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Preface

Flow Control and Optimization is increasingly incorporated in the design of
engineering devices ranging from aircraft and space vehicles to microfluidic
devices. Research in this field aims to integrate knowledge in flow physics
with theoretical advances and novel experimental capabilities and engineering
devices capable of materializing advanced design concepts. In turn controlled
flow phenomena exhibit a new arrays of physics and open frontiers for further
interdisciplinary research in fluid mechanics and all the engineering domains
that it affects.
This collection of papers in flow control, showcases representatives lines of

work in the area of flow control demonstrating the interdisciplinary character
and high scientific merit of this field. The authors of these articles are among
the pioneering researchers in this field and continue to explore the frontiers
in flow control and optimization. We hope that this volume, while largely
representing work by the authors prior to 2004, contributes in providing an
authoritative report on this rapidly changing field.

Zürich, Switzerland Petros Koumoutsakos
Santa Barbara, CA, USA Igor Mezic
February 2006
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Control of Weak and Strong Reverse-Flow
Regions in Incompressible Turbulent
Boundary Layers

Hans-Hermann Fernholz and Frank Urzynicok

Hermann-Föttinger-Institut, Technische Universität Berlin

Abstract. A specific aspect of flow control is the manipulation of flows with open
separation or with closed reverse-flow regions. These reverse-flow regions can be
classified as weak or strong [19] depending mainly on the magnitude of the mean skin
friction. This article does not attempt to discuss the more important investigations
published in the literature but is confined to work performed by the boundary-layer
group at the Hermann-Föttinger-Institut of TU Berlin over the last ten years, work
which was often published only in conference proceedings or students’ dissertations.
The test cases chosen will be discussed in the context of whether manipulation is
applied to weak or strong reverse-flow regions. In the former case separation can
be eliminated completely (pressure driven separation regions) whereas in the latter
case (fixed separation) the separation region can only be reduced. Weak reverse-flow
regions occur mainly in external flows (e.g. suction side of an airfoil) or in internal
flows (e.g. diffuser flows), strong reverse-flow regions upstream and downstream of
an obstacle or in connection with a trapped vortex.

Both passive and active devices were used for the manipulation of the various
separated flows, such as vortex generators and turbulence generating grids as well
as mechanical spoilers and zero net-mass flux actuators consisting of a loudspeaker-
pressure chamber-slot system. Measuring techniques used were hot-wire and pulsed-
wire anemometry, LDA and PIV, with special emphasis on measurements of the
mean and fluctuating skin friction.

1 Introduction

When Fiedler & Fernholz [22] wrote their review on “management and control
of turbulent shear flows” their intention had been to draw the attention of a
wider group of engineers to turbulent flow control in order to speed up the
transfer of knowledge from aerodynamics to applications in other fields of
engineering. This is still a worthwhile goal.
Since 1990 several good reviews have been published, e.g. Gad-el-Hak &

Bushnell [24], Wygnanski [68] and Greenblatt & Wygnanski [26], covering a
wider field than in the present paper. The authors confine themselves therefore
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to work performed by the boundary-layer group at the Hermann-Föttinger-
Institut of TU Berlin over the last ten years which has generally been pub-
lished only in conference proceedings or students’ dissertations. The results
of separation control will be shown by a demonstration of their effect on two
kinds of separation regions which are characterized by weak or strong reverse
flow [19].
Weak reverse flow (WRF) generally occurs if a boundary layer separates

from a smoothly contoured wall due to a sufficiently strong adverse pressure
gradient. Typical examples of WRF-regions can be found in diffusers or on the
suction side of thick airfoils at high angles of incidence. The flow may form an
open separation region or reattach at the wall, generating a closed reverse-flow
region or bubble which is often steady in the mean. It is characterized, for
example, by streamwise distributions of slowly rising static pressure and al-
most constant but small values of negative mean skin friction. The separation
process depends on the upstream history of the flow and the boundary condi-
tions in the streamwise direction. Both the separation and the reattachment
line, if present, are free, i.e. their locations xD and xR vary instantaneously
but are steady in the mean. The distance ΔxS = xR − xD is one of the char-
acteristic lengths of the problem. Manipulation may move xD downstream or
xR upstream or eliminate both, leading to fully attached mean flow.
Strong reverse flow (SRF) occurs if a boundary layer separates from a

