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a b s t r a c t 

Computer-Aided Engineering (CAE) has supported the industry in its transition from trial-and-error to- 

wards physics-based modelling, but our ways of treating and exploiting the simulation results have 

changed little during this period. Indeed, the business model of CAE centers almost exclusively around 

delivering base-case simulation results with a few additional operational conditions. In this contribution, 

we introduce a new paradigm for the exploitation of computational physics data, consisting in using ma- 

chine learning to enlarge the simulation databases in order to cover a wider spectrum of operational 

conditions and provide quick response directly on field. The resulting product from this hybrid physics- 

informed and data-driven modelling is referred to as Simulation Digital Twin (SDT). While the paradigm 

can be equally used in different CAE applications, in this paper we address its implementation in the con- 

text of Computational Fluid Dynamics (CFD). We show that the generation of Simulation Digital Twins can 

be efficiently accomplished with the combination of the CFD tool TransAT and the data analytics platform 

eDAP . 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

The fulgurant progress in data science will play an important 

ole besides the traditional scientific computing branch, and may 

ven outperform it in some niche areas where the CAE models are 

imited in their predictive performance, or simply computationally 

xpensive. A new activity has recently appeared consisting of de- 

loying free-to-use data in order to predict trends using machine 

earning, with applications covering market analysis as well as op- 

rational maintenance and process optimization in industry. 

Machine learning has recently found a fertile ground also in the 

road field of fluid mechanics due to the large volumes of data. 

he main source of fluid data is direct measurements conducted 

n laboratories or from in-situ sensors. The other source of data in 

he field is obviously CFD. The volume of simulation data has been 

ncreasing at unpreceded paces and it is in this particular segment 

here ML is gaining in importance. 

In a recent review paper [2] , the authors note that ML has been

sed in fluid mechanics in two main directions: (I) fundamental 

nderstanding and practical prediction via modeling and simula- 

ions, and (II) flow optimization and control. In flow modelling 
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nd simulation (I), ML algorithms have been used to (Ia) identify 

nd extract specific flow features and topologies, and to (Ib) pre- 

ict the flow dynamics. In (Ia), the so-called dimensionality reduc- 

ion is employed in order to mimic the key flow features and its 

ominant patterns [3] . In (Ib), on the other hand, ML algorithms 

re used to learn the solutions of ODEs and PDEs governing the 

ystem [4–7] , including deriving discretization and solver parame- 

erization, increasing the efficiency of the numerical methods, ac- 

elerating the resolution of the PDEs [8,9] , or to reduce the com- 

utational cost of large-scale problems [10–12] such as uncertainty 

uantification, shape optimization, inverse problem, etc, and even 

o help find the best set of computational parameters and stabilize 

he convergence of the simulation [13] . In the same context, ML 

an be used to help upgrade closure laws for the pertinent physics, 

ncluding turbulence [14] , boiling heat transfer [15] , etc. 

In flow optimization and control (II), ML algorithms have been 

sed under various forms and methodologies, e.g. genetic algo- 

ithms, neural networks, stochastic control, etc [16] . 

The categorization can be expanded to add a third pillar (III), 

ith reference to establishing data-driven models (DDMs) using 

eld data, with the objective of accurately mimicking the under- 

ying physics controlling field assets. However, leveraging on field 

ata for the purpose of digitally duplicating every system is not 

traightforward: raw data are noisy, often incomplete, and require 

https://doi.org/10.1016/j.compfluid.2020.104759
http://www.ScienceDirect.com
http://www.elsevier.com/locate/compfluid
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compfluid.2020.104759&domain=pdf
mailto:djamel.lakehal@afry.com
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onsiderable pre-processing before becoming useful for the con- 

truction of DDMs. 

In the present contribution, we propose to complement the 

hird pillar by exploiting simulation data instead in order to build 

pproximate models which allows on-line extrapolation of Figures 

f Merit (FoM) for a broader range of operational conditions com- 

ared to what is achievable with CFD alone, without necessarily 

aving to solve the underlying system of equations. The paradigm 

as been embedded in what we refer to as Simulation Digital Twins . 

FoMs are processed for selected operational conditions and the 

ollection over all the simulations is stored in a database, denoted 

ere as Synthetic Flow Databases , for further use as input data for 

redictive modelling. We have developed for this purpose a ded- 

cated data analytics tool, eDAP , to facilitate building databases 

rom CFD results and perform data modelling, using various types 

f machine learning algorithms. The workflow includes two main 

teps: physics-driven simulations using TransAT CFD tool [17] and 

ts Parametric Optimizer, combined with data driven modelling en- 

bled by eDAP . 

The paradigm proposed here deserves a comparison with the 

odel Order Reduction (MOR) that has proven lots of theoreti- 

al and practical success at solving similar tasks [3] . One should 

ndeed consider that the evaluation of a trained learning model 

or new inputs is extremely fast when compared to the resolu- 

ion of the underlying system of differential equations, allowing 

eal-time response on field. Moreover, this approach, not only ap- 

lies to any type of problem (non-linear and multi-dimensional) 

ut also allows the design of very accurate approximate models. 

n the other hand, for nonlinear systems, MOR techniques are not 

ell developed, and some of the most commonly used ones (i.e. 

OD/Galerkin models) are particularly expensive, and might result 

n poor surrogates. Finally, the approach described here is com- 

letely non-intrusive, and, in fact, it has been developed on top of 

tandalone platforms and can be extended to any computational 

cience context. Therefore, the approach might represent a valu- 

ble alternative to the model order reduction. It should be men- 

ioned though that the training procedure is the result of a pos- 

ibly non-convex optimization problem which is not yet well un- 

erstood, not guaranteed to converge and, depending on the model 

apacity, might entail high computational cost. 

