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1. Introduction
1.1. The model

The study of propagation of acoustic waves in heterogeneous media is of crucial importance to geophysics, particularly
in seismic imaging. In the present paper, the motion of seismic waves is modeled by the linear, acoustic wave equation,
reading as

Pt (X, ) — div(cX)Vp(x,t)) =0, XeD, t>0. (11)

Here, p denotes the acoustic pressure variable and the material coefficient ¢ : D — R, describes the (positive) speed of
sound in a heterogeneous medium at a given domain point x € D. Throughout this paper we consider domain D to be either
D =R? (a “Cauchy problem”) or a bounded, axis-parallel box D=1I7 x --- x I C R%.

In the latter case, and with periodic boundary conditions, we may equivalently rewrite the Cauchy problem for the wave
equation (1.1) as the first-order linear, hyperbolic system
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pr(x, t) — div(cx)u(x, t)) =0,
xeD, t>0. (1.2)
u:(x) — Vp(x) =0,

This first-order system of PDEs is the prototypical example for general linear hyperbolic systems of conservation (balance)
laws given by

d
d
U(x. 1) + ;‘ i (AU 0) =Sex. ), Y0 €D x E.. (13

U(x,0) =Up(x),

Here, U: D x R, — R™ denotes the vector of conserved variables, A; : R™ — R™ denote linear maps (fluxes), and S :
D x R, — R™ denotes the source term. If the source term S=0 (as in (1.2)), the balance law (1.3) is termed a conservation
law.

We observe that the wave equation (1.2) is of the form (1.3) with U= (p,u),S =0 and entries (A;(X)); ; of matrices A,
fori, j=1,...,m given by

—c(x) i=1, j=r+1,
Ar(x))ij=14 -1 i=r+1, j=1, (1.4)
0 else.

The methodology of the present paper also extends to systems (1.3) in general, polyhedral domains with suitable boundary
conditions (which, in the case of (1.1), allow first order system reformulation (1.2)).

Other examples for the linear systems of conservation laws (1.3) are the equations of linear elasticity and linearized
shallow water equations of oceanography.

Given the lack of explicit solution formulas (particularly for variable coefficients and in several space dimensions), nu-
merical methods are widely used to approximate (1.3) and, in particular, the wave equation (1.2). Popular discretization
methods include finite difference, finite volume and discontinuous Galerkin methods, see [26,59,21] and references therein.

1.2. Uncertainty quantification

These numerical methods require the specification of the coefficient matrices, initial data, source terms and boundary
data as inputs. However, these quantities are often determined by measurements, which are typically uncertain and provide
only statistical information about the input data. For instance, in the propagation of acoustic waves in the subsurface, the
wave speeds c(x) in (1.2) depend on the material properties (rock permeability) of the subsurface medium. The relative
scarcity of seismic measurements leads to statistical descriptions (using available a-priori knowledge) of material properties
of the medium, which then result in uncertain wave propagation speed c(x). The efficient computation of the resulting
solution uncertainty, given the statistical description of input uncertainty, is the central theme of uncertainty quantification
(UQ).

A necessary prerequisite in UQ is an appropriate mathematical notion of random solutions for linear hyperbolic systems.
In [52], we recently provided a mathematical framework and proofs of existence and uniqueness of these random solu-
tions, including the quantification of their (spatio-temporal and statistical) regularity. There has been tremendous amount
of recent interest in devising efficient UQ methods for PDEs. Among the most popular methods (particularly for elliptic and
parabolic PDEs) are the stochastic Galerkin methods based on generalized Polynomial Chaos (gPC for short). An incomplete
list of references on gPC methods for uncertainty quantification in hyperbolic conservation laws includes [2,8,27,28,54,55,
44,57,18] and other references therein. Although these deterministic methods show some promise, they suffer from the dis-
advantage that they are highly intrusive: existing codes for computing deterministic solutions of balance (conservation) laws
need to be completely reconfigured for implementation of the gPC based stochastic Galerkin methods. An alternative class of
methods for quantifying uncertainty in PDEs are the stochastic collocation methods, see [60,29,58]. In particular, a stochastic
collocation method for the wave equation, even with discontinuous random speed, was recently proposed in [36]. Stochastic
collocation methods are non-intrusive and easier to parallelize than the gPC based stochastic Galerkin methods. However,
the lack of regularity of the solution with respect to the stochastic variables (the solution can be discontinuous in the
stochastic variables if the inputs are discontinuous) impedes efficient performance of both the stochastic Galerkin as well
as the stochastic collocation methods. A variant is the recently developed stochastic Finite Volume Method [30] which can
deal with low parametric regularity of the computed solution, but is generally not efficient when there are a large number
of sources of uncertainty (resp. a high-dimensional parameter space). Yet another set of alternative methods, which heav-
ily rely on the assumed low “effective” number of stochastic dimensions, include adaptive analysis of variance (ANOVA)
[61], proper generalized decomposition (PGD) [9] and Fokker-Planck-Kolmogorov type [56] techniques. In addition to the
assumption that the “effective” number of sources of uncertainty is low, these methods require very complex representa-
tions of the input random fields, which are in practice are rarely available and for which the numerical estimation can be
computationally expensive.

The afore described methods generally fail to efficiently approximate problems that either possess low stochastic regu-
larity or a large number of sources of uncertainty or both. In fact, designing efficient methods for UQ in the wave equation
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with heterogeneous uncertain wave speeds is highly challenging as realistic statistical representations of the underlying
heterogeneous media require the use of a very large number of sources of uncertainty (stochastic dimensions) and result in
wave speed fields with rather low stochastic regularity, which propagates into the solution.

For such problems, with very low parametric (stochastic) regularity, a class of viable non-intrusive methods are Monte
Carlo (MC) methods. There, the underlying deterministic PDE is solved repeatedly for each statistical sample and the samples
are combined to ascertain statistical information. However, robustness of MC methods with respect to solution regularity
comes at the price of a low (and non-improvable) error convergence rate of 1/2 with respect to the number of samples:
a large number of numerical solves of (1.3) is required. Slow convergence has inspired the development of Multi-Level Monte
Carlo (MLMC) methods. They were introduced by S. Heinrich for numerical quadrature [23], developed by M. Giles for It
SPDE [14], and applied to various SPDEs [5,11,15,38]. In particular, recent papers [31,33,32] extended the MLMC algorithm to
nonlinear conservation laws. Massively parallel simulations of the random multi-dimensional Euler, magnetohydrodynamics
(MHD) and shallow water equations were performed using novel static and adaptive load balancing techniques [51,50].

1.3. Aims and scope of the current paper

The concept of random solutions for linear hyperbolic systems (1.3) was developed and shown to be well-posed in
a recent paper [52], where the basic framework of MC and MLMC methods was outlined for computational uncertainty
quantification for (1.3). However, the numerical examples presented in [52] were for some simplified models and did not
cover realistic scenarios. Major algorithmic adaptations are required in order to apply the MLMC method on large scale
two and three dimensional problems with realistic representations of the underlying uncertainty in the properties of the
subsurface. The main aim of the current paper is to propose these adaptations and extend the MLMC method to quantify
uncertainty in such realistic configurations. To this end,

e we consider a realistic statistical description of the random material coefficients c(x), given by a piecewise log-gaussian,
anisotropic random field. Although MLMC methods for stationary problems with an approximate representation (via
truncated Karhunen-Loéve expansions) of isotropic, log-gaussian rough coefficients were considered in [53,25], a key
aspect of the current paper deals with the dynamic problem of wave propagation in random media when anisotropically
correlated, layered log-gaussian statistical models of the subsurface medium are assumed.

e Although independent identically distributed (i.i.d.) samples for the input layered log-gaussian permeability field can be
efficiently generated using spectral FFT (Fast Fourier Transform) generator [10,38,39,46], one needs to suitably couple
this approximate representation of a complex random medium with the MLMC framework in order to keep the com-
putational cost reasonable. One principal tool developed in the current paper is a bias-free variance upscaling technique
which allows to efficiently generate identically distributed realizations of random inputs on several mesh resolutions
without accessing finer resolutions.

e The explicit timestepping used in the pathwise simulations entails, via the CFL condition, a sample-dependent timestep
which, in turn, implies delicate load-balancing and scaling issues within the MLMC algorithm, particularly for a very
large number of processors. We couple a dynamic load balancing algorithm designed recently by one of the authors in
[50] with the MLMC framework.

Thus, we combine the MLMC method with a novel bias-free, upscaled representation of input random fields and an adaptive
load balancing procedure in the current paper to obtain a non-intrusive and highly effective computational UQ framework
for the propagation of acoustic waves in realistic, highly heterogeneous, possibly discontinuous, two- and three-dimensional
random media.

The rest of the paper is organized as follows. In section 2, we recapitulate the main theoretical results from [52]: we
present the stochastic linear system of conservation laws, define random weak solutions and state the results on their
existence and uniqueness. In section 3, we present the MLMC-FVM algorithm and provide the asymptotic bounds for error
vs. computational work. In section 4, the spectral FFT generator for log-gaussian, anisotropically correlated layered material
coefficients is presented, together with the bias-free upscaling technique required for the coupling of the spectral generator
to MLMC framework. In section 5, parallel implementation ALSVID-UQ of MLMC-FVM is discussed. In section 6, the acoustic
wave equation (1.2) will be considered in two and three spatial dimensions, with random log-normally distributed highly
heterogeneous layered material coefficients c(x).