sharp edge - be it a backward facing step or a fence. The separated shear layer
reattaches, if conditions are favorable, covering a cavity-like flow region. It is
characterized by large spatial changes in static pressure and mean skin friction
and by large values of the fluctuating skin friction distribution. The curved
separated shear layer, often convex, is practically independent of its upstream
history but depends on the flow geometry and the boundary conditions. The
location of the separation line, xD, is fixed and the only variable is the location
of the reattachment line, xR, which can, however, be steady in the mean.
Here the goal of the manipulation is to move xR upstream and to shorten
the reverse-flow region but it is not possible to eliminate the reverse flow
completely.
The goal of manipulation or, even better, closed-loop control of reverse-

flow regions is to reduce their extent or to eliminate the reverse flow. This
can increase the lift and reduce the drag of an airfoil or reduce the noise and
vibrations caused by separation. Overall we aim to improve the performance
of flow configurations in the fields of aerodynamics, fluid machines or chemical
process engineering. The relationship between separated flow regions and flow
unsteadiness, respective noise, is well known but often overlooked.
As early as 1904 Prandtl demonstrated the control of the separation of the

boundary layer in a diffuser by steady suction and steady blowing has been
applied for a long time to prevent separation on airfoils or for cooling purposes
on turbine blades. Today, unsteady blowing is a more cost-effective technology
and, what is just as important, feasible. It was first applied by Seifert et al.
[49] and by Seifert & Wygnanski [50] who replaced steady tangential blowing
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on an airfoil flap by unsteady blowing. A second technique, combining un-
steady suction and blowing (e.g. [66]), acts as a zero net-mass flux (ZNMF)
actuator using the fluid of the boundary layer itself without the need for a
separate source of fluid. This unsteady manipulation technique either gener-
ates or manipulates coherent structures. It increases entrainment using the
Kelvin-Helmholtz instability mechanism in the outer part of a separated flow,
i.e. in the separated shear layer, or generates vortices in the near-wall region
of a separating boundary layer and thus adds kinetic energy. Depending on
the type of actuator the generated vortices are oriented in the spanwise or in
the longitudinal direction.
Longitudinal vortices are generated, for example, by solid vortex genera-

tors (passive) or by vortex generator jets (VGJ). The classical vortex generator
(e.g. [60], and [48]) enhances mixing and thus increases streamwise momentum
near the wall by shedding longitudinal vortices but increases the drag of the
whole configuration under conditions when separation is absent. This latter
effect can be reduced if micro-vortex generators are used [40]. VGJ or pneu-
matic turbulators [28] are active actuators where the strength of the steady
jet can be controlled. They have the advantage that the drag associated with
fixed vortex generators is avoided with the jet flow turned off [11]. In this
latter investigation “weak" (see also [36]) longitudinal vortices are generated
by pitched and skewed jets. Urzynicok & Fernholz [63] discuss also a third
device, an unsteady vortex generator, to manipulate separation regions by
longitudinal vortices.
The second group of coherent structures which can be used for manipulat-