In summary, our strategy should offer clear advantages, includ- 

ng: 

• a straightforward procedure to build physic-informed data- 

driven models, overcoming some of the issues related to 

the construction of DDM (such as the collection and pre- 

preprocessing of the data), thanks to the efficient coupling of 

tools ( TransAT CFD, Parametric Optimizer and eDAP ) conceived 

exactly for this purpose. To the best of our knowledge, building 

surrogate models based on CFD data is not offered yet in the 

data analytics platforms available in the market; 
• the design of accurate models embedding either FoMs or the 

entire flow field for an extremely wide range of operational 

conditions and accessible on-line for faster decisions; 
• cost effective strategy of multiplying initial CFD modelling ef- 

forts through rapid deployment of parametric study using au- 

tomation tools; 
• an intelligent way of making use of the simulation data for a 

comprehensive analysis of the problem. 

The paper is organized as follows: Section 2 provides an intro- 

uction of the tools used to perform CFD simulations and assemble 

o-called Synthetic Flow Databases serving as the support for the 

ata-analytics part. The next section describes the tools and pro- 

esses needed for data-driven modelling, including eDAP , short for 

ngineering Data Analytics Platform [1] . The paper concludes with 

he description of the process resulting in Simulation Digital Twins 
2 
or practical selected CFD applications, including the settling in a 

econdary water clarifier, the free fall of a cylinder filled with a 

on-Newtonian fluid, and a fire in a train travelling in a tunnel. 

. Physics-informed modelling 

.1. TransAT CFD/CMFD 

CFD is the sub-branch of CAE dealing with fluid flow and ther- 

al processes, wherein transport of mass, momentum and energy 

s modelled via the following equations: 

∂ρ

∂t 
+ 

∂(ρu j ) 

∂x j 
= 0 (1) 

∂(ρu i ) 

∂t 
+ 

∂(ρu i u j ) 

∂x j 
= −∂ p 

∂x 
+ 

∂ 

∂x j 

(
μ

∂u i 

∂x j 

)
+ S U (2) 

∂(ρ�) 

∂t 
+ 

∂(ρ�u j ) 

∂x j 
= 

∂ 

∂x j 

(
�

∂(ρ�) 

∂x j 

)
+ S � (3) 

here u i and P are the main fluid-flow variables, namely the ve- 

ocity and the pressure, and ρ and μ are the fluid density and vis- 

osity, respectively. In the scalar equation, φ denotes a generic pas- 

ive scalar (temperature or concentration), and � is the diffusivity 

oefficient. The last terms in Eqs. (2) and (3) account for sources 

f momentum and any other quantity, e.g. energy. To treat mul- 

iphase flows, the above equations can be modified to reflect the 

ature of the flow considered [18] . 

The CFD software TransAT is based on finite-volume method, us- 

ng the Immersed Surfaces Technique (IST) for multidimensional 

eshing, enhanced with Block-Mesh Refinement (BMR) to refine 

he mesh near the walls. The tool can be operated on Windows 

nd Linux operating systems [19] . TransAT is particularly suitable 

or complex, multiphase and multicomponent flow systems, with 

hase change heat transfer. Additional models accounting for spe- 

ific physical phenomena can be added using User Defined Func- 

ions. More details concerning the tool and its features can be 

ound in [17] . 

.2. TransAT parametric optimizer 

In all CAE disciplines, the sensitivity of the simulation results 

o minor variations in the operating conditions and material prop- 

rties is of significant importance. Real applications require tools 

apable of returning results for more than a few operating condi- 

ions. TransAT is equipped with a batch tool for multiparametric 

imulations, significantly reducing the overhead for the user. Para- 

etric simulation studies can therefore be conducted for specifica- 

ion of the physics, the numerical parameters, initial and boundary 

onditions, material properties, embedded CAD objects, etc. Once 

he batch of simulations is executed, the tool transfers the selected 

esults automatically to the eDAP platform to create databases for 

nalysis and predictive modelling. 

. Data-driven modelling 

.1. eDAP platform architecture 

eDAP is a data archival and analysis tool, based on an SQL en- 

ine for fast access to information, combined with a user-friendly 

nterface for data analysis, visualization, and predictive modelling. 

he platform is conceived with the purpose of creating a simple 

orkflow that guides the user from the creation of a database to 

redictive modelling. The platform is structured in the form of dis- 

inct applications created for the analysis of large-scale systems: 
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ach application is filled with data representative of a specific sys- 

em component and contributes to assembling the database for 

hat specific system. 

.2. Synthetic flow databases 

eDAP can deal with all sorts of data for treatment, including 

hose delivered by CFD. In this particular context, fluid flow and 

hermal processes are first simulated for selected key operating 

onditions. FoMs are defined and determined for each simulated 

cenario using appropriate reduction of the flow results. Out of the 

imulated flow cases, Synthetic Flow Databases are created, which 

ncompass the selected FoMs. Depending on the application field, 

oM can for example represent the aerodynamics coefficients in 

erospace engineering, pressure losses in mechanical engineering, 

eparation efficiency in process engineering, runout length in hy- 

raulics, etc. 

.3. Machine learning 

The end objective of eDAP is to perform predictive modelling on 

ynthetic Flow Databases. In particular, we make use of the specific 

lass of supervised machine learning to reconstruct or interpolate 

imulation data and create physics-based data-driven models [21] . 

