
oriented stabilized Nitsche-type extended variational multiscale 
method for incompressible two-phase flow. Int J Numer Meth-
ods Eng 104:721–748

	194.	 Schott B, Wall WA (2014) A new face-oriented stabilized 
XFEM approach for 2D and 3D incompressible Navier-Stokes 
equations. Comput Methods Appl Mech Eng 276:233–265

	195.	 Schumann U (1975) Subgrid scale model for finite difference 
simulations of turbulent flows in plane channels and annuli. J 
Comput Phys 18:376–404

	196.	 Smagorinsky J (1963) General circulation experiments with the 
primitive equations. I. The basic experiment. Mon Weather Rev 
91:99–164

	197.	 Spalart PR (2009) Detached-eddy simulation. Annu Rev Fluid 
Mech 41:181–202

	198.	 Spalart PR, Deck S, Shur ML, Squires KD, Strelets MK, Travin 
A (2006) A new version of detached-eddy simulation, resist-
ant to ambiguous grid densities. Theor Comput Fluid Dyn 
20:181–195

	199.	 Spalart PR, Jou WH, Strelets M, Allmaras SR (1997) Com-
ments on the feasibility of LES for wings, and on a hybrid 
RANS/LES approach. In: Liu C, Liu Z (eds) Advances in DNS/
LES. Greyden Press, Columbus, pp 137–147

	200.	 Spalding DB (1961) A single formula for the law of the wall. J 
Appl Mech 28:444–458

	201.	 Sreenivasan KR (1991) Fractals and multifractals in fluid turbu-
lence. Annu Rev Fluid Mech 23:539–600

	202.	 Sreenivasan KR, Stolovitzky G (1995) Turbulent cascades. J 
Stat Phys 78:311–333

	203.	 Stenberg R (1995) On some techniques for approximating 
boundary conditions in the finite element method. J Comput 
Appl Math 63:139–148

	204.	 Stolz S, Adams NA (1999) An approximate deconvolution pro-
cedure for large-eddy simulation. Phys Fluids 11:1699–1701

	205.	 Stolz S, Schlatter P, Kleiser L (2005) High-pass filtered eddy-
viscosity models for large-eddy simulations of transitional and 
turbulent flow. Phys Fluids 17:065103

	206.	 Taylor CA, Hughes TJR, Zarins CK (1998) Finite element mod-
eling of blood flow in arteries. Comput Methods Appl Mech 
Eng 158:155–196

	207.	 Tennekes H, Lumley JL (1972) A first course in turbulence. 
MIT Press, Cambridge

	208.	 Tezduyar TE, Mittal S, Ray SE, Shih R (1992) Incompressible 
flow computations with stabilized bilinear and linear equal-
order-interpolation velocity-pressure elements. Comput Meth-
ods Appl Mech Eng 95:221–242

	209.	 Tezduyar TE, Osawa Y (2000) Finite element stabilization 
parameters computed from element matrices and vectors. Com-
put Methods Appl Mech Eng 190:411–430

	210.	 Tryggvason G, Scardovelli R, Zaleski S (2011) Direct numeri-
cal simulations of gas-liquid multiphase flows. Cambridge Uni-
versity Press, New York

	211.	 Tuminaro R, Tong C (2000) Parallel smoothed aggregation mul-
tigrid: aggregation strategies on massively parallel machines. 
In: J. Donnelley (ed.) Super computing 2000 proceedings

	212.	 Vaněk P, Mandel J, Brezina M (1996) Algebraic multigrid by 
smoothed aggregation for second and fourth order elliptic prob-
lems. Computing 56:179–196

	213.	 Veynante D, Vervisch L (2002) Turbulent combustion mod-
eling. Prog Energy Combust Sci 28:192–266

	214.	 Vreman AW (2003) The filtering analog of the varaitional 
multiscale method in large-eddy simulation. Phys Fluids 
15:L61–L64

	215.	 Vreman AW (2004) An eddy-viscosity subgrid-scale model for 
turbulent shear flow: algebraic theory and applications. Phys 
Fluids 16:3670–3681

	216.	 Wanderer J, Oberai AA (2008) A two-parameter variational 
multiscale method for large eddy simulation. Phys Fluids 
20:085107