ing separation are spanwise vortices. They exist naturally in free and separated
shear layers or can be generated by unsteady blowing and suction through a
spanwise slot embedded in the wall. The slot, a pressure chamber and a piston
(e.g. a loudspeaker membrane or a piezoelectrically driven metal diaphragm)
form a zero net-mass flux (ZNMF) actuator. The frequency and amplitude of
the perturbation can easily be adjusted to the conditions of the main flow so
that the free shear layer or boundary layer responds to its excitation. Such
actuators - sometimes called synthetic jet actuators ([59, 6], for example) -
are small, light, energy efficient and independent of propulsive systems [68].
They were used by Ahuja & Burrin [1] demonstrating that, at least at low
Reynolds numbers, separation on an airfoil can be controlled by - what they
claimed to be – internal acoustic excitation (see also [31], and [29]). Williams
et al. [66] emphasized that the velocity fluctuations at the slot exit due to the
pumping effect of the loudspeaker can be several orders of magnitude larger
than those generated by the acoustic wave. Today with understanding of the
spanwise vorticity generation (e.g. [14], and [17]) the term “fluidic” excitation
or forcing seems to be more appropriate (see also [3]).
The amplification of the imposed perturbation takes place primarily in the

downstream shear layer rather than in the upstream boundary layer which,
as shown by stability analysis [69], is insensitive to the detail of the imposed
perturbations.
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At higher Reynolds numbers transition effects in the separated shear layer
can no longer serve as an explanation for a delay of separation. Béraud [4] and
Erk [17] visualized the interaction between the unsteady flow from the slot and
the cross-flow boundary layer in a water tunnel and found that the spanwise
vortices generated at the sharp edges of the slot orifice of the ZNMF-actuator
were responsible for re-energizing the near-wall region of the boundary layer.
This is similar to the vortex generation mechanism of vibrating flaperons ([39],
and [42]) or oscillating spoilers ([7, 21, 67], and [53], for example). Within the
range of frequencies investigated, i.e. below 50Hz, the spoiler type actuators
are equivalent in their effects to the ZNMF-actuators ([53], and [61]).
ZNMF-actuators can also be driven solely by energy from the boundary

layer itself if the slot-pressure-chamber configuration is designed according to
the principles of a Helmholtz resonator ([17, 23], and [63]).
Depending on the spanwise extent of the slot [63] the ZNMF-actuator

generates spanwise vortices or, if short and driven in antiphase, produces lon-
gitudinal vortices due to the shear layer interaction between the slot sections.
For the manipulation of weak and strong reverse-flow regions we shall use

here only ZNMF-actuators. They increase momentum in the near-wall region
of a boundary layer with incipient separation or enlarge entrainment of the
outer shear layer and thus move reattachment upstream. The actuators are
embedded in a cavity of the wall with the slot exit normal to the wall and
they use loudspeaker membranes as pumping devices.
Before dealing with some specific cases, five items should be heeded which

are a prerequisite for the manipulation of wall-bounded shear flows:

(i) What is the goal of the manipulation of the separation region?
(a) Maximum effectiveness of the manipulation, e.g. energy input lower

than energy gain,
(b) minimum length of the separation region,
(c) maximum lift to drag ratio,
(d) maintaining lift beyond the natural stall angle or
(e) reduction of noise or vibrations.

(ii) Which flow region is most suitable for the manipulation?
(iii) Manipulation by active or passive actuators?
(iv) What are the optimum properties of the actuator signal (wave form,

frequency, amplitude and phase angle) for a specific shear layer ?
(v) How is the success of the manipulation controlled ?

In the cases discussed below, manipulation had mainly the goal to reduce
the length of the separation region as much as possible, for example by free-
stream turbulence (passive), or to increase lift in the post-stall regime on an
airfoil by means of a ZNMF-actuator (active) regardless of the energy input.
In the latter case the flow region most sensitive to the actuator signal must be
determined in order to achieve the highest amplification of the manipulation.
For a WRF-region this location lies slightly upstream of the mean separation
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line in a region where there is still instantaneous reverse flow. For a SRF-
region the actuator was located at or close to the fixed separation line which
in general is identical with the origin of the separated shear layer. If this was
set, only the optimum properties of the actuator signal had to be determined.
Finally, the success of the manipulation was controlled by measurements of
either the skin friction, in order to determine separation and reattachment
lines, or of lift and drag.
For the solution of a control problem it is advantageous to determine the

variables by dimensional analysis. For a WRF region (e.g. on a given airfoil)
the dependent variables are primarily functions of (e.g. [17]):

F

(
Stc, Rec, cμ, α,

b

c
,
xA

c
,
w

c
,wave form of the excitation

)
.