The target of machine learning algorithms is to approximate a 

unction 

f : X → Y, (4) 

 ⊆ R 

m , Y ⊆ R , based on a set of samples { x i , y i }, i = 1 : n . The vast

ajority of machine learning algorithms requires the resolution of 

 minimization problem, reading: 

ˆ = arg min 

θ
L (θ ) , (5) 

here L (θ ) is a proper loss function and θ the set of parameters 

efining the approximate model. The loss function mostly used in 

egression problems is the mean squared error : 

 (θ, x ) = 

n ∑ 

i =0 

(y i − ˆ y (x i , θ )) 2 , (6) 

here ˆ y (x i , θ ) is the response predicted by the surrogate model. 

As is usual in supervised learning, the available dataset is split 

nto three subsets: training, validation and testing sets. The entire 

rocess of finding the best set of fitting parameters θ is usually de- 

oted as model training , and is performed on the training dataset. 

he model hyperparameters, namely higher-level parameters cho- 

en before the model training, are defined through cross-validation . 

his is usually performed by training the learning model for differ- 

nt hyperparameters configurations and selecting the optimal one 

ccording to some selection criterion , for instance the value of the 

oss function on the validation test. Eventually, the performances 

n the optimal model are evaluated on the testing set. Note that 

alidation and testing sets are two distinct and independent sets, 

nd the latter one is not involved in the selection of the model hy-

erparameters. The described procedure is applied in the numeri- 

al examples reported in Section 5 . 

It is customary in supervised learning to add a regularization 

erm to the loss function to avoid the overfitting of the data. The 

ptimization problem can be reformulated as follows: 

ˆ = arg min 

θ
(L (θ, x ) + J(θ )) , (7) 

ith J(θ ) = λ|| θ || p , 1 ≤ p < ∞ . Usually, L 1 or L 2 regularization

 p = 1 or 2) is adopted. 

The end-user can rely on the following learning algorithms im- 

lemented in eDAP : (1) Polynomial Regression [20,21] , (2) Multi- 

ariate Adaptive Regression Spline (MARS) [22] (3) Random Forest 

20,21] , and (4) Artificial Neural Network [23] . 
3 
.3.1. Polynomial regression 

Polynomial regression is a parametric algorithm that assumes 

he existence of a polynomial relationship between the input and 

he response. In the simple one-dimensional case ( m = 1 ) the rela- 

ionship reads: 

 (x, θ ) = θ0 + θ1 x + . . . + θm 

x m , (8) 

here coefficients θ i are unknown and need to be estimated. This 

s achieved by minimizing (6) with 

ˆ 
 (x i , θ ) = θ0 + θ1 x i + . . . + θm 

x m 

i . (9) 

ne disadvantage of the polynomial regression is the assumption 

ade about the structure of the mapping function f that makes the 

odel less flexible compared to non-parametric models. However, 

ts simplicity guarantees a better interpretation of the data. 

.3.2. Multi-variate adaptive regression splines 

MARS is learning model intended to perform flexible non-linear 

odelling of highly dimensional data [22] . It is a non-parametric 

pproach that models the function y = f (X ) as a sum of basis func- 

ions h ( X ) [20] : 

f (X ) = β0 + 

k ∑ 

i =1 

βm 

h (X ) . (10) 

he basis functions can be: 

• hinge functions: h (X ) = max (0 , X − c) or h (X ) = max (0 , c − X ) ,

where c is called knot point; 
• or product of different hinge functions. 

Once the basis functions are chosen, the expansion coefficients 

re computed using standard linear regression. The algorithm con- 

ists of two steps: 

• Forward Pass . At each stage, a new basis functions pair is added. 

This consists in the product of a term already present in the 

basis succession and a new hinge function: 

ˆ βk +1 h l (X )(X − c) + 

ˆ βk +2 h l (X )(c − X ) . (11) 

The term h l ( X ) resulting in the largest decrease of the training

error is chosen. The process is performed until the maximum 

number of terms is reached or the threshold value of the error 

achieved. 
• Backward Pass . The less effective terms are progressively re- 

moved until the best model is found using the method of Gen- 

eralized Cross Validation, or GVC [22] . 

In practice, we fix a rather low value of the error threshold 

nd we select the optimal maximum value of terms with cross- 

alidation. 

.3.3. Random forest 

Random Forest is a decision tree based algorithm that over- 

omes the problem of data over-fitting in classical decision algo- 

ithms. The idea behind can be summarized as follows [20] : 

• Divide the training set into B smaller subsets ( bootstrap tech- 

nique); 
• Build decision trees on each bootstrapped training sample. Each 

time a split in the tree is considered, a random number of fea- 

tures m , smaller than the total one, is picked, and the split is 

allowed to use only the extracted features; 
• Compute the final predicted value as the average of the values 

obtained by each bootstrapped sample. 

The construction of a decision tree consists of two steps [21] : 

• The training space is divided into M non-overlapping regions R i , 

i = 1 : M; 
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• For every observation falling in the region R m 

the same predic- 

tion ˆ y m 

= 

∑ 

x i ∈ R m y i is made. 

