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Railway ballast affected by heavy cyclic loading degrades and spreads resulting in an uncomfortable transporta-
tion caused by undesirable vibrations. Restoring a well sorted track ballast can be expensive. This paper analyzes
track ballast deformation using the Discrete Element Method (DEM). The simulations are performed using the
STAR-CCM+ software in a three-dimensional domain. Four track ballastmodels are studied. The first twomodels
describe the ballast as spheres with and without rolling resistance, respectively. The third model uses a clump
model that allows breaking of the ballast, whereas the fourth model describes the ballast as composite particles
generated from3D-scanned ballast stones. The sleepers and rails aremodelled asDEMparticles. As a supplement
to the study of different ballast models, the influence of variation in the loading profile is investigated. The largest
obtained deformation is observed in the ballast modelled as spheres and the smallest deformation in the ballast
modelled from the 3D scanned ballast stones. The results highlight the importance of describing the ballast as
non-spherical geometries.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

The traditional track structure consists of three components: rails,
sleepers and track ballast. The sleepers are partially submerged in
crushed granite stones. A collection of stones is known as ballast and
after heavy cyclic loading the ballast degrades, densifies and spreads
resulting in poor stability, which leads to uneven transportation. The
most common rail failures are caused by degradation mechanisms
such as wear, plastic flow, and rolling contact fatigue [1–3]. The ballast
deformation can be analyzed numerically using the Discrete Element
Method (DEM). The tendency of trains reaching higher velocities causes
greater maintenance expenses, therefore new ballast types and differ-
ent ballast stone shapes are considered. Achieving realistic, accurate
simulations of the track ballast deformation is desirable since new bal-
last types or stone shapes can be studied with few difficulties. DEM is
an effective method for computing interactions between particles and
motions of particles. In this study the ballast is simulated using the com-
mercial software STAR-CCM+ which bases its DEM on the theory de-
scribed by Cundall and Strack [4] along with the Hertz-Mindlin
contact model described by Di Renzo and Di Maio [5], and the particle
ring, Technical University of
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bondingmodel by Potyondy andCundall [6]. In this study the ballast de-
formation is simulated in a three-dimensional domain using four differ-
ent ballastmethodswith a simulation procedure inspired by thework of
Lobo-Guerrero and Vallejo [7], and Mahmouda and Papagiannakisb [8].
The focus of the present study is the capturing of the real geometry of
the ballast stones and sleepers, and to compare the complex ballast
model with more simple models, used in the literature. Accordingly,
the ballast is modelled from actual 3D-scanned stones delivered by
Banedanmark, which are assembled into unbreakable clumps, with
sleepers modelled as DEM particles. This method is compared to other
ballast models. One is modelled as spheres with and without rolling re-
sistance, and another as DEM particles assembled into breakable
clumps. In this research the sphere shaped ballast is used as benchmark
to compare the resultswith other similar studies such as [8]. The clumps
and 3D shaped stones fulfills the specifications for ballast stones de-
scribed by Banedanmark [9]. Banedanmark is responsible for mainte-
nance and traffic control on the Danish railway network. In the
simulations the sleepers and rails are described as single polyhedral
DEM particles. In addition to the study of the described ballast types
the impact of different load functions are tested.

Previous research of ballast deformation and degradation includes
the work of Feng et al. [10] and Romero et al. [11] who described com-
mon defects such as worn and missing fasteners. Zakeri and Rezvani
[12] presented a thorough analysis of the most common defects of
sleepers during production, transportation, and operation. Within

http://crossmark.crossref.org/dialog/?doi=10.1016/j.powtec.2021.02.066&domain=pdf
https://doi.org/10.1016/j.powtec.2021.02.066
mailto:s164321@student.dtu.dk
mailto:s164390@student.dtu.dk
mailto:emilh@dtu.dk
mailto:jhw@mek.dtu.dk
Journal logo
https://doi.org/10.1016/j.powtec.2021.02.066
http://www.sciencedirect.com/science/journal/
www.elsevier.com/locate/powtec