Here the following definitions are used: The Strouhal number Stc = fc/U∞
(with a different set of fundamental parameters it could be defined with the
slot width b as Stb = fb/U∞), the Reynolds number Rec = cU∞/ν where
c is the chord length and U∞ the free-stream velocity, the momentum co-
efficient cμ = ρbv2

rms/(ρcU
2
∞/2) which is sometimes replaced by vrms/U∞

(with vrms as the rms velocity at the slot exit) or a sound-pressure coefficient
c̃p = prms/ρU

2
∞ with prms as the rms-sound pressure in the pressure cham-

ber, the angle of incidence α, the position of the actuator xA/c and the aspect
ratio of the airfoil w/c. For a boundary layer along a flat plate Rec would be
replaced by Reδ2 with δ2 as the momentum-loss thickness. Wygnanski [68] de-
fines St by using as a length scale the distance between the actuator and the
trailing edge of the airfoil, Lf . A note of caution regarding the sound-pressure
coefficient c̃p is necessary here. Since there is often a rather complicated trans-
fer function between the sound-pressure level in the pressure chamber and the
velocity perturbation at the slot exit, a parameter using vrms is more suitable
(as suggested by [52], and [66]), especially since vrms can now be measured
by means of LDA, for example.
For a SRF-region, e.g. downstream of a fence, dimensional analysis (e.g.

[53]) shows primarily a functional relationship:

F ∗
(
Sth, Reh, cμh

,
xf

h
,
b

h
,
H

h
,
w

h
,
xA

h
, α∗,wave form of the excitation

)
.

Deviating from Siller, we have introduced cμh
= ρbv2

rms/(ρhU
2
∞/2). Again

one could also have chosen the amplitude parameter vrms/U∞ or the para-
meter bv2

rms/(hU
2
∞) [47], instead. Sth is defined as fh/U∞ but could also be

formed with the slot width depending on considerations of the far or the near
field. The Reynolds-number is Reh = hU∞/ν and xf the position of the fence
which could be replaced by the boundary layer thickness δ at the fence with-
out the fence being present, H the height of the test section, lSF the distance
between the fence and the actuator if it is upstream of and not at the tip of
the fence and α∗ the sweep angle of the fence.
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This latter set of parameters is generally used in the literature but has
the disadvantage that at least three parameters change with a variation of
U∞ and an optimum value of the derived dependent variable ΔxS cannot be
stated a priori. This can be avoided [53] if h, ν and ρ are used as the natural
dimension base and this then gives for the non-dimensional frequency fh2/ν
and c̃p as prmsh

2/(ρν2).
The relationship F ∗ applies also to the flow over a backward facing step

if xA is put to zero and xf/h replaced by δ0/h where δ0 is a characteristic
boundary layer thickness at the edge of the step. One must also account for
the initial conditions of the oncoming flow, including the state of the boundary
layer.

2 Weak Reverse-Flow Regions

Weak reverse-flow regions, as defined above, may be found in pressure-induced
separation regions with and without reattachment. Examples are the separa-
tion bubble downstream of the sharp-edged blunt face of a circular cylinder
[52] or a blunt plate [8], axisymmetric separation bubbles in tailored pressure
distributions ([2, 12], and [38], for example) or separation regions on the suc-
tion side of airfoils (e.g. [17, 21, 55], and [62]). This latter configuration has
probably attracted the largest number of investigations (see [22], and [26]).
Furthermore there are reports on separation control in diffusers (e.g. [68], and
[10]). Most of these flows have in common that the magnitude of the skin
friction in the open or closed reverse-flow region is small so that it should be
possible by adding enough momentum to the near-wall region to push separa-
tion downstream or to force the boundary layer to reattach if the separation
region is open (e.g. [21]). If a “trapped vortex” is generated by forcing reat-
tachment, this vortex may be so strong that the reverse flow has skin friction
values large enough to change the flow from weak to strong reverse flow (see
Sect. 3.2). Forced reattachment is of special importance in cases where post-
stall occurs, i.e. where the boundary layer separates close to the leading edge,
with the consequence that the downstream forward flow is far from the suction
surface of the wing. For airfoils with a suction peak in the first quarter of the
chord it may suffice to push separation so far downstream that the suction
peak, reduced by leading-edge stall, is recovered and lift is regained (e.g. [17],
and [62]). If separation occurs towards the trailing edge it is also possible to
control the separation region (e.g. [30], and [57]) but the increase in lift is
usually smaller.
Internal flow with an adverse pressure gradient can be manipulated in