The algorithm for growing decision trees searches for the op- 

imal space subdivision with a top-down greedy approach on each 

ootstrapped training sample, with the aim of minimizing an ad- 

oc loss function. In the first place, consider a splitting variable X j 

nd a splitting point x s and build the regions R 1 and R 2 : 

 1 (X j , x s ) = { X | X j < x s } , R 2 (X j , x s ) = { X | X j > x s } (12)

hen, we search for X j and x s as solutions of the optimization prob- 

em: 

in 

X j ,x s 

{ 

min 

c 1 

∑ 

x ∈ R 1 (X j ,x s ) 

(y − c 1 ) 
2 + min 

c 2 

∑ 

x ∈ R 2 (X j ,x s ) 

(y − c 2 ) 
2 
} 

. (13) 

or any j and s , the inner optimization problem is solved by 

 1 = 

∑ 

x i ∈ R 1 (X j ,x s ) 

y i , c 2 = 

∑ 

x i ∈ R 2 (X j ,x s ) 

y i . (14) 

he best pair ( X j , x s ) can be determined by running through all

he inputs. This process is iterated for each new region, leading 

o the optimal subdivision of the sample space. The fundamental 

arameter controlling the performance of the model is the total 

umber of trees employed, mostly tuned with cross-validation. 

.3.4. Neural network 

A feed-forward neural network consists of an input layer, an 

utput layer, and different hidden layers [23] . Each layer is defined 

y a specific number of neurons, connected by synapses that are 

athematically modelled by functions σ , called activation functions 

 Fig. 1 ). In various problems, ReLU function is usually employed, 

eading: 

(x ) = max (0 , x ) . (15) 

he intricate structure of the network provides a great flexibil- 

ty that allows to model almost any type of complex function. To 

escribe how a network works, let us consider the architecture 

hown in Fig. 1 , with L different hidden layers. 

Each neuron at the layer l is connected to all the neurons of the 
revious level l − 1 , and the connections are formulated as follows: 

Fig. 1. General artificial neura

4 
 

(l) 
i 

= σ (ξ (l) 
i 

) = σ
( n (l) ∑ 

j=1 

W 

(l) 
i j 

v (l−1) 
j 

+ b (l) 
j 

︸ ︷︷ ︸ 
ξ (l) 

i 

)
(16) 

ere, n ( l ) denotes the number of neurons at layer l , W ∈ R 

n (l) ×n (l−1) 

s the matrix of weight connecting hidden layer l − 1 to layer l , and

 

(l) ∈ R 

n (l) 
is the vector variable encoded into the neurons of layer 

 . The connections are feed-forwarded from the input layer up to 

he output, and, in the end, the output variables ˆ y are obtained as 

unctions of the input variables and the weights connecting each 

ayer. The model parameters (W, b) = θ are estimated by minimiz- 

ng the cost function L (θ, x ) , defined as in (6) . The essential ele-

ent in the optimal design of a neural network is the tuning of the 

odel hyperparameters, including the loss function, the optimiza- 

ion algorithm, the regularization, and the width and depth of the 

etwork. Lye et al. [10] recently proved that the careful selection 

f the model hyperparameters can lead to a high level of compres- 

ion, minimizing the prediction error. However, the approximation 

heory currently developed on neural network does not provide 

xplicit information about how an efficient network is to be de- 

igned, making the task of constructing it rather challenging. 

. Simulation digital twins 

Before elaborating on the machine learning algorithms em- 

loyed (performance and limitations), we summarize first the 

orkflow leading to what we refer to as Simulation Digital Twin 

SDT), or the concept of creating a virtual model using simulation 

ata. 

.1. The workflow 

The workflow leading to a typical SDT is described below (see 

lso Fig. 2 ). For a given thermal-fluid flow problem with defined 

eometry, fluid properties and flow or operating conditions, the 

rocess follows these steps: 

1. Create a robust simulation setup for a base condition and simu- 

late and analyze the results to determine the key FoMs. Use this 

setup as the template for the TransAT Parametric Optimizer; 
l network architecture. 



R. Molinaro, J.-S. Singh, S. Catsoulis et al. Computers and Fluids 214 (2021) 104759 

Fig. 2. Workflow for Simulation Digital Twin via Synthetic Flow Databases. 

Table 1 

Mean absolute error for the test example. 

Streamwise Vel. U Temp. T 

Regression 0.0018 0.04 

MARS 0.0053 0.11 

Random Forest 0.00015 0.0012 

Neural Network 0.0044 0.0042 
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Table 2 

Configurations of hyperparameters used for cross- 

validation. 

Model Hyperparamters 
2. Design the scope of the parametric study and define the study 

using the Parametric Optimizer; 

3. Perform the simulations in the parametric study for the chosen 

set of conditions; 

4. Collect the simulation data into a database. TransAT Parametric 

Optimizer tool allows to directly collate the data which can be 

imported into eDAP ; 

5. Apply selected learning algorithms to the Synthetic Flow 

Databases in order to build SDT. 

Once the SDT is built, it can at anytime be updated by adding 

ew simulation data and quickly interrogated for additional oper- 

ting conditions ( Fig. 2 ). 

.2. ML algorithms testing & validation 

In a first step, the ML algorithms available in eDAP have been 

ested for several CFD problems, with variable complexity. The idea 

ehind was to select the most accurate ones for further use in the 

ases discussed in the application section. 

Among these validation cases, we discuss here the results of a 

D heated-channel flow. Different flow scenarios have been sim- 

lated with TransAT to create its Synthetic Flow Database, using 

he Reynolds number ( Re ) as the sole input variable. The objective 

s to realize a SDT to retrieve velocity and temperature values at 

ny spatial location for any Re: U = U(x, y, Re ) and T = T (x, y, Re ) .

olynomial regression, multivariate regression spline, random for- 

st, and neural network have been tested separately and compared. 

he models performance are assessed by computing the mean ab- 

olute error (MAE) over the samples of the testing set ( Table 1 ) 1 :

 = 

1 

N test 

N test ∑ 

i =1 

(| y i − ˆ y i | ) . (17) 
1 The samples data are normalized between 0 and 1 through a linear transforma- 

ion. 