2. Systems of stochastic linear hyperbolic conservation laws

We fix notation and describe the probabilistic modeling of random inputs and solution by introducing random fields.
Next, several well-posedness results from [52,49] are recapitulated and applied to a special case of the acoustic wave
equation (1.2).

2.1. Preliminaries

For the mathematical description of uncertainty in inputs and solutions of PDEs, as well as for stating convergence results
of MC methods, we place ourselves into the setting of Kolmogorov’s probability theory, and recapitulate basic terminology
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and notation which is used throughout this paper, from [45]. Uncertain inputs for (1.3) then take the form of random fields
with prescribed probability laws.

Let (€2, F) be a measurable space, with Q denoting the set of all elementary events w € 2, and F a o -algebra of all
possible events in our probability model. A probability measure P on (€2, F) is a o -additive set function from € into [0, 1]
such that P(2) =1, and the measure space (€2, F,P) is called probability space. We shall always assume, unless explicitly
stated, that (2, F,P) is complete. Denoting a second measurable space by (E,G), an E-valued random field (or a random
variable taking values in E) is any mapping X : Q — E such that {w € Q: X(w) € A} ={X € A} € F for any A € G, i.e. such
that X is a G-measurable mapping Q2 — E. £(X) denotes the law of X under PP,

LX)(A) =P({weQ: X() e A}) VYAeG.

The image measure pux = £(X) on (E, G) is called law (or distribution) of X.

Definition 2.1 (Random field). For a separable Banach space E, an E-valued random field is a (F, B(E))-measurable mapping
X :Q — E, with B(E) denoting the Borel o -algebra of E,

X:(Q,F)— (E, B(E)).

Lemma 2.2 (Random field norm is a random variable). (See [45].) Let E be a separable Banach space and let X : Q@ — E be an E-valued
random field on (2, F). Then the mapping Q2 > w > || X(Q)||g € R is measurable, i.e. it is a random variable (2, F) — (R, B(R)).

As E is separable, the random field X : Q — E is Bochner integrable with respect to the probability measure P on the
measurable space (2, F),

[”X(CU)HECIIP’(Q)) < 00.
Q

By L1(Q2,E) = L'((Q, F,P), E) we denote the set of all (equivalence classes of) Bochner integrable, E-valued random
fields X, equipped with the norm

XN g,6) = / I X(@) g dP(w) =E(X|E).
Q

More generally, for 1 < p < oo, we define LP(2, E) = LP((2, F,P), E) as the set of Bochner p-integrable random fields
taking values E, equipped with the norm

1
Xl @5 = EAXID) P, 1<p<oc.

For p = oo, we denote by L*°(Q2, E) = L*®°((2, F,P), E) the set of all E-valued random fields which are P-almost surely
bounded, equipped with the norm

| XllLoo(2,E) :=ess sup || X (@) ||E-
weR

For X € L1(§2, X), the mathematical expectation (or “ensemble average”) of an E-valued random field X is well-defined and
denoted by E[X].

2.2. Random conservation laws

As the inputs to (1.3) are random fields, so are the solutions of the balance law (1.3). Statistical moments of the random
field solution such as the expectation E[U] and spatiotemporal correlations (covariance functions) are typical (deterministic!)
quantities of interest. A realization w € Q of the linear system of balance laws (1.3) with random initial data, coefficients
and sources is given by

d
ot o)+ ; Bixr (A W) =St V(x.1) eD xRy . (21)
U, 0, w) =Up(x, ),
Here, the initial data Ug is a L2(D)-valued random field
Up: (2, F) — (L*(D), BL*(D)), 23w Up(x,w),
the matrices A, are (C'(D))™™-valued random fields,

A (Q,F) = (CHD™ ™, BICHD)™™), Q>0 AX o),
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the source S is a Cb([O, T1,L2(D x ]R'"))—valued random field,
S:(Q,F) — (Cp([0, T, L2(D x R™)), B(Cy([0, T1, L*(D x R™)))),
and the solution U is a C,([0, T], L2(D))-valued random field,
U: (2, F) — (Cp([0, TI,L2(D)), B(Cy([0, T1,L2(D)))), 23w URX,t, ).

In the case of the wave equation (1.2), randomness in the coefficient matrices A; is inherited (through relation (1.4)) from
the underlying random material coefficients c(x, w), modeled as a C!(D)-valued random field,

c: (Q,F) — (C'D), BC'D)), Q3w cx ).

For simplicity of exposition, all definitions and theoretical results will be stated explicitly only for Cauchy problems with
D = R%. Analogous results are available for general bounded domains, for instance, for periodic bounded Cartesian domains
D=1y x--- xIq.

Following [52], we define the notion of solutions of (2.1), which is a stochastic extension of conventional definition from
[26,21] of weak solutions for deterministic case in (1.3).

Definition 2.3 (Random weak solution). A random field U: Q > w — U(x,t, ), i.e. a measurable mapping from  to

C([o, T],leoc(]Rid)), is random weak solution to the stochastic conservation law (2.1) on D =R? if it is P-a.s. a weak so-

lution of (1.3) on D =RY, i.e. U satisfies the variational formulation for all test functions ¢ € c! (R? x R;) with notation
Ry ={teR:t>0} and P-ae. w € Q,

d
/ (U'got—i-ZArU-%(a)dxdt—i-/Uo-(oh:odx: / S-@dxdt. (2.2)
r=1 !

RIXR, Rd RIxR

Next, we specify the notion of hyperbolicity for a general linear system of random conservation laws (1.3); we refer to
[17] for details.

Definition 2.4 (Hyperbolicity). For any direction vector w € S¢~1, with S~ := {w : |w| = 1} denoting the unit sphere in RY,
any directional combination of random matrices A;(X, w) is denoted by

d
PYR"xQ->R"xQ, P'&ow)=) wAEXw®), weS .

r=1
Consider the eigen-decompositions of all possible P¥(x, w), i.e. for all w e S9-1,
-1 .
PY(x, 0) = Q" (x, o) A" (x, ®)Q" (x, w) ', AV (X, w) =diag(A}, ..., Ap) (X, @), (2.3)

where A" (X, w) are the diagonal matrices containing the eigenvalues AY, ..., A, and Q™ (x, w) are the corresponding sim-
ilarity transformation matrices containing eigenvectors as columns. The random linear system of conservation laws (2.1) is
PP-a.s. hyperbolic [52] if for all x € R? all eigenvalues M (X, w), ..., \q (X, ) are real P-a.s. and there exists K(w) < oo such
that

sup QY% ) QY (X, w)|| <K (@), VP-ae.weQ. (24)

xeD, weSd-1
Next, we present the result from [52] on the well-posedness of (2.1).
Theorem 2.5. In the random linear system of balance laws (2.1) on D = R, assume that the following holds for some k € NU {0, oo}

(A1) (2.1)is hyperbolic with constant K (w) < oo in (2.4) for P-a.e. w € 2, and
Kie = IK (@)l k(. k) < 0©. (2.5)
(A2) there existrg, s € NU {0, oo} and ra € N U {oo} such that for both p € {2, oo},
Up € L (2, WP (RY)),
S e Lk, WP (RY)), (2.6)
Ar e L0(Q, (C™RY)™ ™),
(A3) each random field A;,r =1, ...,d, is independent of Ug and S on (2, F, P).
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Then, for T < oo, (2.1) admits a unique random weak solution

U: Q— C([0, T],L*(RY)), o UG, -, w), Yoel, (2.7)
where U(-, -, w) is the solution to the deterministic system (1.3). Moreover, Vt € [0, T], with K (w) as in (2.4),

UG, t, o)ll2gdy < T2y (K(@), U (-, @), S(-, ), t), P-as., (2.8)

||U||Lk(QVC([O’T]’LZ(]Rd))) < ||FL2(Rd)(K, Up, S, t) ||Lk(9) = I_<k||FL2(Rd)(1, Up, S, 1) ||Lk(Q), (2.9)
with the notations (for arbitrary Banach space V and arbitrary constant K > 0)

Ly (K, U,S,t) :=K(IUllv + [t[lISllv). (210)
Furthermore, the pathwise regularity of U is given by r = min{ro, 1's, ra}, leading to

UeL“(Q, C(0, T, WP ([RY)), p e 2,00} (211)

For the proof we refer to [52]. This theorem ensures the existence of the statistical k-th moments [31] of the random
weak solution U, provided Uy, S € L¥(22, L2(RY)) and K e LK(Q).