order to reduce the length of or even eliminate a closed reverse-flow region
with the aim of increasing pressure recovery or of reducing flow unsteadiness
and with it noise ([38], and [18]).
A note of caution should be expressed at the beginning of 2: Flows over

wings with large separation regions show interesting physical phenomena if
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manipulated, depending on the type of stall, i.e. whether it is leading-edge
(post-stall) or trailing-edge stall. The results are, however, often specific of
an airfoil type and difficult to generalize. This will be demonstrated in the
following case studies.

2.1 Manipulation of Separation on an Airfoil Under Post-Stall
Conditions at High and Low Frequency Excitation

In investigations by Erk [17] and Urzynicok [61] the flow around a wing section
separating at the leading edge at high angle of attack, thus forming a weak
reverse-flow region, was manipulated using high- and low-frequency forcing.
In both regimes ZNMF-actuators were utilized. For comparison, the measure-
ments in the low-frequency range were complemented by applying mechanical
actuation.
The experiments were carried out on aWortmann FX 61-184 laminar glider

profile with chord c = 450mm and aspect ratio 2 : 1. The angle of incidence
α was 26◦ and the Reynolds number based on the chord length ranged from
Rec = 2.5 × 105 to 1.0 × 106.

2.1.1 Separation Control Using Fluidic Forcing
at High Frequencies

For fluidic forcing the ZNMF-actuator consisted of a spanwise slot (b =
1.6mm) and a spanwise circular pressure chamber with a loudspeaker attached
at each end. The slot was located just downstream of the separation line at
x/c = 0.02 (Fig. 1(a)). Forcing was performed in a frequency range between

(a) ZNMF-actuator with loudspeakers
at the ends. Note the slot with the cavity
underneath serving as sound wave duct.
From Erk [17].

(b) The mechanical actuator consisting
of a spoiler with extension height ΔH∗

and a driving shaft.

Fig. 1. Cross sections of the fluidic and of the mechanical actuator implemented
into the leading edge section of the airfoil
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Fig. 2. Pressure distributions of the flow with and without manipulation (α = 26◦).
From Erk [17]

800 and 2000Hz at sound-pressure levels up to Lp = 160 dB (re 2 × 10−5 Pa).
The excitation strength was monitored with a microphone at the centerline
of the wing inside the cavity.
Oil-film visualizations of the manipulated flow on the suction side showed

that for α = 26◦ and Rec = 7.5 × 105 the separation line moved downstream
from x/c ≈ 2% to 16%. This restored the suction peak at the leading edge
of the wing (Fig. 2). The reattachment process showed no marked frequency
dependence in the range investigated here which, for strong excitation, had
also been observed for the separated flow around a blunt cylinder [51].
At low Reynolds numbers (Rec ≤ 5×105), there exists a lower threshold for

each excitation frequency above which higher sound-pressure levels increase
the lift. Once the sound-pressure level of the excitation exceeds an upper limit,
the lift decreases again (Fig. 3). The LDA measurements in Fig. 4 confirm this
result in that the extent of the velocity deficit in the wake, and hence the drag,
decreases with increasing intensity of the excitation until, in this case, at a
sound-pressure level of 145 dB the maximum lift coefficient is attained. Beyond
this threshold the wake widens again and drag increases. Both effects indicate
that the process has reached saturation [15].
At higher Reynolds numbers (Rec ≥ 5×105) hysteresis was observed, when

part of the flow stayed attached even after the excitation had been turned off
(Fig. 5). Experiments have shown that this effect is not due to turbulent
tripping [16]. In this case, the actuator, consisting of cavity and slot, acts as a
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Fig. 5. Hysteresis effect (Rec = 1 × 106, α = 26◦). From Erk [17]