5 
olynomial regression results in rather poor generalization capa- 

ilities, due to the parametric nature of the model. Interestingly, 

hile MARS has shown a good performance in other cases tested 

not discussed here), it behaves worse than simple regression for 

he 2D channel flow. On the other hand, neural network and 

andom forest return significantly accurate approximations of the 

unctions of interest (further details are reported in [24,25] ). 

.3. Selection of models hyperparameters 

As mentioned in Section 3.3 , the proper training of machine 

earning algorithms requires the specification of several hyper- 

arameters in order to achieve reasonable accuracy in building a 

odel. To this end, we perform cross-validation as described in 

ection 3.3 . Specifically, cross-validation is used for the selection of 

he maximum number of terms added in the forward step of MARS 

nd the number of splitting trees for the random forest. Within the 

ontext of neural networks, we fix a priori a reference architecture 

nd adopt key results achieved by Lye, Mishra and Ray [10] regard- 

ng the selection of regularization type, loss function, optimizer, 

nd learning rate. In this regard, the authors proved that L 2 regu- 

arization, ADAM algorithm with learning rate η = 0 . 01 , and mean 

quared error loss function are suitable choices for a large variety 

f similar CFD problems. The tuning of the regularization param- 

ter λ is realized by cross-validation starting from this configu- 

ation. In summary, the problem reduces to the selection of one 

yperparameter per model. We choose as selection criterion the 

alue of the MAE (17) estimated on the validation set, 

 = 

1 

N v al 

N v al ∑ 

i =1 

(| y i − ˆ y i | ) , (18) 

nd select among the hyperparameter configurations reported in 

able 2 the one resulting in the lowest value of (18) . 
Max terms (MARS) 20, 30, 40, 50 

Trees (RF) 200, 400, 700, 1000, 1500 

Reg. Param. (NN) 10 −7 , 10 −6 , 10 −5 , 10 −4 
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Fig. 3. Secondary Water Clarifier case study: schematic configuration Fig. 3 a and simulation results of the sludge concentration Fig. 3 b. 
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Table 3 

Number of samples used for the numerical examples. 

Training Validation Testing 

Waterclarifier 9954 2488 1383 

Viscous Free Flow 180 20 100 

Train in Tunnel 112,076 28,019 1416 
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. Case studies 

We present next three concrete applications realized with the 

ombination of TransAT and eDAP , by reference to the workflow de- 

cribed in the section above. In light of the previous results, in the 

ollowing, we only employ MARS, random forests and neural net- 

orks, whereas linear regression is used as a reference baseline. 

.1. Secondary water clarifier 

The efficiency of secondary water clarifiers is crucial for the 

verall performance of wastewater treatment plants. Its operation 

s determined by complex interactions between flow and settling, 

ncluding stratification and flocculation processes. The success of 

he clarifier operation is strongly dependent on the flow features, 

nd the relevance of supervised learning to learn outputs, such as 

he sludge height blanket, as a function of the flow features is ev- 

dent. The height blanket should always be under control so that 

he sludge does not reach the free surface and flows aboard the 

ank. 

.1.1. Flow physics and modelling 

The problem has been simulated following to a large extent the 

orkflow described by Lakehal et al. [26] . Meshing is based on the 

mmersed Surfaces Technology, whereby the geometry is embed- 

ed in a Cartesian grid comprising 100 × 268 cells. A sketch of the 

omputational domain is shown in Fig. 3 a. Two-dimensional ax- 

symmetric simulations have been performed, using the following 

oundary conditions (BCs): the inflow massflow rate and concen- 

ration are imposed, the pump BC at the bottom are set according 

o the specified recirculation factor, and pressure BC is fixed at the 

utlets. Turbulence is modelled using the conventional k − ε model 

odified to account for buoyancy effects. The fluid rheology is ac- 

ounted for using a Bingham type of model. 

A typical CFD result of the water clarification and sludge set- 

ling in the tank is shown in Fig. 3 b. The prediction shows a strong

calar stratification at the bottom of the vessel, near the drainage, 

nd a less compact blanket in the outermost part of it. 

.1.2. Parametric study 

The objective is to explore the efficiency of the clarifier for dif- 

erent flow conditions, such as the sludge inflow concentration and 

he mixture massflow rate. To this end, a parametric study has 

een performed, with the aid of a total of 30 simulations cov- 

ring a relatively broad range of conditions: 10 values of the in- 

ow sludge concentration C in equally spaced between 7.125 and 

7.5 kg / L , and 3 values of the mixture massflow rate Q in ranging

rom 1.14 to 4.56 kg / s . 
6 
.1.3. Predictive modelling 

Here the aim is to explore the relationship between the sludge 

lanket height and the inflow concentration and massflow rate. 