	217.	 Wang M, Moin P (2002) Dynamic wall modeling for large-
eddy simulation of complex turbulent flows. Phys Fluids 
14:2043–2051

	218.	 Warnatz J, Maas U, Dibble RW (2001) Combustion: physical 
and chemical fundamentals, modeling and simulation, experi-
ments, pollutant formation. Springer, Berlin

	219.	 Wasberg CE, Gjesdal T, Reif BAP, Andreassen O (2009) Vari-
ational multiscale turbulence modelling in a high order spectral 
element method. J Comput Phys 228:7333–7356

	220.	 Whiting CH, Jansen KE (2001) A stabilized finite element 
method for the incompressible Navier-Stokes equations using a 
hierarchical basis. Int J Numer Methods Fluids 35:93–116

	221.	 Williams FA (1985) Combustion theory. Perseus Books, 
Reading

	222.	 Zang Y, Street RL, Koseff JR (1993) A dynamic mixed subgrid-
scale model and its application to turbulent recirculating flows. 
Phys Fluids 5:3186–3196

	223.	 Zienkiewicz OC, Taylor RL, Zhu JZ (2005) The finite element 
method, Volume 1, its basis & fundamentals. Butterworth-
Heinemann, Oxford


	Recent Developments in Variational Multiscale Methods for Large-Eddy Simulation of Turbulent Flow
	Abstract 
	1 Introduction
	2 Large-Eddy Simulation
	2.1 Problem Statement: The Navier–Stokes Equations
	2.2 The Filtered Navier–Stokes Equations
	2.3 Fundamental Subgrid-Scale-Modeling Strategies

	3 The Variational Multiscale Method
	3.1 A Paradigm for Scale Separation in Large-Eddy Simulation
	3.2 Variational Formulation of the Incompressible Navier–Stokes Equations
	3.3 Two-Scale Decomposition
	3.4 Three-Scale Decomposition

	4 Residual-Based and Stabilized Methods
	4.1 Overview
	4.2 Evolution of Subgrid Scales
	4.3 Subgrid-Scale Approximation
	4.4 Final Residual-Based Variational Multiscale Formulation

	5 Small-Scale Subgrid Viscosity
	5.1 Explicit Solution of Large- and Small-Scale Equation
	5.2 Solution of a Monolithic Equation System
	5.2.1 p-Type Scale Separation
	5.2.2 h-Type Scale Separation

	5.3 Small-Scale Subgrid-Viscosity Models

	6 Multifractal Subgrid-Scale Modeling
	6.1 Multifractals in Turbulent Flows
	6.2 Modeling Strategy
	6.3 Vorticity-Magnitude Cascade
	6.4 Vorticity-Orientation Cascade
	6.5 Subgrid-Scale Velocity Approximation
	6.6 Number of Cascade Steps and Model Parameters
	6.7 Residual-Based Subgrid-Scale Modeling
	6.8 The Algebraic Variational Multiscale–Multigrid–Multifractal Method

	7 Comparison of Variational Multiscale Methods for Incompressible Flow
	7.1 Overview
	7.2 Application to Turbulent Channel Flow

	8 Wall-Layer Modeling
	8.1 Wall-Layer Modeling for Traditional Large-Eddy Simulation
	8.2 Weak Enforcement of Dirichlet Boundary Conditions and MixedHybrid Dirichlet Formulation
	8.3 Wall-Layer Modeling via Function Enrichment

	9 Passive and Active Scalar Transport
	9.1 Problem Statement: The Convection–Diffusion Equation
	9.2 Scalar Subgrid Scales in Large-Eddy Simulation
	9.3 Variational Multiscale Formulation of the Convection–Diffusion Equation
	9.4 Active Scalar Transport: Variable-Density Flow at Low Mach Number
	9.5 Residual-Based Variational Multiscale Methods
	9.6 Small-Scale Subgrid Diffusivity
	9.7 Multifractal Subgrid-Scale Modeling for Scalar Fields

	10 Turbulent Two-Phase Flow and Combustion
	10.1 Two-Phase Flow
	10.2 Combustion

	11 Conclusions
	References