Helmholtz resonator. Induced by the grazing flow, the pressure in the cavity
oscillates and excites the flow in a similar manner as in the case with active
forcing.
The investigations on the airfoil were complemented by measurements di-

rectly downstream of the slot: The phase-locked velocity profiles (in Fig. 6)
show a region of high shear indicating the passage of vortical structures. The
occurrence of these high-shear profiles and the resulting generation of vortices
are coupled with the instantaneous sound pressure in the slot.
For this actuator configuration, where the loudspeakers are located at both

ends, a spanwise standing-wave pattern develops in the slot with the wave-
length depending on the excitation frequency. The waviness of the separation
line (Fig. 7(a)) is caused by this standing wave which occurs at excitation
frequencies above approximately 900Hz only. The spanwise regions where the
separation line was shifted furthest downstream correspond to spanwise lo-
cations with maximum sound pressure at the slot exit (Fig. 7(b)). Although
microphone measurements could not be performed in the presence of a cross-
flow, the flow visualization shows that the characteristics of the ZNMF actu-
ator do not change with a grazing flow. If the frequency of the excitation is
varied, the shape and the position of the separation line change accordingly.
Adjacent peaks in the standing wave are 180◦ out of phase imposing a strong,
oscillating, spanwise pressure gradient.
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Fig. 6. Oscillating flow on the suction side of the airfoil downstream of the excitation
source: Instantaneous regions of high shear in the velocity profile (top) at y ≈
3mm correlate with phase angles where the driving sound pressure inside the cavity
(bottom) has a node. Phase-locked hot-wire data (Rec = 2.5 × 105, Lp = 159 dB,
f = 1200 Hz, x/c = 2.5 %). From Erk [17]

At excitation frequencies below 900Hz, where standing waves do not occur
in the slot, the forcing signal was nearly two-dimensional which resulted in a
two-dimensional separation line.
These effects imply that the flow in the geometric near field of this actu-

ator plays an important role in determining the reattachment process. The
saturation at high sound-pressure levels results from the acoustically gener-
ated unsteady jet at the slot blocking the oncoming boundary layer and, thus,
promoting separation. The frequency selectivity regarding the maximum lift
gain has to be attributed to the transmission properties (impedance) of the
loudspeaker-cavity-slot system rather than to the receptivity of the separated
shear layer.

2.1.2 Separation Control Using Fluidic Forcing at Low Frequencies

For the investigations at low excitation frequencies the same airfoil was used
as described in the previous section, but the frequency of the actuator was
reduced. In fact, two actuators were tested, a mechanical one (Fig. 1(b)) and
a ZNMF-actuator of the same type as in Sect. 2.1.1, and it is obvious that
because of the frequency limitations of the mechanical spoiler, a comparison
of the two actuators could only be performed in a low-frequency range.
With fluidic excitation, forcing frequencies were in a range from 20 to