2.3. Hyperbolicity of the random acoustic wave equation

Next, we briefly investigate the hyperbolicity of the wave equation (1.1) as a random linear system of conservation laws
(2.1) in order to ensure that the hypothesis (2.5) in Theorem 2.5 holds. Furthermore, we derive a condition on the material
coefficient ¢ in order to attain finite expected maximum wave propagation speeds, i.e. which ensure that (3.11) holds. We
analyze the structure of the matrices A; in (2.1), which define a strongly hyperbolic linear system of conservation laws
under suitable conditions on the statistical properties of the material coefficient c. For brevity of exposition, we present
these in the one-dimensional case d = 1. Then, for each w € @ and x € D, there exists an invertible matrix Q(x, w),

1 1
Q(x,w)=i[m ‘ﬁ]

V2 1 1
diagonalizing the matrix A(X, ) defined in (1.4),
_ —J/c(X, ) 0
A 1= .
Qx, w)A1 (X, ®)Q(X, w) [ 0 m]

The maximum wave speed A(w) is then given by

Mw) = Ve, o)llco) - (2.12)
Since
IQx(@)[11Q5 " (@) | = max{c? (-, ), ¢~ (-, @)} <2 (-, @) + ¢ 2 (-, W),
the P-a.s. uniform boundedness
c,c 1 el®(Q, C(D)) (213)

ensures that K., < oco. We note in passing that Assumption (2.13) is overly restrictive and can be further relaxed. In partic-
ular, for 1 <k < oo, the following hypothesis if sufficient for the ensuing analysis:

2,02 e N, C(D)) (2.14)
implies
1 1 k _ k
K¥(w) = [Imax{c? (-, ), ¢ "2 (-, )} py < NleC @) 1) + 117" ¢ )i p)-
Hence c? , 3 e L¥(©2, C(D)) is sufficient to ensure (A1) of Theorem 2.5:

_ 1 _1
K = EIK @)1 < e, )2 [k g ¢y + 1672 G )i gy < O (2.15)

Since for the acoustic wave equation (1.1), (1.2) the non-zero eigenvalues of Ay € R™*™ are £./c(X, w), the assumption of
finite expected maximum wave speed X in (3.11) of the forthcoming subsection 3.1 holds, provided /c € L' (2, C(D)),

~=E = Velp.emy <oo. for cel'(Q,CD)). (2.16)
Finally, assumption (A2) in the Theorem 2.5 holds with ra =r, provided
cel%(Q, D)),

since the only non-constant entry in matrices A; is given by the coefficient —c(X, w), see (1.4).
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3. Multi-Level Monte Carlo Finite Volume method

Next, we aim to design an efficient numerical scheme to approximate solution statistics for the stochastic balance law
(2.1). This entails discretizing spatio-temporal space D x [0, T] (for bounded domains D and finite time horizon T < 00)
as well as the probability space (€2, F,P). In the first subsection, we begin with the Finite Volume Method (FVM) for the
spatio-temporal space. Afterwards, we present Monte Carlo (MC) and a more efficient Multi-Level Monte Carlo (MLMC)
sampling type algorithms for the discretization of the probability space and provide convergence results.

3.1. Finite Difference and Finite Volume methods

For complicated coefficient matrices A, (or material coefficients ¢ in the case of the acoustic wave equation), exact
analytic solutions to deterministic systems of linear balance laws (1.3) are not available. For continuous Uy and S (then the
solution U is also continuous), conventional Finite Difference methods [21,59] can be used where the numerical scheme is
obtained by approximating spatial and temporal derivatives in (1.3) using upwinded difference quotients. For discontinuous
Up and S, (then the solution U is also discontinuous) we present the Finite Volume Method [26].

Consider a bounded axis-parallel domain D=1I; x --- x I CR? and let 7 =7" x --- x T4 denote a uniform, axis-parallel

quadrilateral mesh of the domain D, consisting of identical cells C;=Cj, x --- x Cj,, jr=1,...,#T".
Assume mesh widths are equal in each dimension, i.e. Ax := % =...= y—%. Define the approximations to cell averages

of the solution U and source term S by

1 1
U;(t) ~ —/U(x, Hdx, Sj~— [ S(X)dx.
Gl Gl
G G

Then, a semi-discrete finite volume scheme [26] for approximating (1.3) is given by

d
1
WO =-> — (Fj+%er —ij%er) - S G1)

r=1

where numerical fluxes F' are defined by using (approximate) solutions of local Riemann problems (in direction r) at each
cell interface. High order accuracy is achieved by using non-oscillatory TVD, ENO, WENO methods [19,22]. At time steps t",
approximations U’%— =Ur(x,t") =Uj(t") for x € Cj are obtained by SSP Runge-Kutta methods, where the time step size At
is limited by the CFL condition (with XA; being eigenvalues from (2.3)),

At 1

Amax—— < =, Mmaxmax ‘km(xj, a))‘ < Amax (@) :=sup ’Am(x, a))’ . (3.2)

Ax — 2 j m X
Fluxes on the boundary of the computational domain are computed using so-called ghost cells [26], denoted (in the direc-
tion r) by Cjye, for jr =#7; and Cj_e, for j =1, which are “outside” of the computational domain D. Periodic boundary
conditions can be implemented straight-forwardly by copying ghost cell values accordingly, i.e. we set

Uite, =Uj—@#7-1ers  Uj—e, =Ujr#7-1e,- (33)
In the case of the acoustic wave equation (1.2), perfectly reflecting boundary conditions will also be used. There the acoustic
pressure p and velocities u are set according to

Djte, =Dj>  Ujye, = —Uj; Dj—e, =Dj» Uj_e, = — 1. (34)

Ghost cell values for other remaining domain-dependent input data are set analogously.
Before we proceed with the definition of the MC-FVM scheme, we assume that an abstract FVM scheme (3.1) satisfies
the following assumption.

Assumption 3.1 (FVM). We assume, that under CFL condition (3.2), the approximate FVM solution U’L‘r of an abstract FVM
scheme (3.1) converges to the unique weak solution U of the linear system of conservation laws (1.3). Furthermore, if
boundary conditions do not introduce additional energy into the solution, FVM approximation U%- satisfies the energy
inequality

07 (-, t)“LZ(D) < FLZ(D)(K, U ,S7,1), (3.5)

and the approximation error converges (as Ax — 0) with rate s > 0, i.e., there exists a constant Cs > 0 which is independent
of Ax= Ax(T) such that, as Ax(7) — 0, the following holds,

IUC, ) = Uz (-, Oll2p) < Cs AXtTsp) (K, Ug, S, £) . (3.6)

Here, H*(D) denotes the Hilbert space W52(D)™ of s-times weakly differentiable (equivalence classes of) vector functions
with (component-wise) L%(D)-integrable weak derivatives.
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Remark 3.2. Assumption 3.1 on convergence is satisfied by many standard FVM (for small s) schemes with periodic and re-
flective boundary conditions, provided that the coefficients (wave speed c) and hence the resulting solutions are sufficiently
smooth. We refer to [16,17,21,26,35,59] and the references therein for further details.

In particular and if the coefficient c is Lipschitz continuous, the convergence estimate (3.6) is known to hold for first-
order FVM schemes by results of Kusznetsov (see, e.g. [13]) with s = 1/2. We also assume s =1 for second order FVM
schemes.

In general, for g-th order (formally) accurate schemes, full convergence order s = q is achieved for sufficiently smooth
solutions with 7 > q in (2.6), whereas irregular solutions with shocks (r = 0) converge with order s < 1, equal to only half
of the formal order g, resulting in s=1/2 or s=1.

3.2. Monte Carlo Finite Volume method

For the discretization of the stochastic space €2, we will employ the sampling type methods. We are interested in the
computational estimation of the “mean field” or “ensemble average”, i.e. of M!(U) = E[U]. To this end, we use the Monte
Carlo Finite Volume method (MC-FVM) to approximate E[U]. It is based on the straightforward idea of generating independent
identically distributed (i.i.d.) samples of the random input data

I(@) ={Up(w), S(w), A1 (@), ..., Ag(@)}, (3.7)

and then performing the FVM simulation for each such sample.

Definition 3.3 (MC-FVM Scheme). The Monte Carlo Finite Volume Method consists of the following three main steps:

1. Sample: Given mesh 7, we draw M i.i.d. input data samples IiT withi=1,2,..., M from the random input fields I(w),
which are directly approximated by piecewise constant functions as described in subsection 3.1.

2. Solve: For each approximated realization Ii7- of random input data I(w), the underlying balance law (1.3) is solved
numerically by the Finite Volume Method (3.1) on mesh 7 with mesh width Ax = Ax(7). We denote the solutions by
U (x) = U (x, 7).

3. Estimate Statistics: We estimate the expectation E[U] of the random solution field U(-,t, w) at time t = t" with the
sample mean (average) of the approximate solutions,

M
1 .
EIUC. ", )] ~ En[U}] = En[UF()]:= o Y U0 (38)
i=1

Higher statistical moments of U can be approximated analogously, cp. [31,6].

The following result from [49, Theorem 3.3.2] addresses the convergence of MC-FVM as M — oo and Ax — 0; in par-
ticular, the variance of EM[U’}], using the central limit theorem, is proved to be bounded by the sum of the bias term

Cs AX*||Tuspy (K, U, S, ;1) and the sampling variance term M-3 T2y (K, Uo, S, )1l 12(q3)-

Proposition 3.4 (MC-FVM convergence). Consider a linear system of conservation laws (2.1) and assume that the hypotheses (A1)-(A3)
of Theorem 2.5 are satisfied with k > 2, i.e. second moments of the random initial data Uy, source S and K (as in (2.4)) exist. Assume
further that we are given a FVM such that (3.2) holds and such that Assumption 3.1 is satisfied; in particular, assume that the deter-
ministic FVM scheme converges at rate s > 0 as in (3.6). Then, for time t = t", the MC estimate EM[U'}(~)](w) defined in (3.8) satisfies,
for every M, the error bound

_1
IE[UEN] — Eu[UH(@) 2020y < CsAX ITh®) (K, Uo, S, D11 () + M7 [Ty (K, Uo, S, )l 20y, (3.9)

where Cs denotes the positive constant in the deterministic a-priori error bounds (3.6) which is in particular independent of M and
AX; the norms are as in (2.10).