ARS, RF and NN have been used for the learning of the map 

 = h (y, C in , Q in ) , where h denotes the sludge blanket height, de-

ned as the x -location where the molar fraction of sludge becomes 

egligible ( Fig. 3 a). The selection of the models hyperparameters 

s performed according to Section 4.3 . We use 72% of the entire 

ataset to train the model, the 18% for the model selection with 

he cross-validation, and the remaining 10% as testing set to re- 

ort the training results (see Table 3 , the dataset include also y - 

patial Cartesian grid points). For the MARS algorithm, a maximum 

umber of 50 terms, provided by cross-validation, has been used. 

owever, the forward phase concludes before reaching the train- 

ng error threshold and no improvement is achieved enlarging the 

aximum number of terms [22] . The underlying mapping exhibits 

ndeed features that MARS is not capable of learning. In the case of 

he RF, the optimal value of the number of estimators is 200. The 

est performing neural network model, on the other hand, consists 

f an architecture of 4 layers and 24 nodes, L 2 regularization and 

arameter λ = 10 −6 . As in the rest of this work, ADAM algorithm 

ith learning rate η = 0 . 01 is employed. 

The results of the training for h are shown in Fig. 4 . The testing

rrors for the learning models are 0.0366 for MARS, 7.7 ·10 −16 for 

he random forest and 0.0 0 048 for the neural network. All of them 

re rather small compared to the baseline value (0.197). The total 

lapsed time to perform the entire cross-validation and train the 

odels amounts to 58s, 16s and 2855s, for the three algorithms, 

espectively, which is extremely low compared to the computa- 

ional time that the generation of the dataset entails (several hours 

or one single realization of the operational conditions.) Here, the 

andom forest outperforms the other algorithms in terms of error 

nd computational time, leading to surprisingly accurate solutions. 

owever, a closer analysis of the algorithms reveals an important 

nsight. 

NN and RF have been used to perform prediction on new 

ata. The results are shown in Fig. 5 a-b for the radial location 

 = 5 . 0471 m: the continuous lines represent the values predicted 

y the models, whereas the black dots and triangles correspond to 

he data stored in the CFD database. We observe that the random 

orest provides a stepwise representation of the blanket height h 
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Fig. 4. Machine learning algorithms performance in the Secondary Water Clarifier case study. 

Fig. 5. The sludge height blanket h is plotted as a function of the sludge inflow concentration C in for different values of the mixture mass flow rate Q in at the radial location 

y = 5 . 0471 . The black triangles and dots correspond to the CFD data stored in the database for ˙ m = 1 . 14 and 4.56 kg / s . The lines are given by Random Forest model (on the 

left) and NN model (on the right). 

Fig. 6. Viscous Free Flow of a Cylinder schematic configuration. 
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s a function of both the inflow flow rate and sludge concentra- 

ion. In fact, the lines corresponding to flowrates 1.71 kg/s and 

.42 kg/s coincide with the ones corresponding to 1.14 kg/s and 

.56 kg/s, that already exist in the CFD database. In other words, 

or some input location ( y, C in , Q in ) 
∗ of interest (not contained in

he CFD dataset), the model will return the CFD result correspond- 

ng to the input point ( y, C in , Q in ) “closest” to ( y, C in , Q in ) 
∗. There-

ore, despite the extraordinary performance of the random forest 

n the testing set, the algorithm does not provide any additional 

nformation compared to the CFD simulations. This is not the case 

or NN since the model returns an interpolated value between the 

imulated data. 

In summary, the user of this result can interrogate the SDT 

without performing new CFD simualtions) for any new opera- 

ional condition, e.g. what would be the loading of the settling 

ank in case of rains or when inflow has changed due for exam- 

le to an increase of population in the area.. 
7 
.2. Viscous free flow of a cylinder 

The case study involves a cylinder made up of a viscous fluid 

hat is initially in standing position, and is then simply let to freely 

ow until it reaches a final configuration [27] . 

.2.1. Flow physics and modelling 

The simulations have been carried out by taking advantage 

f the axisymmetry of the cylinder. The computational domain, 

hown in Fig. 6 , consists of a rectangle of length 0.22 m and height

.17 m, discretized with a Cartesian grid of 245 × 130 cells. The ex- 

ent to which the simulations have been carried out is based on a 

on-dimensional time used across all simulations, indicating that 

he cylinder has reached steady-state. The boundary conditions are 

s follows: a no-slip wall boundary condition on the side of the 

ylinder’s base, and symmetry conditions on the rest of the do- 

ain’s boundaries. 
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Fig. 7. Simulation results for the Viscous Free Flow of a Cylinder case study. 

Table 4 

Experiment-Simulation comparison for similar inputs. 

Final radius [mm] Final height [mm] 

CFD 108.64 42.10 

Experiment 118.50 40.00 
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Table 5 

Extremum values for parameter variation, and constants. 

Re Fr L r Bm n 

Variation boundaries [50:340] [1:2] [1:15] [1:30] [0.05:0.95] 

Operating conditions 130.0 1.41 2.4 5.46 0.35 
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The material of the cylinder is modeled according to the non- 

ewtonian Herschel-Bulkley model, which includes a yield stress 

0 for initiating the fluid motion: 

= τ0 + K ˙ γ n , 

here n is the power-law value, ˙ γ is the shear rate, and K is the 

onsistency coefficient [28] . Gravity is included, but no turbulence 

odelling is employed here. The homogeneous phase averaging 

odel is used to treat the multiphase flow, where one phase is 

he material itself and the other is air. 

Before proceeding with the parametric study, a “reference” test 

ase was performed using similar inputs as in [27] . The results are 

hown in the Fig. 7 : the fluid body falls and splashes on the sur-

ace until it reaches a final position and shape. The comparison 

etween CFD and measured results is highlighted in Table 4 . 