60Hz, where the propagation of plane waves was severely attenuated. There-
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Fig. 7. (7(a)) Flow visualization showing the waviness of the separation line (flow
is from top to bottom, f = 1770 Hz, Lp = 155 dB, Rec = 7.5 × 105, α = 26◦). (Fig.
7(b)) Standing-wave pattern at high forcing frequencies inside slot and cavity. From
Erk [17]

fore, the excitation amplitude at the slot exit was much lower than in the
high-frequency case.
Correspondingly, the effect on the separated shear-layer was less spectac-

ular, but showed similar trends as in the higher frequency case: lift increased
with a maximum gain of 13.5% at Rec = 2.8 × 105, the suction peak of the
pressure distribution was restored, though to a lesser extent, and velocity pro-
files downstream of the ZNMF-actuator were fuller, carrying more momentum
in the wall proximity. Since the excitation was approximately homogeneous
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Fig. 8. Distribution of the reverse-flow factor χw on the suction side of the airfoil
with and without low-frequency ZNMF-excitation at Stc = 1.1 (f = 20Hz) and
Rec = 2.5 × 105 for various amplitudes

along the span, the separation line was two-dimensional. The reverse-flow fac-
tor χw was reduced (Fig. 8), although χw stayed above 50% at x/c > 0.22
indicating that on average, the flow was still separated. The forcing ampli-
tude was given here as sound-pressure level and sound-pressure coefficient,
respectively.

2.1.3 Separation Control Using Mechanical Forcing
at Low Frequencies

The mechanical excitation source used in the airfoil experiment consisted of a
fence-type spoiler extending along the entire span and oscillating perpendic-
ularly to the airfoil surface. It was located at the same streamwise position
as the ZNMF-actuator (Fig. 1(b)) and operated at frequencies ranging from
f = 5 to 70Hz. The amplitude of the spoiler could be varied in discrete steps
ΔH∗ between 2, 4, and 6mm.
Flow visualizations on the surface of the suction side of the airfoil showed

that the mechanical spoiler was effective and that under optimum conditions
the separation line moved downstream from x/c ≈ 0.02 to 0.15. Flow visual-
izations (not shown here) in a plane normal to the suction side revealed that
spanwise vorticity was generated at the edge of the oscillating spoiler having a
strong influence deep into the flow field. The vortical structures shed from the
oscillating spoiler, when the flow grazed past its edge, induced a downward
movement which caused the flow to reattach.
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Figure 9 shows the lift gain obtained by the mechanical spoiler as a function
of Strouhal number Stc and Reynolds number Rec. For Rec ≥ 5 × 105 the
optimum Strouhal number was about 0.2 for ΔH∗ = 4 mm and for Rec =
2.5 × 105 Stc was about 1.05. The maximum lift gain ΔcL/cL0 was 40%. It
is interesting to note that a fixed spoiler (Stc = 0) had a detrimental effect.
Increasing the Reynolds number beyond 5× 105 decreased the gain in lift for
this airfoil again.
Saturation, even though dependent on different parameters, was also ob-

served in the case of mechanical forcing: Although for small amplitudes of the
spoiler an increase in ΔH∗ leads to an increase in lift gain, there is a threshold
(ΔH∗ = 4 mm in this case), above which a further increase of the amplitude
did not result in an improvement. This effect might stem from the oncoming
boundary layer being blocked and, thus, promoting separation again.
Measurements of the pressure distribution (Fig. 10) around the airfoil

showed that the mechanical excitation partially restored the suction peak
which, at high angles of attack, is mainly responsible for the lift. Naturally,
the pressure distributions depend on the excitation frequency: At low Strouhal
numbers relatively extended regions of low pressure occurred near the leading
edge, while the suction peaks had a shorter streamwise extension but grew
stronger with increasing Stc. This effect is most likely caused by the size of the
vortices generated at the edge of the spoiler which scale with the excitation
frequency.
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Fig. 10. Pressure distributions around the airfoil at Rec = 5×105 with and without
mechanical excitation by an oscillating spoiler with an amplitude ΔH∗ = 4mm.
From Urzynicok & Fernholz [62]

The reverse-flow factor, measured by a wall pulsed-wire probe, was notice-
ably reduced when the flow was forced (Fig. 11), but even far downstream of
the separation line (up to a position of x/c ≈ 0.6) the length of flow instan-
taneously attached increased significantly.
Although the results obtained with both types of actuators in the low-

frequency regime vary in magnitude, the underlying effect seems to be the
same. It results from the generation of spanwise vorticity. In the fluidic case,
the slot acts as a “vortex pump", while in the mechanical case, intermittent
vorticity is shed from the edge of the spoiler.