To equilibrate statistical and spatio-temporal discretization errors in (3.9), we require the number of Monte Carlo samples
to equal (asymptotically)

M= O(Ax™%). (3.10)

Next, we are interested in the asymptotic behavior of the error (3.9) vs. the computational work of all FVM solves required
in (3.8). As emphasized in [52], since coefficients A, directly relate to the fastest wave speed Amax via the CFL condition
(3.2), Amax can strongly depend on the particular realizations of the random input data I, for i =1, ..., M. For the remaining
sections, we assume that the expected maximum wave speed % = E[Amax(w)] is finite, i.e. we stipulate
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* = E[Amax(w)] < 00. (3.11)

Under assumption (3.11), the expected computational work E[Work] for the MC-FVM estimate (3.8) is likewise finite, and
hence the resulting error vs. expected computational work E [Work] of the MC-FVM scheme (3.8) with the L?($2)-type error
bound (3.9) is given by

IE[UEM] — EMUTI(@) 120 12y SE [Work]~ 17 . (3.12)

Notice, that the convergence rate s/(d+ 1+ 2s) of MC-FVM scheme is considerably lower than the convergence rate
s/(d+ 1) of the deterministic FVM scheme. Hence, the MC-FVM is considerably more expensive than the standard FVM
for a deterministic conservation law. As an example, in terms of the computational work, a first order scheme (s =1/2)
leads to a convergence rate of 1/6 for the MC-FVM as compared to a convergence rate of 1/4 for the standard FVM for a
deterministic conservation law. This slow convergence entails high computational costs for MC type methods. In particular,
quantifying uncertainty with MC methods for systems of conservation laws in several space dimensions becomes very costly.

3.3. Multi-Level Monte Carlo Finite Volume method

Given the slow convergence of MC-FVM, the multi-level Monte Carlo finite volume method (MLMC-FVM) was proposed
in [52] and in related papers such as [31,33,32,34]. The key idea behind MLMC-FVM is to simultaneously draw MC samples
on a hierarchy of nested grids, as originally suggested by Mishra and Schwab [31] for the Finite Volume Method. The key
ingredient in the Multi-level Monte Carlo Finite Volume (MLMC-FVM) scheme is simultaneous MC sampling on different
levels of resolution of the FVM, with level dependent numbers M, of MC samples. The Multi Level Monte Carlo Finite
Volume algorithm consists of the following four main steps:

1. Hierarchy of space-time discretizations: Assume that {72}%20 is a family of nested triangulations of bounded Cartesian
domain D,

{Tedimo = (T4 % -+ x T o,
with the mesh widths (for simplicity of exposition, we assume that mesh widths are equal in each dimension), given by

Ax@=Ax(7z):=L”1=---=M:z—uxo, £=0,...,L, (3.13)
#7, #7¢

where Axg is the mesh width for the coarsest mesh resolution 7y and corresponds to the lowest level £ =0, and Ax;
is the mesh width for the finest mesh resolution 7; and corresponds to the finest level £ = L.
2. Sample: For each level of resolution £ =0, ..., L, we draw a level-dependent number M, of i.i.d. random input samples

I, ={U) .S A ... '), i=1,.... My,
from the input random fields
I(@) = {Up(w), S(w), A1, ..., Ag},

and directly approximate them by piecewise constant functions obtained from cell averaging on mesh 7; of computa-
tional domain D, as described in subsection 3.1.

3. Solve: For each resolution level £ =0,...,L and for each realization of the random input data Ii’l} fori=1,..., My,
the resulting deterministic balance law (1.3) (for this particular realization) is solved numerically by the Finite Volume
Method (3.1) with mesh width Ax, and the corresponding level-dependent and realization-dependent time step Aty given
by the CFL condition (3.2),

i Aty 1

— <=, ¢=0,...,L 3.14
. (3:14)

We denote the resulting ensemble of FVM solutions by U'71£7 i=1,...,M,.
4. Estimate solution statistics: Firstly, we observe that the telescoping sum holds,

L

E[U7] =E[Ug;] + ) E[U7; — U7, ,] (3.13)
=1

The estimate of the expectation of the random solution field is obtained by statistically estimating the exact mathemat-
ical expectations E[-] for each term in the sum (3.15) using the Monte Carlo method with a level-dependent number of
samples My,

L
EMU7, (- ] = Epgo [UR 1+ Ep, [U — U 1, (3.16)
=1
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with Ep, being the MC-FVM estimator defined in (3.8) for the mesh level 7,. Higher statistical moments of U can be
approximated analogously, we refer to [31,6].

The following result from [49, Theorem 3.3.2] addresses the convergence of MLMC-FVM. In particular, the variance of
EL[U'%-L] is proved to be bounded by sum of the bias term C;Ax; ||Tysp) (K, Uo, S, )llp1 (), the level-dependent mixed bias

_1
and sampling variance terms M, > Ax;T'usp) (K, Up, S, t")|l 2(q) and the pure sampling variance term of the coarsest level

1
My * IT 2y (K, Up, S, ) | 2(q)-

Proposition 3.5 (MLMC-FVM convergence). Consider linear system of conservation laws (2.1) and assume that the hypotheses
(A1)-(A3) of Theorem 2.5 are satisfied with k > 2, i.e. second moments of the random initial data Uy, source S and K (as in (2.4))
exist. Assume further that we are given a FVM such that (3.2) holds and such that Assumption 3.1 is satisfied; in particular, assume that
the deterministic FVM scheme converges at rate s > 0 as in (3.6). Then, for time t = t", and for any sequence {M,}}° , of sample sizes

at mesh level ¢, the MLMC estimate E L[U’%—](a)) defined in (3.16) satisfies the following error bound,

< CsAx |Thspy (K, Uo, S, t") [l 11(q)

HE[U(tH)] — EL[U%](CU) 12(Q.12(D)) —

Lo
+2Cs (Z M, 2AXZ) ITws ) (K, Uo, S, t") [l 12(q)
=

_1
+ My 2 [Ty (K, Uo, S, 120y (3.17)

where Cs > 0 is as in (3.6) and is independent of £, M, and Ax,; and where the norms are as in (2.10).

The error estimate (3.17) provided in Proposition 3.5 is the key result required to derive strategies for choosing the
number of samples M, for each level £=0,...,L in the MLMC-FVM estimator (3.17). The principal issue in the design of
MLMC-FVM is the optimal choice of {M,}72, such that, for each L, an error (3.17) is achieved with minimal total computa-
tional work for MLMC-FVM. We will use the asymptotically optimized number of samples derived in [14,42], i.e. such that
the sum over all error terms in (3.17) are asymptotically optimized with respect to the required computational work. We note
that such “optimization” is understood in terms of minimizing only the error bound in (3.17) and not the error directly; such

error bound, of course, is only valid asymptotically and can be rather conservative. For each resolution level £ =0, ..., L, the
optimized number of samples on mesh level ¢ is asymptotically given by
2
M, = {Mﬂé“*‘””“*“] . €=0,...,L (3.18)

Here [-] denotes the rounding up to nearest integer values for number of samples and M; > 1 denotes the number of
samples on the finest level and is treated as a parameter of the MLMC-FVM algorithm. Notice that (3.18) implies that the
largest number of MC samples is required on the coarsest mesh level £ = 0, whereas only a small fixed number of MC
samples is needed on the finest discretization levels. Choosing sample numbers M, in (3.17) according to (3.18), leads to
the following error vs. work estimate for (3.16),

Work~s/@+D s<(d+1)/2,
[BOen = ORI, o, S Work™2log o) s =@+ 1072, (319)
Work™1/? s>d+1)/2.

The error estimates in (3.19) show that the MLMC-FVM is superior to the MC-FVM as the asymptotic computational cost
for MLMC-FVM scales as Work¥/@+1; compare to Work™s/@+1429) for the MC-FVM scheme as in (3.12). Furthermore,
if s < (d+ 1)/2 then the error vs. work estimate (3.19) is of the same order as the error vs. work of the deterministic
finite volume scheme, which implies that the total amount of work to achieve a certain error level ¢, for instance, in
approximation of the random weak solution’s mean field, will (asymptotically) be equal to that of approximating the weak
solution of one deterministic balance law at the same level L of resolution. In fact, it was shown in [49] that for the same
amount of computational work the stochastic simulation is at most /2M| times less accurate compared to its deterministic
version, where the free parameter M; is usually chosen to be small, i.e. O(1) — O(10).

We also remark, that the remaining parameters such as the number of samples on the finest mesh resolution M; could
be estimated a-priori based on several (statistical) assumptions on the (unknown) solution, refer to [49]. Several a-posteriori
techniques were also proposed in [37,42] to empirically estimate the required number of samples M; on each level as well
as the optimal coarsest mesh resolution Axg.