.2.2. Parametric study 

The objective of this study is to explore the I/O behavior of the 

ylinder on account of several different input parameters, such as 

nitial height H i , initial radius R i , material density ρ , K, n and τ 0 .

owever, in order to reduce the complexity of the problem, and 

nsure that identical points on the input space are not acciden- 

ally visited, a contraction of the input space has been performed 

y grouping the input parameters into four non-dimensional num- 
8 
ers: 

 r = H i /R i , Re = 

ρUH i 
μ , 

m = 

τ0 H i 
μU 

, F r = 

U √ 

gH i 
, 

(19) 

here U is obtained after specifying Froude number Fr . To 

hese numbers, we add the power-law coefficient n to model 

arametrization. The input space has been explored in the follow- 

ng fashion: 150 simulations have been run by varying one param- 

ter at a time (with others kept at operating conditions) and an- 

ther 150 using randomly-generated inputs. This method of explo- 

ation was chosen as it allows us to explore the search space ef- 

ciently, given that some inputs are more influential than others, 

hile the random sampling aids in exploring yet unseen regions of 

he input space. We also note that it allows us bypass the Carte- 

ian spacing method which produces a combinatorial explosion on 

he number of simulations to run. The input parameters vary in 

ntervals as presented in Table 5 . 

.2.3. Predictive modelling 

We aim to investigate the effect of the input parameters ( Re, Fr, 

 r , Bm and n ) on the following FoMs: the final radius R and the

nal height H of the cylinder shape. 

To that end, we follow the same procedure as in the previ- 

us case study for the hyperparameter selection of MARS, RF and 
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Fig. 8. Machine learning algorithms performance in the Viscous Free Flow of a Cylinder case study for the radius R ( Fig. 8 a–c) and the height H of the final shape ( Fig. 8 d–f). 
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N. The number of training, validation, and testing samples are 

eported in Table 3 . The resulting optimal number of maximum 

erms used in the forward phase of MARS is 20 for both the FoMs. 

n the case of the RF, the number of trees ensuring the smallest 

alue of the MAE on the validation set is 1500 for the radius R and

00 for the height H of the cylinder. As far as NN is concerned, we

mploy the same reference architecture used in the Water Clarifier 

xample with regularization parameter λ = 10 −7 , 10 −6 for R and H 

respectively), obtained from cross-validation. 

The mean absolute error (17) achieved on the testing set by the 

lgorithms for the observables of interest are 0.015 and 0.034 for 

ARS, 0.018 and 0.046 for RF and 0.01 and 0.02 for NN ( Fig. 8 ).

ll the algorithms show indeed a very good accuracy, with rather 

mall prediction errors, smaller than the baseline (0.083 and 0.05), 

espite the high dimensionality of the input parameter space. 

The learning models obtained provide an implicit function to 

he FoMs that can be used to interpolate the simulation results to 

ny operating point falling in the range of the parametric study. 

he prediction results realized with NN are presented as 2D con- 

our maps in Fig. 9 . This particular case is a validation of our

ebris-flow and snow-avalanche simulation solutions that we de- 

elop for natural hazard prediction. The end user (generally the 

ountains and forestry safety authorities) could use the platform 

o create SDT’s for particular areas where snow avalanches or de- 

ris falls are expected to occur. This is actually one of our present 

rojects with the Swiss authorities. 

In the light of the results achieved for these case studies, in the 

ext example, we will only employ neural networks, as they have 

roven significantly higher generalization capability and accuracy 

ompared to the other algorithms. 

.3. Train in a tunnel 

A case study has been performed concerning a fire emergency 

n a train driving gear inside a base tunnel. The fire is managed 

ith the help of fans located along the tunnel and activated at 

he fire ignition. Events like this can be particularly dangerous for 

assengers if the ventilation is not properly handled. It has been 
9 
hown that an insufficiently strong one can lead to the propaga- 

ion of smoke in the evacuation direction [29] . The objective is to 

reate a sufficiently complete database consisting of probable sce- 

arios reflecting (i) various positions of the train in the tunnel, (ii) 

arious fire intensities, and (iii) variable ventilation fan flowrates. 

n in-depth analysis of the problem can help design save evacua- 

ion plans, but it would require a large number of expensive CFD 

imulations due to a large number of parameters at play. Here, the 

ole of machine learning becomes obvious: even with a reasonable 

umber of CFD runs, the SDT of the tunnel should provide a wider 

ange of operational conditions than what is feasible via simulation 

lone. 

.3.1. Flow physics and modelling 

The simulations have been conducted in two dimensions only, 

onsidering the configuration described in Fig. 10 a. The computa- 

ional domain consists of a straight tunnel section of 200 m and 

 train of 50 m length positioned at different locations. The train 

nd tunnel are represented by geometry data extracted from a CAD 

ool. Meshing is based on the Immersed Surfaces Technology, with 

 Cartesian grid comprising about 400 × 80 cells. 

The flow of compressible air in the tunnel is treated as tran- 

ient, where Eqs. (1) –(3) are solved and marched in time. A trans- 

ort equation for smoke is also solved in the form of Eq. (3) .

urbulence is modelled using the conventional k − ε model with 

odifications for buoyancy effects. Wall functions are employed to 

reat the near-wall frictional effects. The fire model consists of a 

olumetric source of heat and smoke ( S �) at the location of one of

he train driving gears. 

The ventilation jet-fan is modelled as a volumetric momen- 

um source added to the corresponding transport equation. Three 

quidistant jet fans (150 cm × 50 cm) are located along the tun- 

el ceiling. A delay between the start of the fire and the reaching 

f jet fans full operation capacity is needed to model the fire ig- 

ition and propagation scenario. Pressure outflow conditions are 

sed at the open ends of the tunnel. Figs. 11 a–c display contours 

f smoke concentration, fluid temperature and velocity at three po- 

itions of the train in the tunnel, including one case where the 
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Fig. 9. Predictions of the optimal network model for the two FoMs of the Viscous Free Flow of a Cylinder . 