J. Mortensen, J.F. Faurholt, E. Hovad et al. Powder Technology 386 (2021) 144–153
operation and maintenance periods, bending cracks, sleeper breakage
due to derailments and cutting cracks are the most usual defects in
sleepers. Ballast layer is a track element that plays an important role
in the overall track degradation process. Degradation phenomena in
this layer are properly reported in [13–16]. The breakage behaviour of
ballast stones made of different samples has been studied by Tutumluer
and Hashash [17] using DEM along with laboratory ballast materials
tests. They found that the breakage behaviour differs considerably
when using fouled and clean ballast. Furthermore the loading profiles
from different train velocities are considered in this research. Another
study investigating the track ballast deformation behaviour during cy-
clic loading, is a study conducted by Lobo-Guerrero and Vallejo [7]. In
this study the ballast is simulated using two approaches. One of them
uncrushable while the other crushable. The study showed greater verti-
cal deformations in the crushable ballast than the uncrushable ballast.
Ballast deformation simulations using DEM in a two-dimensional do-
main was also studied by Mahmouda and Papagiannakisb [8]. Here
the effect of aggregates particle shapes on the deformation was studied
with the allowance of breakage. The study showed promising results
using aggregate shapes rather than sphere-shaped ballast stones.
Dahal andMishra [18] simulated ballast particle breakage by calibrating
the crushing criteria in the DEM simulation by particle crushing labora-
tory test. Polyhedral ballast shapes were compared with spherical
shaped ballast stones. Commonly the literature states that shape and
breakage are essentials when simulating track ballast behaviour using
DEM. In the literature numerous approaches have been used to repre-
sent ballast for cyclic loading simulations. Abundant research have in-
vestigated on sphere shaped ballast, both [7,8] focuses their studies on
sphere shaped ballast with the allowance of breakage in 2D domains.
Also quite a number of studies have investigated non-spherical ballast
in 3D domains. Tutumluer and Hashash [17], represented the ballast
as 3D Polyhedrons, using 3D- scannings of lime-stone, obtaining realis-
tic shaped ballast. Dahal andMishra [18] used a ballast model similar to
the “3D - scanned ballast” model presented in this study, where over-
lapping spheres represents the ballast stone, here 3 real stones were
scanned and modelled by overlapping spheres. Another study
representing ballast stones by overlapping spheres is the study con-
ducted Zhou et al. [19], here the main interest was to simulate the
tamping procedure. The present study is focused onmodelling of realis-
tic ballast stones interacting with the sleepers in three dimensions and
subjected to cyclic load.
2. Discrete element method theory

Simulations using the Discrete Element Method (DEM) are con-
ducted in the present study using the commercial software STAR-CCM
+. Discrete element modelling is based on Newton's second law.

F
!
i ¼ mia

!
i, ð1Þ

where F
!
i,mi, and a

!
i denote the force, mass and corresponding acceler-

ation of the i-th particle. The forces on all particles are calculated accord-
ing to the described theory for each time step. For each time step the
particles are assigned a position, velocity, angular velocity, and orienta-
tion based on the previous time step.
2.1. Governing equations

The description of the DEM theory is based on [20–22]. The total
force on a particle i in a time step is calculated by summing the forces
from all the contributions from the particles interaction with particle j
145
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where g
!
denotes the acceleration due to gravity, and F

!
u an external

body force which is used to impose the cyclic loading of the rails. F
!
nij

and F
!
tij denotes the force normal and tangential to a contact plane be-

tween particle i and j respectively. The total torque on particle i is

T
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where Ri is the radius of the i-th particle, and n
!
ij denotes the normal to

the contact plane. F
!
nij and F

!
tij are obtained from the applied contact

model. In this study two contact models are used, the Hertz-Mindlin
and the linear spring model. The unique theory for each contact model
is described in Sections 2.2 and 2.3. T

!
rollij is the rolling resistance which

is modelled using the constant torque method. The torque is given as:

T
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ωij
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where μr is the coefficient of rolling resistance,ωij is the relative angular
velocity between the two particle ωij = ωi − ωj, and Req is the relative
radius of particles i and j

Req ¼ 1
Ri

þ 1
Rj

� �−1

: ð5Þ

The constant torque method is used in one simulation where com-
plex shape of the ballast is modelled as simple spheres. The model is
added to make up for the fact that complex shapes contributes to the
restraining of rolling. The overlap normal to the contact plane between
particle i and j is calculated based on following equation:

δnij ¼ Ri þ Rj
� �

−rij, ð6Þ

where r
!
ij denotes the distance vector between particle center of particle

i and j and rij ¼ r
!
ij

��� ���
2
. The relative normal velocity and relative tangen-

tial velocity between particle i and j are respectively given as:
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!
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!
j is the relative velocity between particle i and j. The tan-

gential displacement vector is t
!
ij ¼ v

!
ijΔt with Δt being the time step.