4. Log-normally distributed random material coefficients

For the stochastic modeling of the uncertain material coefficient c, it is customary to assume that the Karhunen-Loéve
(KL) expansion [45,52,25] of c is available:
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o
logc(X, @) =10gEX) + Y v/AmWm(X)Ym (). (4.1)
m=1
Here, {An}S°_, are the Karhunen-Loéve eigenvalues satisfying {~/Am}5>_; € ¢1(N), W, are the eigenfunctions satisfying
Wmll2@py =1, € € L°(D) is the deterministic part, and Yp are independent random variables with zero mean and finite
variance. In most applications of practical interest, many terms are needed in the Karhunen-Loéve expansion to approx-
imate the random material coefficient well. The repeated sampling of a large number of Karhunen-Loéve terms is very
costly, especially on the coarsest mesh levels of MLMC-FVM method, where the largest number of samples is drawn.
Hence, we propose an alternative method which allows the generation of random material coefficient samples with
almost optimal (up to logarithmic terms) computational complexity on all MLMC mesh levels, including the coarsest ones.

4.1. Spectral generator using Fast Fourier Transform

In the following, the spectral generator to compute log-normally distributed random field realizations based on [38,10,
39,46] is described. We will assume that the distribution of the random material coefficient is completely determined by
the positive definite covariance operator of the random field c(x, w). Furthermore, we assume that the covariance is stationary,
i.e. that the covariance of the (random) values at two given points X,y € D in a periodic domain D depends only on the
(component-wise) distance vector T = |y — X| between these two points,

Cov(logc(x, w), loge(y, w)) :==k(t), T€D=I0,p1) x -~ x[0, pq), (4.2)
where k:R? — R is called an anisotropic covariance kernel. o
For a given mesh 7, define a multi-dimensional array of cell mid-points x{1>-id),

XeR¥ s R X, gy =X)L T (4.3)

We are interested in approximating the values of one realization of the random material coefficient c(x, ) at the mesh
discretization points x(1--+id)_ We define an analogous multi-dimensional array for these values:

ceR¥T x . xR¥TY, ¢ =@l @y q=1,... #T". (4.4)

Define the covariance matrix, corresponding to the discrete version of the symmetric positive definite covariance operator,
to be

jo = Cov(logei, . _iz;logc;, . j,)- (4.5)

,,,,,

2
Ce (R#Tl X eee X ]R#Td> s G
By [47, section 4.1], the covariance matrix C is symmetric positive definite, hence the following decomposition of C exists,
N2
Le (R#T‘ X o x R¥T ) , suchthat C=LLT. (4.6)

For instance, one choice for a matrix L could be the square root matrix of the matrix C; as C is symmetric positive definite,
L would also be symmetric and hence L =L" would hold. Another possible choice for a matrix L could be the Cholesky
factor L of the corresponding Cholesky decomposition C=LL".

Using the decomposition (4.6), a realization of the random material coefficient ¢ can be obtained by the following steps:

(1) generate a vector g with i.i.d. Gaussian (standard normal) random variables as its components

ge R x . xR¥TY g ~N(0.1), (4.7)

(2) given vector g, compute a realization of the correlated coefficient ¢ by

c=exp(Lg), (4.8)

where the exponential function of the vector is understood component-wise.
Then, the logarithm of the realizations of ¢, generated using the above methodology, have the desired symmetric positive
definite covariance matrix C,

Cov(logc) =E[logcloge' | =E[Lg(Lg) '1=LE[gg' IL" =LL" =C.

Notice that the covariance C is much larger than the required material coefficient array c, hence, without further
improvements, such an algorithm would be computationally extremely expensive. However, as the covariance matrix is
determined by a stationary covariance kernel k(t) on a periodic domain D, see (4.2), the resulting covariance matrix C is
circulant. Hence, the “matrix-vector” multiplication in (4.8) is actually a multi-dimensional “vector-vector” convolution [38,
10,39,46] which can be performed much faster using the Fast Fourier Transform (FFT). The algorithm has three main steps:
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Step 1: d-dimensional Fourier transforms of the evaluated kernel

KeR*' s x R¥TY Ky, = k(xreia) gDy, (49)

01,0004

and a random Gaussian vector g with i.i.d. entries are needed:
k=FkeR*T x ... xR¥T'  g=FgeC*T x...x C*T" (4.10)

Since k is real and periodic, k is also real and periodic (in each dimension). Moreover, the Fourier basis diagonalizes the
circulant positive semi-definite matrix C, hence k is the vector of the eigenvalues of C, i.e. all entries in k are non-negative.
Step 2: Computing the square root matrix L as in (4.6) (with L=LT) corresponds to taking the element-wise square root
1 of k:
A~ 1 d A
1eR¥T x ... xR¥T" 1 g (411)
Step 3: “matrix-vector” multiplication in (4.8) is equivalent to multiplying 1 and g component-wise and performing
d-dimensional inverse Fourier transform F~!:

c=exp(F1(i8) e R*T" x ... x R¥T", (412)

where the exponential is applied component-wise. For the implementation of this generator, d-dimensional Fourier trans-
forms F and F~! were computed using the parallel version of the Fast Fourier Transform library FFTW [62].

We remark that k and 1 in steps 1 and 2 need to be computed only once for a given mesh 7, whereas g in step 1
and the resulting sample ¢ in step 3 need to be computed for each realization of random coefficient ¢. We would also like
to note that none of the mentioned Fourier transforms are required to be performed in complex arithmetic i.e. C — C. In
particular, since k is real and even, the transform k — k is R — R with k even; the transform g~ g is R — C with g even;
the final transform 1§ — F~1(1g) is C — R, since both 1 and § are even, resulting in even 1g. Performing such transforms
with a standard C — C FFT is inefficient (though possible). In the numerical experiments reported ahead, the appropriate
(hardware) optimized R — R, R — C and C — R FFT transforms from the FFTW library [62] were used instead.

4.2. Covariance upscaling

The MLMC-FVM algorithm requires MC estimates of the differences Uy, — U,_1, i.e. solutions obtained on two consecutive
mesh levels,

Em,[U¢—Ur1]. (4.13)

In (4.13), the same realization of the random material coefficient c(-, w) is required on different mesh resolutions, ¢ and
£ — 1. The required coupling of the MLMC methods with the generation of log-normal fields using spectral FFT method is
not straight-forward.

One idea was recently introduced in [38], where the coupling is achieved by drawing a realization ¢, € R*7¢ of c(, w)
on the finer mesh 7;, and then computing the averages of c’ on the coarser mesh to obtain the upscaled realization
¢t~ e R*7e-1, One must, however, ensure that the distribution of such “averaged” discrete random fields ¢~ (w) coincides
with the distribution of the “non-averaged” discrete random fields ¢/~!(w). In order to achieve this and at the same time
maintain the efficiency of the method, the covariance C¢ € (R*7¢)2 from level ¢ also needs to be upscaled to the coarser
mesh resolution ¢ — 1. In the context of stationary covariance (as described in subsection 4.1), with given kernel, only the
kernel needs to be upscaled from k' € R¥7¢ to k= € R¥7-1 [38]. However, in order to obtain the upscaled covariance
kernel k¢ (and hence also C¢) for any arbitrary level 0 < ¢ < L, a recursive computation needs to be performed starting with
the covariance kernel k’ on the finest mesh resolution [38]. Such overhead in computational work would cause the MLMC
algorithm to be very inefficient and would invalidate the error vs. computational work bound (3.19). Moreover, since the
domain decomposition method is not used for samples on the coarsest mesh resolutions, the amount of memory available
might be significantly smaller than is required for the computation of k-.

Here we present a different coupling strategy, which directly uses the spectrum k of the kernel k. Let g1 (w) be defined
as the scaled multi-dimensional average of the vector g (w),

gl1 _____ Z i1t ia (@) =1 #T] (4.14)
v Jrel0.1)

The upscaled realization ¢¢~1(w) of ¢f(w) is defined according to (4.12), using the averaged g‘~!(w),

¢ w) =exp(F I Fg (w)). (4.15)

Since the (scaled) average of Gaussian i.i.d. random variables is again the same Gaussian random variable, the upscaled coef-
ficient ¢/~ (w) is log-Gaussian with the same covariance kernel k. Note, that in order to have a standard normal distribution
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for g'~1(w), the averages are multiplied by an additional scaling factor of v/24. Moreover, the Fourier transform Fgt=1 of
the averaged g’ will be an approximation of Fgt, since the averaging (4.14) corresponds to the low-pass filtering of the
vector g.

In comparison to the upscaling strategy presented in [38], the above method operates only on the mesh resolution that
is one level finer, and not on every level with finer mesh resolution.

4.3. Anisotropic exponential covariance kernel for periodic boundary conditions

Given variance o2 > 0, a smoothness parameter v > 1/2 and positive spatial correlation lengths 5 = diag(n1, ..., n4) we
describe the uncertainty in the medium by stationary, centered gaussian random fields which are determined by Matérn
covariance kernels of the form

1-v

r'v)

k(T):=02py(r), py(r) = r/n)Y Ky /%), (4.16)

where
ri=[p 'z, T=x-X €D,

with % = 1/(24/v) and x,x’ being two points in domain D. Here T is the gamma function and K, denotes the modified
Bessel function of the second kind. In the limit v — 1/2 (which is used in all numerical experiments in section 6), we
obtain the exponential covariance p1,2(r) = exp(—r/X). As v — 00, py in (4.16) formally becomes pu.(r) = exp(—r?). We
refer to [20, Sec. 2.2] for details. As was shown there (the argument in [20, Remark 4] given in the isotropic setting, i.e. for
7; = 1 remains valid in the anisotropic case), based on the regularity results for gaussian random fields in [4], for v =1/2
samples of the acoustic tensor c(x) are generically only Hoélder continuous with exponent t < 1/2; as v — oo, however, any
prescribed regularity of samples c(x) with respect to X can be achieved.