Fig. 10. Train in Tunnel case study: schematic configuration Fig. 10 a and neural network performance Fig. 10 b. 
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entilation fans are not active. The results suggest indeed different 

moke spreading scenarios based on train locations. 

.3.2. Parametric study 

A parametric study consisting of 144 simulations has been per- 

ormed considering different fire and ventilation scenarios: 

m

10 
• 3 locations of the train, x train : 25 m, 75 m, and 125 m; 
• 8 values of fire intensity: 1 ≤ I fire ≤ 8 MW ; 

• 6 values of jet fan flowrates: 0 ≤ Q fan ≤ 40 m 

3 / s . 

.3.3. Predictive modelling 

Finally, machine learning is used to complete the operational 

ap representing any train position, any jet fan flowrate and any 
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Fig. 11. CFD simulation results of the smoke concentration ( Fig. 11 a), and fluid temperature and velocity ( Fig. 11 b, c) for the Train in Tunnel case study. 
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2 The value of the regularization parameter reported has been divided by the 
re intensity. In this context, the so-called visibility coefficient (S) 

s selected as the FoM: 

 = 6 T g / 830 0 0 F C O 2 , (20) 

here T g is the temperature of the gas mixture in Kelvin and F CO 2 
s the volume fraction of CO 2 . 

A neural network has been employed to reconstruct the map, 

¯
 = S̄ (t, x, I f ire , Q fan , x train ) , (21) 

here t and x represent the time and the longitudinal coordinate 

f the tunnel, and S̄ is the average visibility coefficient along the 

unnel cross-section. The dataset (including also longitudinal and 

emporal profiles) has been split into training, validation and test- 

ng sets, corresponding to 79%, 10% and 1% of the entire dataset, 

espectively. Contrary to the previous cases, in the present one, we 

se cross-validation to define most of the network hyperparame- 

ers, including learning rate, regularization type, and architecture. 

n

11 
e choose the best configuration among L 1 or L 2 regularization, 

= 0 , 0 . 001 , 0 . 01 , 0 . 1 , 1 2 , η = 0 . 001 , 0 . 01 and 4 hidden layers with

2, 24 or 48 neurons. 

The final configuration consists of 4 hidden layers with 48 

eurons and RELU activation function, L 2 regularization with λ = 

 . 13 · 10 −9 , ADAM optimizer with learning rate η = 0 . 01 , and the

ean squared error as objective function. The achieved prediction 

rror is equal to 0.0131, fairly acceptable for engineering problems 

 Fig. 10 b). 

The trained model has been used to perform predictions on 

ew data ( Fig. 12 ). The diagrams show the visibility coefficient for 

he train locations x train = 25 , 50 m and 75 m as a function of the

patial and temporal coordinates. The results prove that the model 
umber of training and validation samples. 
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Fig. 12. Comparison between the actual Fig. 12 a and predicted Fig. 12 b visibility coefficient S̄ as function of time t and tunnel longitudinal coordinate x , at x train = 25 m, and 

Simulation Digital Twins at x train = 50, 75 m Fig. 12 c-d. 
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s able to successfully capture the most prominent features of the 

roblem ( Fig. 12 a-b) and return reasonable predictions for configu- 

ations not covered by CFD data as well ( Fig. 12 c-d). From an engi-

eering operational viewpoint, the advantage is clear: data cover- 

ng a wide range of conditions are available in an easy and rapidly 

ccessible database, and thus allowing to take timely safety deci- 

ions. Indeed, the tunnel safety crew could virtually interrogate the 

DT specific to a tunnel to determine the safest escape paths in 

ase of a hypothetical accident, without running new simulations. 

his is also one of our ongoing projects for the Swiss Gotthard base 

unnel. 

. Conclusions 

The work proposed here is meant to pave the way towards a 

ew paradigm for CAE data treatment, analysis and solution-based 

eployment in computational engineering. We have shown that 

FD data can be completed with the significant power of machine 

earning to cover a wider range of operational conditions that 

ould otherwise be too expensive to simulate and build quickly 

ccessible models for real-time response. The key success of our 

ontribution resides in the efficient coupling of the CFD solver 

ransAT and the data platform eDAP , which together build a sim- 

le workflow for the design of Simulation Digital Twins . With this 

ata intelligence strategy, the end-user can have access to a rich 
12 
atabase comprising of a full picture of the operational processes, 

ith a deeper insight into the physics and mechanisms that are 

mpossible to achieve with a few CFD datasets only. 

The paradigm introduced here opens various other horizons re- 

ated to scientific data (both measurements and simulation) treat- 

ent and exploitation. For instance, the various physics-based 

odels could be assessed by comparing their DDMs (referred to 

s CFD DDMs) over a large operational range, instead of comparing 

heir results for specific conditions at specific points and segments 

nly, as is usually the case. Further, experimental data generally 

sed for model validation through comparison with the simula- 

ion can also be represented via their own DDMs, which we can 

efer to as Exp. DDMs [25] . CFD DDMs can be compared directly 

ith the corresponding Exp. DDMs, and this should be the most 

omprehensive way of assessing the predictive performance of the 

hysics-based models over a wider range of experimental condi- 

ions, providing a high-level classification of their range of applica- 

ility. 
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