The tangential displacement is defined as δtij ¼ t
!
ij
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2
. The normal force

is defined as:
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nij ¼ −Knδnij n

!
nij−Nn v
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Kn is the normal spring stiffness, andNn is the normal damping. How
these parameters are calculated differs between the Hertz-Mindlin and
the linear spring model. When ∣Ktδt ij ∣ < ∣ Knδnij

∣ Cfs, with Cfs being the
static friction coefficient, the tangential force is defined as:
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otherwise the tangential force is defined as:

F
!
tij ¼

Knδnij
��� ���

2
Cfs t

!
ij

t
!
ij

��� ���
2

, ð11Þ

where Kt is the tangential spring stiffness, and Nt the tangential
damping. These values differs between the models too.

2.2. Hertz-Mindlin model

The stiffnessmodels used by theHertz-Mindlinmodel are defined as

Kn ¼ 4
3
Eeq

ffiffiffiffiffiffiffiffiffiffiffiffiffi
δnijReq

q
, ð12Þ
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ffiffiffiffiffiffiffiffiffiffiffiffiffi
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q
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with
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being the relative Young's modulus and

Geq ¼ 2 2−νið Þ 1þ νið Þ
Ei
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the relative shear modulus between particles i and j. The normal and
tangential damping used by Hertz-Mindlin is defined as:

Nn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5KnMeq

q
Nn−damp, ð16Þ

Nt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5KtMeq

q
Nt−damp, ð17Þ

with Meq being the relative mass of particle i and j

Meq ¼ 1
Mi

þ 1
Mj

� �−1

: ð18Þ

Nn−damp is the normal damping coefficient and Nt−damp is the tan-
gential damping coefficient. These are defined as:

Nn−damp ¼ − ln Cn,resð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π2 þ ln Cn,resð Þ2

q , ð19Þ

Nt−damp ¼ − ln Ct,resð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π2 þ ln Ct,resð Þ2

q , ð20Þ

where Cn,res is the coefficient of normal restitution, and Ct,res is the coeffi-
cient of tangential restitution. The STAR-CCM+basedHertz-Mindlin con-
tact model requires three parameters. These are the static friction
coefficient, the normal, and the tangential coefficient of restitution.

2.3. Linear spring model

The linear springmodel defines Kn, Kt,Nn, and Nt differently than the
Hertz-Mindlingmodel while the damping coefficients remain the same.
For the linear springmodel the normal spring constant, Kn, and tangen-
tial spring constant, Kt, are set to a constant value. The normal and tan-
gential damping for the linear spring model are defined as:

Nn ¼ 2Nn−damp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KnMeq

q
, ð21Þ
146
Nt ¼ 2Nt−damp

ffiffiffiffiffiffiffiffiffiffiffiffiffi
KtMeq

q
: ð22Þ

For interactions between a particle and a wall it applies for both
models that the wall is modelled to have an infinite radius and an in-
finite mass. For these interactionMeq =Mi and Req = Ri for particle i.
The linear spring model in STAR-CMM+ requires a total of five pa-
rameters. These are the static friction coefficient, the normal and
the tangential coefficient of restitution - similar to the Hertz-
Mindlin model. Furthermore it requires a normal and a tangential
spring stiffness.

2.4. Clumps bonding and breakage model

For the track ballast simulated as clumps a bonding model is re-
quired. The bonding of individual particles in a composite particle
is rigid and the particles are only treated individually for contact
detection. Otherwise the composite particles are treated as single
rigid particles. Particles in a particle clump are treated indivi-
dually with their own velocity, position, angular velocity, and ori-
entation [22].

2.4.1. Bonding model
The bonding model used the bonded-particle model by Potyondy

and Cundall [6,22]. Here, the force and torque are calculated as:

F
!
i ¼ Fnn

!
i þ Fs t

!
i, ð23Þ

M
!

i ¼ Mnn
!
i þMs t

!
i, ð24Þ

with respect to the contact plane, where Fn andMn are the normal com-
ponents of the force and torque. Fs andMs are the shear/tangential com-
ponents of the force and torque. The force and moments are computed
incrementally cf. [6], thus

ΔFn ¼ knAΔUn, ð25Þ

ΔMn ¼ −ksJΔΩn, ð26Þ

ΔFs ¼ −ksAΔUs, ð27Þ

ΔMs ¼ −knIΔΩs, ð28Þ

here Ai ¼ πRi
2, Ii ¼ 1

4 πRi
4, Ji ¼ 1

2πRi
4, kn ¼ E

RiþRj
, and ks ¼ 6 G

RiþRj

� �
. With

the relative particle velocity v
!
ij, and the relative angular velocity ω

!
ij,

the relative displacements ΔU
!

ij and ΔΩ
!

ij are computed as:

ΔU
!

ij ¼ v
!
ijΔt, ð29Þ

ΔΩ
!

ij ¼ ω
!

ijΔt, ð30Þ

The ΔUij and ΔΩij describe the relative displacements between par-
ticle i and j, each having a normal and tangential component denoted
(ΔUn,ΔΩn) and (ΔUs,ΔΩs).