An example of the exponential covariance kernel k(t) on the periodic domain D = [0, p1) X --- x [0, pg) in only one
dimension (i.e. d =1) with p; =2 and n; = % is shown in Fig. 1. We have experimentally observed that for long correlation
lengths 7, the resulting kernel in (4.16) with such “direct” treatment of periodic boundary conditions defines a covariance
matrix C that may not be positive semi-definite. Hence, following [47, section 4.2.3], we define a periodic exponential

covariance kernel kp(t) by superimposing kernel (4.16) and a periodic sine function,

i 2 i 2
ko (T) = o2 exp (_/(plsm(népm)) 4.y pasinGT/paT) ) e (417)
m Na

The derivation of kp(7) in (4.17) (as a generalization of derivation in [47, section 4.2.3]) is as follows. Define an auxiliary
kernel k(t), obtained by tensorizing the kernel k(z) in (4.16), resulting in a kernel defined on the 2d-dimensional space
D x D,

=2
_ T _
k(t)=0%exp| — --+—§d , TeDxD, (4.18)
24
where the correlation lengths 71, ..., nq are extended to the indices 1, ..., 2d by

Nd+1 =M1, -+, N2d =1q-

As the kernel k(7) in (4.16) defines a positive definite covariance matrix, so does the tensorized kernel k(%), but only on
a tensorized domain D x D. Then, the kernel kp(7) in (4.17) is obtained by restricting k() to the d-dimensional sphere in
D x D, parametrized as follows,

_ 1 {cos(Zn/prxr) ifr=1,...,d,

xr=§pr xeD, xeDxD. (419)

Sin(2w /pr_gXr—q) ifr=d,...,2d,

Using the following trigonometrical identity for each component of T =x — x’ €D,
1 N2 1/, . RY ) / .
1 (cos(ij) — cos(2xj)) + I (sm(ij) — sm(2xj)) =sin“(xj — xj), j=1,...d,

the parametrization (4.19) of the tensorized kernel (4.18) gives the periodic kernel (4.17). Since k(%) defines a positive def-
inite covariance matrix, so does its restriction kp (7). Notice that the periodic exponential covariance kernel kp(t) depends
explicitly on the domain geometry (periods p1, ..., pq) with minimum at the center of D. An example of kp (T (x)) for d=1
with period p; =2 and correlation length 1, = % is shown in Fig. 1.
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Fig. 1. Conventional (4.16) and periodic (4.17) covariance kernels k(7 (x)) and kp(7(x)) for d =1 with period p; = 2, correlation length 7, = % and ¥’ set
to 0.
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Fig. 2. Strong scaling of the adaptive load balancing for the parallel MLMC-FVM algorithm up to 40000 cores. The efficiency is nearly optimal, hence we
expect that our parallelization algorithm will scale linearly for a much larger number of cores, especially for more computationally challenging problems.

5. Parallel implementation and adaptive run-time load balancing

The MLMC-FVM algorithm (3.16) is quite simple to implement. We remark that step 2 requires a (pseudo) random
number generator. In step 3, any standard (high-order) finite volume scheme can be used. Hence, existing code for FVM can
be used and there is no need to rewrite FVM code. Furthermore, the only (data) interaction between different samples is in
step 4 when ensemble averages are computed. Thus, the MC-FVM is non-intrusive as well as easily parallelizable.

Our parallel implementation of MLMC-FVM scheme is called AL.SVID-UQ [1,51,50]. For the detailed descriptions of how
each step of the MLMC-FVM algorithm (3.16) is implemented in ALSVID-UQ, including robust pseudo random number gener-
ators (and their consistent seeding using bijective pairing functions), stable and efficient statistical estimators, parallelization
paradigms and load balancing, we refer to the technical papers [51,50]. For the wave equation with complex log-normally
distributed coefficients, efficient spectral FFT generation techniques described in section 4, together with hierarchical bias-
free upscaling, were implemented using the FFTW library [62] for the parallelization of all required FFT transforms.

We employ a newly developed adaptive load balancing technique from [50], which was specifically designed to distribute
very heterogeneous (in terms of computational work required for FVM simulations) realization-dependent numbers of MC
samples. Such samples of very uneven complexity were observed in the numerical experiments (e.g. Figs. 6, 10, and 15) of
the forthcoming section 6. The adaptive load balancing [50] is a generalization of the greedy algorithm for workers with
heterogeneous speeds of execution, arising due to heterogeneous domain decomposition configurations used in the paral-
lelization of the FVM solvers. The main idea of the algorithm based on sorting all MC samples from all levels according to
the estimated required computational run-time, and then recursively assigning the largest available sample to some (paral-
lel) worker such that the maximal run-time of all workers (including the assigned sample) is minimized. The adaptive load
balancing was shown to be a 2-approximation, i.e. the maximum run-time among all workers is at most 2 times larger than
the optimal run-time [50]. Strong and weak parallel scaling were achieved up to 40000 cores on Cray XE6 (see [63]) with
1496 AMD Interlagos 2 x 16-core 64-bit CPUs (2.1 GHz), 32 GB DDR3 memory per node, 10.4 GB/s Gemini 3D torus inter-
connect with a theoretical peak performance of 402 TFlops. We present the scaling results from [50] in Fig. 2, where labels
“MLMC” and “MLMC2” indicate that first and second order accurate FVM solvers were used. Parallel efficiency, depicted in
the right plot of Fig. 2, is defined as a fraction of simulation time (which excludes time spent for MPT communications and
idling) over wall clock time,

(total clock time of all MPI routines)
(#cores) x (wall clock time)

efficiency :=1 — (5.1)

We expect that our parallelization algorithm will scale linearly for a much larger number of cores. For the extensive
description of the scaling tests and analysis of the obtained results we refer to [50].
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6. Acoustic anisotropic wave propagation in random heterogeneous layered medium

Before proceeding to the numerical experiments, we describe the notation, terminology, simulation parameter abbrevia-
tions and the methods for error computation.

6.1. Notation, terminology and simulation parameters

Recalling that the discretization of the random conservation law involves discretizing in space-time with a standard
Finite Volume Method and the discretizing the probability space with a statistical sampling method, we tabulate various
combinations of methods that are to be tested:

MC Monte Carlo with 1st order (s = %) FVM M=0(Ax"1),

MC2 Monte Carlo with 2nd order (s = 1) FVM M=0(Ax?),
2 ERY .

MLMC  multi-level MC with 1st order (s = 1) FVM M, = M;2° (a+3) -0,

MLMC2  multi-level MC with 2nd order (s = 1) FVM M, = M;23@+2(—0

Furthermore, we need the following parameters, which will be specified for every simulation in the form of a table
below the corresponding figure:

Parameter Description

L number of hierarchical mesh levels in the MLMC method

M number of samples at the finest mesh level

grid size number of cells in X, Y and Z directions

CFL CFL number based on the fastest wave

cores total number of CPU cores used in the simulation

runtime serial runs: clock-time; parallel runs: wall-time; hrs:min:sec

efficiency MPI efficiency, as defined in [50]
6.2. Root mean square error estimation in MLMC-FVM

As we will present numerical convergence analysis results, we need to specify the error estimator. In the MC-FVM and
MLMC-FVM approximations (3.8) and (3.16) of the expectation E[U], the estimators EM[U';—] and EL[U"TL] are constructed
using the random draws of the solution U, and hence the estimators themselves are random fields, even though they are
approximating deterministic statistical moments. For this reason, the discretization errors in (3.9) and (3.17) are random
quantities as well. For our computational error convergence analysis we therefore compute a statistical estimator by averag-
ing estimated discretization errors from several independent runs. The aforementioned errors of MC-FVM and MLMC-FVM
estimators will be computed by approximating the corresponding L2($2, L*(D)) norms with MC sampling.

Let E.f[U(X, t)] denote the reference solution, i.e. either the exact solution E[U(x, t)] (when available) or a very accurate
approximation (such as on the finest resolution) of it, and

EUR®], k=1.....K

be a sequence of independent approximations of E[U(X, t")] obtained by running MC-FVM or MLMC-FVM solver K times,
corresponding to K realizations of the stochastic space. Then the L2($2, L?(D))-based relative error estimator is defined as
in [31],

K
e= |y €/K, (6.1)
k=1
where:
Eref[U(-, tM)] — Ef[U(-
¢ 2 NEwelUC, ) = EUF Ollzy oo 62)

| Eref[UC-, t)]ll2(p)

Definitions (6.1)-(6.2) are generalized to any E-valued statistical estimators on U by replacing the expectation estimators
Eref[-] and Eg[-] with the required estimators. The extensive analysis for the appropriate choice of K is conducted in [31];
unless indicated otherwise, we choose K =30 which was found to be sufficient in our numerical experiments for removing
statistical fluctuations in the convergence plots.

Equipped with the above notation and concepts, we proceed to numerical experiments.
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Fig. 3. Top left plot: one sample of the coefficient c(x, w) with variance 02 = 0.2 and correlation lengths 71 = 2.0, 7, = 0.1. Remaining plots: time snapshots
of the approximated acoustic pressure p(X,t, ®). Since the correlation length is long in x;-direction and short in x,-direction, the resulting random material
coefficient c(x, w) exhibits anisotropic, layered structures: notice many layers with very heterogeneous wave propagation speeds.