2.4.2. Breakage model
In the simulations containing clumps the breakage model “Simple

Failure Model” [22] is applied, here the maximum tensile and shear
stress of a bonded particle are calculated as:

δmax ¼ −
Fn
A

þ ∣Ms∣R
I

, ð31Þ

σmax ¼ ∣Fs∣
A

þ ∣Mn∣R
J

: ð32Þ



Table 1
Mechanical properties of the ballast, based on granite stone [23]. Here ν denotes the
Poisson's ratio, Cn and Ct are the normal- and tangential coefficients of restitution respec-
tively, ρ denotes the density, μ denotes the coefficient of friction, and E the modulus of
elasticity.

ν [−] Cn,res [−] Ct,res [−] ρ [kg/m3] μ [−] E [GPa]

0.1 5 × 10−3 5 × 10−3 2700 0.7 60
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The model computes a bond to break if:

δmax > δm ð33Þ

or

σmax > σm ð34Þ

In the simulations a constant shear and tensile strength method is
used. The tensile and shear strength used in the simulation of the
clumps are stated in Section 3.1.2.

3. Simulation procedure

This study investigates the behaviour of realistically shaped ballast
stones interacting with discrete sleepers. The ballast is compared with
three other simplified ballast models. Furthermore variations in the
load function is studied. The simulation of the deformation of the ballast
follows the sameprocedure, except themodelling of the ballast itself. All
simulations are computed in a domain with dimensions (L ×W × H) =
(1.0m × 2.1m × 1.5m)with all outer boundaries set as walls. The com-
putational domain is shown in Fig. 1.

3.1. Track ballast modelling

In the simulations the track ballast is modelled using four different
methods: spheres with and without rolling resistance, clumps and 3D
scanned stones. The models differ in computational cost and represen-
tation of the real situation. All the ballast models are simulated with
the mechanical properties stated in Table 1. The non-sphered ballast
models used in this study comply with ballast specifications and re-
quirements stated by Banedanmark. Banedanmark suggest that the bal-
last must be rather cubic, meaning that the length-to-width ratio has to
be less than 2, furthermore the length and width of the stones needs to
be in a range of 31.5 to 50 mm, however small amounts of bigger and
smaller stones are accepted [9].

3.1.1. Spheres (ballast model 1 and 2)
Thismethod is the least representational model. It simulates the bal-

last as sphereswith a diameter of d=40mm. The spheres are simulated
without and with rolling resistance denoted ballast model 1 and 2
Fig. 1. The computation domain including a free body diagram of the sleepers and cubic
rails used in the simulations.
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respectively. In ballast model 2 the rolling resistance coefficient is set
to Crr = 0.5.

3.1.2. Clumps (ballast model 3)
The clump approach is a method to obtain more realistically shaped

ballast stones. The shape of the clump is the authors proposal, for a
stone having a length to width ratio of 1.5, while keeping the number
of particles in one clump few, to keep the computational cost low. The
clumps are generated from bonding of 10 equally sized spheres and
the model is shown in Fig. 2. The size distribution of the clumps are
based on the average volume and the standard deviation of the 10
scanned stones assuming a normal distribution. The clumps are break-
able with the implementation of the earlier described simple failure
model described in Section 2.4.2. The clumps are computed with a ten-
sile and shear strength of δm=25 GPa and σm=40 GPa. The values are
based on [23,24]. Note that this model is simplified from reality since
granite has a size and geometry dependent shear and tensile strength.
This relationship is discussed by [7].

3.1.3. 3D scanned stones (ballast model 4)
To obtain the possibility to simulate the rough surface and natural

geometry of granite stones, 10 actual granite ballast-stones delivered
by Banedanmark were 3D-scanned. The scanning procedure can be
seen in Fig. 3 for two of the ballast stones. The composite particles
were generated from the CAD-files, obtained from the scannings, in a
geometry sphere fitting routine. Here a user defined number of overlap-
ping spheres are chosen to fit the geometry of the 3D-scannings, the
generated composite particle donot exceed the boundary of the original
scan. In ballast model 4, 15 overlapping spheres were chosen to fit the
geometry of the scannings. This makes the volume of the STAR-CCM+
generated composite particles lower than the 3D scanned output files.
On average the volume of the generated composite particles are 75%
of the original volume. The sphericity index of each of the scanned bal-
last stone is stated in Table 2.

3.2. Injection of the track ballast

The four ballast types are injected in the simulation domain as illus-
trated in Fig. 4. In order to obtain a randomly mixed ballast section the
particles are injected with initial velocity, spacing, and random orienta-
tion. Furthermore the DEM-clumps and 3D-scanned stones are injected
in one time step to avoid a biaseddistribution. Each ballast type is injected
with a layer height of 0.4 m. After injection the ballast is simulated to fall
under the influence of gravity until the summed magnitude velocity of
the ballast reaches<1m/s. At this state the ballast is assumed to be at rest.

3.3. Compression of the track ballast

After the injection the ballast is compressed in order to smooth the
distribution of particles, and to avoid interstices in the ballast. The com-
pression is performed using a “ballast compressor”which ismodelled as
a wall filling the horizontal cross sectional area of the simulation do-
main. The compressor is moved downwards with a fixed velocity of
10−7m per time step. The compression is first performed on the clumps
until the maximum shear or tensile stress reaches the breakage limit of
a clump. The reported contact force at this state is afterwards applied to



Fig. 2. Clumps (ballastmodel 3). (a)Model of a clump. (b)model of a clumpwith the bonds visualised. The bonds are shown inblack. The particles are shrunk in order to see theplacement
of the bonds. The total number of bonds per clump is 19 (16 are visible). The last 3 bonds are placed between each pair of the particles in the middle.

Table 2

Sphericity index of the ballast stones given byψ ¼
ffiffiffiffiffiffiffiffiffiffi
36πV23

p
A , as suggested in [25]. Here V and
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the compression of the spheres and 3D-scanned stones which do not
allow breakage).
A are the volume and surface area for the stone respectively.

No. # 1 2 3 4 5 6 7 8 9 10

ψ 0.711 0.771 0.732 0.689 0.776 0.779 0.795 0.799 0.727 0.772
3.4. Sleeper and load profile modelling

In this study the sleepers are modelled as DEM particles. The di-
mensions of the sleepers used in the simulation are (L × W × H) =
(2.1m × 0.3m × 0.15m). For each simulation 3 sleepers are placed
with a distance of 0.3 m. The DEM sleepers are injected as single polyhe-
dral DEMparticles after the compression of the ballast. Furthermore, two
rails are injected on top of the sleepers, in order to be able to model un-
evenly distributed load. The dimension of the rails are (L × W × H) =
(2.1m × 0.1m × 0.1m). The rails and sleepers are injected at a height
of 0.01 m above the highest placed particle. The sleepers and rails fall
only under the influence of gravity until the summedmagnitude velocity
of all particles reaches <1m/s. The cyclic loading model is computed by
adding an external body force on the rails. The cyclic load model is com-
puted as a trigonometric function with a peak of 63 kN and a trough of 1
kN. Similar loading profiles have been used by [7,8] based on [17]. The
cyclic loading is modelled using the function
Fig. 3.3D scanned stones (ballastmodel 4).Modelling of the 3D-scanned stones, showing a pictu
STAR-CCM+. Corresponding to stone number 1 and 6 in Table 2.
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Fu,z ¼ min − sin
t
Tc

π
� �

, 0

 �

Famp, ð35Þ

where t denotes the physical simulation time, Tc is the cycle time for
loading, and Famp = 62kN is the amplitude. This formula incorporates
a rest time which is equal to the cycle time. Rest time refers to the time
between the rails are unloaded until next load. In Fig. 5 this function is
applied with a cycle time of 0.05 s.

For simulations without rest time the formula is:

Fu,z ¼ − sin
t
Tc

π
� �����

����Famp, ð36Þ
re of the actual collected ballast stone, the 3D scannedoutput, and the generated clumps in



Table 3
Interaction models chosen for the simulations.

Component 1 Component 2 Interaction model Spring Stiffness [N/m]

Ballast Ballast Hertz-Mindlin –
Ballast Wall Hertz-Mindlin –
Ballast Sleepers Linear spring 109

Sleepers Rails Linear spring 109

Fig. 5. Specified contact force. A 0.05 s of load and rest time, peak 63 kN trough 1 kN.

Table 4
Computational cost parameters.