6.3. Two dimensional case

The physical domain is D = [0, 2] x [0, 2]. We assume a stationary, periodic covariance kernel (4.16)-(4.18) with variance
02 =0.2 and correlation lengths n1 =2.0,n2 =0.1 in (4.16)-(4.18). The initial data is chosen to be deterministic and is set
to zero, i.e. po(X, w) =0, ug(X, w) = 0. Identical periodic (in time) acoustic pressure pulses are injected into two locations of
the domain through the deterministic source term f,

oty | A (exp (—%)4—@@ (—%)) if {3t} < 0.02, o)
- 0 else, ’

where A, = 5000, x{ = (0.5, 2.0), x§ = (1.5, 2.0), 02 =0.04 and {-} denotes the fractional part. Perfectly reflecting boundary
conditions (3.4) are assumed at the top and the bottom, and periodic boundary conditions (3.3) are assumed at the sides of
the domain.

Results of a deterministic FVM simulation up to t = 1.0 are presented in Fig. 3, where the approximated sample (re-
alization) of the random material coefficient c(x, w) and the acoustic pressure p(X,t,w) at different time instances are
plotted. The computation is performed using the HLL two wave Rusanov solver and a first order accurate piecewise con-
stant reconstruction on the mesh resolution of 4096 x 4096 cells, and took 7 minutes on 256 cores. Notice that since the
correlation length is long in x;-direction and short in x,-direction, the resulting realizations of random material coefficient
c(x, w) exhibit layered structures as in many subsurface formations of interest: many layers with very heterogeneous wave
propagation speeds are visible. The structure of the acoustic pressure wave propagation consists of close-to-circular wave
fronts interfering in the center of the domain and getting distorted by the heterogeneity of the underlying physical domain.

Results of the stochastic MLMC-FVM simulation up to t = 1.0 are presented in Figs. 4-5, where the approximated mean
and variance of the random material coefficient c(X, w) and the acoustic pressure p(X,t,w) at different time instances are
provided. The computation is performed using an HLL two wave Rusanov solver and second order accurate piecewise linear
WENO reconstruction. The number of levels is set to 9, i.e. L =8, and the mesh resolution on the finest mesh level is 8192 x
8192 cells. The number of MC samples at the finest resolution is 8. We also note that the number of uncertainty sources
in this simulation is very large: the material coefficient c(X, w) was sampled on the resolution of 128 x 128, resulting in
16384 sources of uncertainty in the coefficients. The simulation took almost 5 hours (wall-clock) on 8176 cores (simulated
on CSCS production cluster Rosa [63]).



208 S. Mishra et al. / Journal of Computational Physics 312 (2016) 192-217

mean of c at t=l.00 variance of c at t=1.00

2.0 2.0 2.0 1.0
18 0.9
16 0.8
1.5
14 07
1.2 0.6
100 1 1o 0.5
0.8 0.4
0.6 0.3
0.5
0.4 0.2
0.2 0.1
90 05 10 15 20 00 %80 o5 10 15 20 00

L | My | gridsize | CFL | cores | runtime | efficiency
8 | 8 | 8192x8192 | 0.475 | 8176 | 4:28:57 97.4%

Fig. 4. MLMC-FVM estimates for mean and variance of the coefficient c(x, y, w) with variance o2 = 0.2 and correlation lengths 1; = 2.0, , = 0.1. Stationary
covariance kernel resulted in homogeneous moments of the coefficient.

As expected, the mean and the variance of the material coefficient c(x, w) in Fig. 4 are homogeneous within the entire
domain, since a stationary covariance kernel is used. As the statistical moments of c(x, w) are known, the results in Fig. 4
are also used as a “self-consistency test” of the MLMC-FVM, including the spectral FFT-based generation of the samples of
the log-normally distributed material coefficient c(X, w) and the bias-free upscaling presented in section 4.

The structure of the propagation of the mean acoustic pressure waves shown in Fig. 5 resembles the mean behavior of
the circular interfering waves seen in the deterministic simulation of one sample, given in the previous Fig. 3. The highest
variance is observed at the top of the domain, i.e. at the regions where the interference of the waves is strongest.

Finally, in Fig. 6, the distributions of random maximal wave speeds Amax(w) from (3.2) across all levels are depicted,
where asymptotically optimized numbers of samples M, as in (3.18) were used. Due to the large spread of approximately 1
to 3.5, the simulation was executed using the adaptive load balancing technique introduced in [50].

Next, we use the high-resolution MLMC-FVM simulations from Fig. 5 as the reference solution U in (6.2) and investigate
the convergence of the error vs. computational work in Fig. 7 and Fig. 8. The errors in the mean and variance fields converge
at the expected rates. At comparable numerical resolution and accuracy, we observe the MLMC(2) to be approximately one
order of magnitude faster than the MC(2) method.

6.4. Two dimensional case with discontinuous layers

Next, in order to demonstrate the utility of the MLMC-FVM methods for very complex random material coefficients,
we consider a setup analogous to subsection 6.3, but we also assume that the random material coefficient ¢ is given by
independent log-normal distributions within four layers D1, D3, D3, D4 partitioning the domain D,

Dy =10,2] x[0,0.5], Dy=1[0,2]x[0.5,1],
D3 =[0,2] x[1,1.5], D4=10,2] x[1.5,2].

In each of the layers Dq,..., D4, we assume that the material coefficient is log-normally distributed with stationary
periodic covariance kernels (4.17) and layer-dependent variances o2 and correlation lengths 71, 12, given by

2 {0.2 inD1 andDg, (1.0,0.5) il’lD] andD3,
o~ =

02) = 6.4
04 inD,andD, (T {(2.0,0.1) in Dy and Dy. (64)

The initial data is chosen to be deterministic and set to zero, i.e. pgo(X, w) =0, ug(X, w) = 0. As in the previous experiment,
identical periodic (in time) acoustic pressure pulses are injected into two locations of the domain through the deterministic
source term f given in (6.3). Perfectly reflecting boundary conditions are assumed at the top and the bottom, and periodic
boundary conditions are assumed at the sides of the domain. Results of the deterministic FVM simulation at t = 1.0 are
presented in Fig. 9, where the layers D1, ... D4 are depicted in bottom to top order. The computation is performed using
the HLL two wave Rusanov solver and a second order accurate piecewise linear WENO reconstruction on the mesh resolution
of 2048 x 2048 cells, and took 15 minutes on 64 cores. Notice that in layers D, and D4, the correlation length is long in
x-dimension and short in y-dimension, resulting in even finer layered structures. On the other hand, in layers D1 and Ds,
the correlation lengths are similar in both directions, and hence no evident layered structures are present in the resulting
random material coefficient. At the interfaces of layers D1, Dy, D3, D4, each realization as well as the mean and variance of
the random material coefficient ¢ is discontinuous; this is expected as the distributions of ¢ within each layer were assumed
to be independent.

Results of the stochastic MLMC-FVM simulation up to t = 1.0 are presented in Figs. 11-12, where the approximated mean
and variance of the random material coefficient c(x, w) and the acoustic pressure p(X,t,) at different time instances are
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Fig. 5. MLMC-FVM estimates for mean (left) and variance (right) of time snapshots of the approximated acoustic pressure p(X,t, ). The structure of the
mean acoustic pressure is symmetric and consists of seemingly smooth circular wave fronts, i.e. it resembles the mean behavior of the (distorted) circular
interfering waves seen in the deterministic simulation in Fig. 3. Largest variances are observed at the top of the domain.

provided. The computation is performed using the HLL two wave Rusanov solver and second order accurate piecewise linear
WENO reconstruction. The number of levels is set to 5, i.e. L =4, and the mesh resolution on the finest mesh level is
2048 x 2048 cells. The number of MC samples at the finest resolution is 16. The number of uncertainty sources is 16 384,
i.e. the same as in the previous simulation. The simulation took almost 1 hour (wall-clock) on 992 cores (simulated on CSCS
production cluster Rosa [63]).

The distributions of random maximal wave speeds across all levels are depicted in Fig. 10. The spread is again large,
approximately from 1.5 to 5.0, hence, adaptive load balancing was used, together with asymptotically optimized numbers of
samples M, as in (3.18).

The mean and the variance of the material coefficient c(x, w) in Fig. 4 consist of interchanging regions, discontinuous in
y-direction; such heterogeneity in statistical moments is due to different covariance kernels in (6.4).

The structure of the propagation of the mean acoustic pressure waves in Fig. 12 again resembles the mean behavior of
the circular interfering wave seen in the deterministic simulation of one sample, depicted in Fig. 9.

6.5. Three dimensional case

The physical domain is D = [0, 2] x [0, 2] x [0, 2]. We assume a stationary periodic covariance kernel (4.17) with variance
02 =0.2 and correlation lengths 171 =2.0,n, =0.1,7173 = 2.0 in (4.17). The initial data is chosen to be deterministic and
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set to zero, i.e. po(X, w) =0, up(X, w) = 0. Analogously, identical periodic (in time) acoustic pressure pulses are injected into
two locations of the domain through the deterministic source term f,

x|
faxtawy=] (eXp( %
0

)+exp (—w

)) if (3¢} < 0.02,

else,

(6.5)
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Fig. 10. Distributions of random maximal wave speeds of samples for all resolution levels in the MLMC-FVM simulation reported in Figs. 11-12. The spread
is approximately from 1.5 to 5.0, leading to very heterogeneous computational loads for samples at the same mesh resolution level.

where A, = 5000, x{ = (0.5,2.0), x§ = (1.5,2.0), 0 =0.04 and {-} denotes the fractional part. Perfectly reflecting boundary
conditions (3.4) are assumed at the top and the bottom, and the periodic boundary conditions (3.3) are assumed at the
sides of the domain.