Ballast type Spheres 3D-scanned stones Clumps

Particle count 11,182 13,276 65,199
Minimum diameter [cm] 4.00 0.87 1.69
Mean diameter [cm] 4.00 1.10 2.16
Minimum DEM time step [s] 4.43 ×10−6 9.64 ×10−7 1.88 ×10−6

Mean DEM time step [s] 4.43 ×10−6 1.22 ×10−6 2.40 ×10−6

*Computation time [s−1] 4.3 12.6 65.9

* Computational time: duration (hours) used to simulate 1 s of physical time onanXeon
Gold 6148 processor running at 2.40 GHz.
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For simulations with rest time longer than the cycle time multiples
of the cycle time with high numerical value are added to Eq. (35) in
order to cancel out the desired number of cycles before next load. The
formula used for 0.15 s of rest time is:

Fu,z ¼ min − sin
t
Tc

π
� �

þ max −200 sin
t

2Tc
π

� �
, 0


 �
, 0


 �
Famp: ð37Þ

For 0.35 s of rest time the formula is:

Fu;z ¼ min½− sin
t
Tc

π
� �

þ max −200 sin
t

2Tc
π

� �
;0


 �

þ max −400 sin
t

4Tc
π

� �
;0


 �
;0�Famp ð38Þ

3.5. Interactions models

The interaction of thewalls and theDEMparticles aremodelledwith
Hertz-Mindlin and the linear spring model along with the physics de-
scribed in Section 2. The interaction models used on the different com-
ponents are stated in Table 3.

4. Simulations and results

The deformation is investigated applying different applied cycle-
and rest times and with different ballast shapes. The effect on the
computational cost using the different ballast types, and computa-
tional relevant parameters are stated in Table 4. The tests are stated
below.

• Variation in shape (test 1). Involves simulations of the different ballast
models.

• Rest time variation (test 2). The rest time variation is an examination
of the influence of the rest time. Rest time represents the interval of
time between the load cycles.

• Cycle time variation (test 3). The cycle time represents the period of
time in which one load cycle is simulated. The test is described in
Appendix A.
Fig. 4. Section view of the ballast models injected in the computation domain: (a) Spher
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• A total of 13 simulations are presented and described in this
study. The configurations of each simulation are presented in
Table 5.

4.1. Variation in shape (test 1)

Four studies (Sim 1.1, 1.2, 1.3, and 1.4) are conducted to test the de-
formation on the different ballast models. The simulations are per-
formed until they reach a constant rate of deformation per cycle. The
results are presented by visualizing the computational domain before
and after loading, and a plot of the applied force and associated defor-
mation. Lastly the deformation in time is compared for all types of bal-
last as the same physical time corresponds to the same amount of
cycles.
es: ballast model 1 and 2; (b) Clumps: ballast model 3; (c) Stones: ballast model 4.



Fig. 6. Vertical deformation of spheres without rolling resistance (Sim 1.1). (a) Vertical deformation before and after loading. (b) Loading and vertical deformation plot. The sleepers, rails
and ballast are colored by their velocity.
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4.1.1. Spheres without rolling resistance (ballast model 1)
The spheres modelled without rolling resistance are simulated in a

total of 80 load cycles (Sim. 1.1). The deformation of the track ballast
is displayed in Fig. 6. The initial state shown in Fig. 6a displays sleepers
that are partly submerged in the track ballast. This is caused by the
weight of the sleepers and rails induced by gravity. After loading it is
noted that the sleepers are fully submerged in the track ballast due to
large ballast deformation.More than half of the total deformation occurs
within the first 3 cycles cf. Fig. 6b. After 20 load cycles the sleepers are
fully submerged at 108 mm, which is a poor representation of the
reality.
4.1.2. Spheres with rolling resistance (ballast model 2)
The spheres modelledwith rolling resistance are simulated at a total

of 310 load cycles (Sim 1.2). The deformation is shown in Fig. 7. Before
loading (Fig. 7a) the sleepers are positioned at different levels depend-
ing on the track ballast. After loading the sleepers are at the sameheight,
and the sleepers are semi-submerged in the track ballast. Themaximum
obtained deformation is 58 mm. It is noted that the ballast is still
deforming after 310 load cycles.
Fig. 7. Vertical deformation of spheres with rolling resistance (Sim 1.2). (a) Vertical deformation
ballast are colored by their velocity.
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4.1.3. Clumps (ballast model 3)
The clumps are simulated at a total of 74 load cycles (Sim 1.3). From

Fig. 8 it is observed that the sleepers are positioned in different heights
similar to the spheres with rolling resistance. After loading the sleepers
are placed at the same level. The total deformation is 27mmas shown in
Fig. 8. Within the first 5 load cycles a deformation of 19mm is obtained.
Ballast model 3 allows the bonds to break and 38 bonds are found to
break during the simulation. In the simulation the number of broken
bonds are decreasing over time, all 38 bonds are broken within the
first 10 load cycles.

4.1.4. 3D-scanned stones (ballast model 4)
The 3D-scanned stones are simulated at a total of 122 load cycles

(Sim 1.4). In Fig. 9a the computation section is shown. Before loading
small cavities occurs underneath the sleepers. After loading the cavities
are gone and the ballast has risen. The achieved total deformation is
14mm.Within the first 5 load cycles a deformation of 6mm is obtained.

4.1.5. Comparison of ballast models
The different ballast models are compared based on their level

of deformation in Fig. 10. The ballast types are evaluated on the
before and after loading. (b) Loading and vertical deformation plot. The sleepers, rails and



Fig. 8. Vertical deformation of clumps (Sim 1.3). (a) Vertical deformation before and after loading, (b) Loading and vertical deformation plot. The sleepers, rails and ballast are colored by
their velocity.

Fig. 9. Vertical deformation of stones (Sim 1.4). (a) Vertical deformation before and after loading. (b) Loading and vertical deformation plot. The sleepers, rails and ballast are colored by
their velocity.

Fig. 10. Obtained deformation as function of physical time, for the different proposed
ballast models (Sim 1.1, Sim 1.2, Sim 1.3, and Sim 1.4).
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deformation of the first 7 s. Within 1 s of simulated time 10 load cycles
occur. In general the ballast modelled as spheres reaches a higher level
of deformation than the clumped particles (stones and clumps) within
the same number of load cycles. The largest amount of deformation oc-
curs within the first cycles. After the first cycles the ballast reaches a
state in which the rate of deformation decreases drastically. This state
is taken as an indicator of when the sleepers are settled in the ballast.
The noteworthy difference between the spheres and themore complex
shaped ballast (stones and clumps) is the interlocking potential of the
complex shapes. The complex shapes has the opportunity to “lock” be-
cause of the non-spherical geometry, which the results justify, the com-
plex shapes reaches stability before the rails reach the ballast. Track
ballast modelled as spheres will deform until the rails reach the track
ballast. With spheres it is not possible to simulate the interlocking po-
tential of real stones, which is only achievable with non-spherical
shapes.

4.2. Rest time variation (test 2)

In this section the importance of the rest period between each cycle
is investigated. In a real life situation the rest period differs with the car
length, train speed andwheel spacing. Four different rest times between



Fig. 11. Obtained deformation at different rest times: 0.00 s, 0.05 s, 0.15 s, and 0.35 s (Sim
2.1, Sim 2.2, Sim 2.3, and Sim 2.4).

Table 5
Table showing the simulation configurations of all tests conducted in the present study.

Simulation Ballast model Cycle time [s] Rest time [s]