Results of the deterministic FVM simulation up to t = 1.0 are presented in Fig. 13, where the approximated sample of
the random material coefficient c(x, w) and the acoustic pressure p(x,t,w) at different time instances are provided. The
computation is performed using the HLL two wave Rusanov solver and a second order accurate piecewise linear WENO
reconstruction on the mesh resolution of 1024 x 1024 x 1024 cells, and took almost 3 hours on 4096 cores. Analogously
to the two-dimensional experiment in Sect. 6.3, the long correlation length in xz-plane combined with short correlation
length in y-dimension results in a random material coefficient exhibiting layered structures. For a slice taken parallel to
the xz-plane, the “entire” layer is obtained. The structure of acoustic pressure wave propagation consists of close-to-circular
wave fronts interfering in the center of the domain and getting distorted by the heterogeneity of the underlying physical
domain.
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Fig. 11. MLMC-FVM estimates for mean and variance of the coefficient c(x, w) with variances and correlation lengths as specified in (6.4). Alternating
regions, discontinuous in x,-direction, of mean and variance of the material coefficient c(x, @) are due to different covariance kernels in (6.4).
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Fig. 12. MLMC-FVM estimates for the mean (left) and the variance (right) of time snapshots of the approximated acoustic pressure p(X, t, w). The structure
of the mean acoustic pressure is symmetric and consists of seemingly smooth circular wave fronts, i.e. it resembles the mean behavior of the (distorted)
circular interfering waves seen in the deterministic simulation in Fig. 9. Largest variances are observed at the top of the domain.
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Fig. 13. Top left: one sample of the coefficient c(x, w) with 62 =0.2 and 1y = 13 = 2.0, 5, = 0.1. Remaining plots: time snapshots of the approximated
acoustic pressure p(X,t, ). Due to anisotropic correlation lengths, coefficient c(x, @) exhibits layered structures, distorting the circular wave fronts of the

acoustic pressure.

Results of the stochastic MLMC-FVM simulation up to t = 1.0 are presented in Fig. 14, where the approximated mean
and variance of the random material coefficient c(x, w) and the acoustic pressure p(x,t,w) at different time instances are
provided. The computation is performed using the HLL two wave Rusanov solver and a second order accurate piecewise
linear WENO reconstruction. The number of levels is set to 7, i.e. L =6, and the mesh resolution on the finest mesh level
is 1024 x 1024 x 1024 cells. The number of MC samples at the finest resolution is 8. We also note that the number of
uncertainty sources in this simulation is even larger than for the 2-D case: the material coefficient c(x, ) was sampled on
the resolution of 128 x 128 x 128, resulting in more than 2 million (2097 152) sources of uncertainty in coefficients. The
simulation took almost 3 hours (wall-clock) on 43 680 cores (simulated on CSCS production cluster Rosa [63]).

The distributions of random maximal wave speeds across all levels are depicted in Fig. 15. The spread is again large,
approximately from 1 to 3, hence, adaptive load balancing was used, together with asymptotically optimized numbers of
samples My as in (3.18).

7. Summary and conclusions

We presented a Multi-Level Monte-Carlo Finite-Volume discretization of linear, second order hyperbolic partial dif-
ferential equations for the efficient computation of solution statistics for wave propagation in complex, heterogeneous
random media. Specifically, we addressed the case where the acoustic properties of the heterogeneous medium are time-
independent, possibly anisotropic, and are given by a lognormal gaussian random field with prescribed covariance function.
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Fig. 14. MLMC-FVM estimates for mean (left) and variance (right) of time snapshots of the approximated acoustic pressure p(x,t, w). The structure of the
mean acoustic pressure is symmetric and consists of seemingly smooth circular wave fronts, i.e. it resembles the mean behavior of the (distorted) circular
interfering waves seen in the deterministic simulation in Fig. 13. Largest variances are again observed at the top of the domain.

Propagation of waves is simulated by explicit timestepping on a hierarchy of uniform, block-structured spatial meshes,
and is subject to a CFL stability constraint.

An asymptotic convergence analysis of the total error, consisting of spatial- and temporal discretization error and Monte-
Carlo sampling error was given, covering first and second order standard discretizations. Our analysis furnishes judicious
choices of algorithmic steering parameters which formed the basis of and implementation on large-scale, massively parallel
hardware.

In the random medium, the wave propagation speed and there also the CFL stability constraint is sample-dependent. This
necessitates a novel, probabilistic complexity and load balancing analysis which is developed here. Due to the strongly varying,
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Fig. 15. Distributions of random maximal wave speeds of samples for all resolution levels in the MLMC-FVM simulation reported in Fig. 14. The spread is
approximately from 1 to 3, leading to very heterogeneous computational loads for samples at the same mesh resolution level.

sample dependent propagation speeds, load balancing across samples become a nontrivial issue, even for solution samples
on the same spatial discretization level. An adaptive load-balancing scheme developed recently by one of the present authors
is used to achieve near-linear scaling of the method up to 40000 cores.

A key challenge in designing efficient MLMC algorithms is the multi-scale nature of the heterogeneous, log-gaussian
material properties of the random medium. A novel, bias-free multi-resolution representation of random spatially inhomo-
geneous coefficients was developed to ensure uniform algorithmic efficiency across all discretization levels. It is based
on a novel multi-resolution FFT spectral sample generator with level-coupled random number generation for statistical
sampling of stochastic log-normally distributed material coefficients. In large scale numerical experiments, the presently
proposed approach is shown to maintain the efficiency of the FVM solver on coarse resolutions, which are the main
building blocks for the MLMC-FVM algorithm. Numerical experiments of the acoustic wave equation with anisotropic, het-
erogeneous log-normally distributed material coefficients in two and three dimensions were performed, illustrating the
efficiency of the MLMC-FVM method. The theoretical results and the MLMC-FVM methodology are developed for an ab-
stract hyperbolic systems of linear balance laws, so that more complex generalizations of the acoustic wave equation can
be treated with the presently proposed methods. Examples include the already mentioned elastic anisotropic wave equation
with highly heterogeneous and direction-dependent wave propagation speeds, linearized shallow water and Euler equa-
tions.

The presently proposed MLMC-FVM can deal with a very large number of sources of uncertainty. For instance, the
simulation of acoustic wave propagation with uncertain material coefficient involved 2 million sources of uncertainty. To the
best of our knowledge, currently no other method (particularly deterministic methods such as quasi Monte Carlo, stochastic
Galerkin, stochastic collocation, PGD, ANOVA, or stochastic FVM) is able to handle this many sources of uncertainty (i.e.,
high “stochastic dimensions”), in particular with solutions which exhibit pathwise low regularity and possibly non-smooth
dependence on random input fields.

In the present work, we verified the strong scaling of the proposed adaptive load balancing for the MLMC-FVM method
up to 40000 cores and for more computationally challenging problems we expect it to scale linearly up to and beyond 1 mil-
lion cores. However, in such large (Exa)-scale simulations on emerging massively parallel computing platforms, processor
failures at run-time are inevitable and occur with increasing frequency as the number of processors increases, as reported
e.g. in [7]. Exploiting the natural fault tolerance in MLMC-FVM due to independent sampling, a fault tolerant multi-level Monte
Carlo (FT-MLMC) method was proposed in [40,41,43]. FTI-MLMC does not rely on checkpoint/restart or on re-computation:
all samples unaffected by failures are used in the computation of the final result, whereas all remaining samples affected
by failures are either completely ignored or the unaffected parts in the domain decomposition parallelization of such sam-
ples are also incorporated to the final result [43]. The FT-MLMC was implemented in [41] and was shown to perform in
agreement with theoretical analysis in the presence of simulated, compound Poisson distributed, random hard failures of
compute cores.

We finally indicate that the presently developed multi-level methodology for the efficient computation of solution statis-
tics is naturally suited in the context of multi-level extensions of MCMC methods for Bayesian inversion, as proposed and
analyzed in [24,25]. We also remark that, for hyperbolic, second order problems without damping or other smoothing
effects, propagation of singularities occurs which precludes the use of polynomial chaos based stochastic Galerkin or collo-
cation schemes. We caution, however, that the problem of of long-time integration of wave equations in random media remains
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beyond reach with the presently proposed computational methodology; as it is by now well-known (e.g. [48,12,3] and the
references there), in long-time integration of linear wave equations with strongly heterogeneous coefficients, effective wave
motion can exhibit dispersion effects resulting from interaction between scales.

In conclusion, the Multi-level Monte Carlo Finite Volume Method, with carefully chosen number of hierarchical mesh
levels and efficient implementation on massively parallel hardware architectures, appears to be a powerful general purpose
technique for quantifying uncertainty in solutions of complex flow problems governed by hyperbolic systems of linear
balance laws with uncertain inputs.
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