Test 1. Shape
Sim 1.1 Spheres 5 × 10−2 5.0 × 10−2

Sim 1.2 Spheres (Roll) 5 × 10−2 5.0 × 10−2

Sim 1.3 Clumps 5 × 10−2 5.0 × 10−2

Sim 1.4 3D-scan 5 × 10−2 5.0 × 10−2

Test 2. Rest time
Sim 2.1 Clumps 5 × 10−2 0.0
Sim 2.2 Clumps 5 × 10−2 5.0 × 10−2

Sim 2.3 Clumps 5 × 10−2 1.5 × 10−1

Sim 2.4 Clumps 5 × 10−2 3.5 × 10−1

Test 3. Cycle time
Sim 3.1 Clumps 5 × 10−1 5.0 × 10−1

Sim 3.2 Clumps 5 × 10−2 5.0 × 10−2

Sim 3.3 Clumps 5 × 10−3 5.0 × 10−3

Sim 3.4 Clumps 5 × 10−4 5.0 × 10−4

Sim 3.5 Clumps 5 × 10−5 5.0 × 10−5
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the cycles are tested over 10 cyclic loads using the clumps model (bal-
lastmodel 3). The simulations are all generated from the same injection
to avoid other factors than the rest time to have an impact on the simu-
lation results. The tested rest times are 0.00 s, 0.05 s, 0.15 s, and 0.35 s
meaning the period of time simulated before the next cyclic load is ap-
plied. In Fig. 11, a significant difference between having no rest time and
having rest time is observed. In Fig. 12 a load applied at time 1.65 s can
be seen. The load stops at time 1.70 s and is followed by 0.35 s of rest
time. At 1.75 s the deformation has almost stopped and after 1.80 s
the deformation is considered stopped for the ballast. Fig. 11 shows
the difference between different levels of rest time. Increasing the rest
time from 0.00 s to 0.05 s doubles the computational cost. From 0.00 s
to 0.15 s the computational cost quadruples while from 0.00 s to
0.35 s makes it eight times as computational expensive for the same
amount of cycles. From the results it is also observed that the damping
response is rather constant. Stability is regained in the same amount
of time, independent of the number of load cycles applied, even tough
greater deformations are observed in the initial load cycles. A rest-
timeof 0.05 s is chosen for the simulations in this study, since the impact
on the deformation of having 0.15 s or 0.35 s of rest time compared to
having 0.05 s s is relatively small.

A lower value of the restitution coefficient would possibly have
lowered the computational cost. However the effect of this is not tested
in this study.
Fig. 12.Deformation over time using 0.35 s of rest time for 10 cycles. (a) Deformation for 10 cycl
followed by 0.35 s of rest time seen with the considered rest times.
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5. Conclusion and discussion

Track ballast has been studied during cyclic loading using the Discrete
ElementMethod (DEM). The ballastwasmodelled polyhedrally, byfitting
overlapping spheres into 3D scannings of real ballast stones. A thorough
comparison study was conducted, comparing the ballast modelled by
real ballast stones, with simplified ballast models commonly investigated
in the literature. Furthermore more an innovative way of computing the
sleepers was tested. The sleepers were injected in to the computational
domain as polyhedral DEM particles, yielding an accurate representation
of the degrees of freedom in the system. In addition the influence of the
applied cycle- and rest time on the obtained deformation was studied.
In relation to the present study the following conclusions are drawn,

• Modelling the track ballast from3D-scanned ballast stones, alongwith
representing the sleepers as DEM particles, is feasible and realistic re-
sults are obtainable.

• From the comparison of the 3D-scanned ballast method and the other
proposed ballast models, the smallest deformation was obtained in
ballast modelled from the 3D-scanning. The shape of the ballast has
a significant influence on the solution, making this an important fea-
ture for predicting the ballast deformation. The main finding on this
experiment was regarding the concept of interlocking. Interlocking
can not be simulated on ballast modelled as spheres. Thus, aggregate
shapes are needed to obtain realistic simulations.

• The influence of the cycle and rest time, here presented as trigonometric
functions, was found to have a remarkable influence on the results of the
simulations. The load curve depends on the train speed and car length.
es each followed by 0.35 s of rest time. (b) Zoom in at the load applied at time 1.65 s to 1.7 s
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The simulations showed great impacts on the obtained deformation, as
well as the computational cost. For this reason, the loading profile is an
important feature to refine in order to obtain reasonable results.
In the majority of similar studies the sleepers have been simulated as

walls moving with a prescribed velocity, whereas the sleepers were
modelledasDEMparticles in this study,withaprescribed load. Furthermore
themain deviations of the two types of sleeper modelling is that the DEM
sleepermethod is less rigid, and that it allows for axial sleeper rotations.
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Appendix A. Impact of the applied cycle time

To investigate the influence of the cycle time on the ballast deformation
five different cycle times are studied (test 3). The tests are performed using
clumps (the ballast model 3), with the settings described in Table 5. The
load-functions areevaluatedon the fractionof applied forceand theperma-
nent vertical deformationof the ballast is shown in Fig. A.1. The influence of
the cycle time is evaluated on the first 5 load-cycles. As seen 5 × 10−3 s,
5 × 10−4 s, and 5 × 10−5 s do not give satisfying deformation nor load-
cycles similar to 5 × 10−1 s and 5 × 10−2 s. This is due to the fact that the
contact forces do not reach the predefined force of 63 kN. Cycle times in
the range of 5 × 10−3 s to 5 × 10−5 s is concluded to be unrealistic for this
setup. Within the realistic range from 5 × 10−1 s to 5 × 10−2 s, it tends
that shorter cycle times results in larger deformation for each load-cycle. It
is observed that different cycle times leads to a significant difference in the
deformation. In practical application the deformation tends to be larger at
higher train velocities. Due to high computationally costs 5 × 10−1 s will
not be further investigated (62.5 computation-hours/cycle at Intel Xeon
40). The cycle time of 5 × 10−2 s is concluded as a fair level of cycle time
and is chosen for the simulations investigating the shape (test 1).

Fig. A.1. Sleeper deformation at the 5 different cycle times: (Sim 3.1, 3.2, 3.3, 3.4, and 3.5).
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