2.2 Manipulation of Trailing Edge Separation on an HQ-17
Laminar Airfoil by Means of Two-Dimensional ZNMF-Actuators

In contrast to case study 2.1 where we have attempted to manipulate leading-
edge separation (post-stall), the goal of this investigation has been to increase
lift when separation occurred in the recompression region of an airfoil. Es-
pecially in general aviation, the airfoils used are relatively thick and exhibit
therefore a trailing-edge stall behavior [41]. Hence, this study aimed at ma-
nipulating the separation region before deep stall occurred at higher angles of
attack. Huang et al. [30] had observed that trailing-edge separation and the
wake structure responded to the excitation frequency of a ZNMF-actuator
located in the recompression region if this frequency was close to the vortex
shedding frequency.



16 H.-H. Fernholz and F. Urzynicok

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
50

60

70

80

90

100

no forcing
fixed spoiler, H*=4mm
fixed spoiler, H*=6mm
Stc=1.1 (f=20Hz), H*=2mm
Stc=1.1 (f=20Hz), H*=4mm
Stc=1.1 (f=20Hz), H*=6mm

x/c

χ
w

Fig. 11. Reverse-flow factor χw on the suction side of the airfoil with and without
mechanical excitation at Stc = 1.1 (f = 20 Hz) for various amplitudes of the spoiler
(Rec = 2.5 × 105). From Urzynicok & Fernholz [62]

The present experiments were performed on an HQ-17 laminar airfoil
(with a chord length c = 0.65m and a span w = 1.55m) which was
mounted on a six-component mechanical balance to determine the lift and
drag coefficients cL and cD, respectively. The Reynolds number range was
5 × 105 ≤ Rec ≤ 1.5 × 106 and the angle of incidence 7◦ ≤ α ≤ 22◦. The
airfoil had two independent actuator slots of width 1.2mm and subsequently
1.7mm, extending over the span and fed by eight loudspeakers each. This
arrangement ensured a homogeneous momentum flux along the span. For de-
tails of the experiment the reader is referred to Siller & Fernholz [55, 56, 57].
The behavior of the separation region on the wing is shown in Fig. 12

where the chord position of separation is seen to move smoothly upstream for
an angle of incidence larger 7◦. The respective separation angle determines the
position of the actuator slot(s) which must be located upstream of the mean
separation line. For the single slot configuration this position was chosen as
xslot2/c = 0.66 at αlim ≈ 13◦, whereas the double-slot case had an additional
upstream slot at xslot1/c = 0.50 (with αlim ≈ 16◦). Leading-edge stall would
have occurred at about 22◦ and the separation region can be classified as weak.
In contrast to a leading-edge stall scenario, the maximum lift coefficient cLmax

can be increased.
The following investigations with single and double slots were not op-

timization but feasibility studies meant to give indications for a parameter
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Fig. 12. Variation of the separation line as a function of the angle of incidence at
Rec = 1 × 106. From Siller & Fernholz [55]

optimization of Strouhal number and momentum coefficient, where the num-
ber of slots and the phase difference between the actuator wave forms were
additional parameters of the problem. The Strouhal number StlS = flS/U∞
is defined here with the length of the separation region lS without manip-
ulation and the momentum coefficient cμ = 2bv2

rms/cU
2
∞. With free-stream

velocity U∞, chord length c and slot width b fixed, only the frequency f and
the rms-velocity fluctuation at the slot vrms could be varied.

2.2.1 The Single Slot Configuration (xslot2/c = 0.66, b = 1.2 mm)

The parameter study for the determination of the Strouhal number was per-
formed at α = 10◦ for 1 × 106 ≤ Rec ≤ 1.5 × 106 and 2.3 × 10−4 ≤ cμ ≤
8.4 × 10−4. The distribution of the lift coefficient ΔcL = cL − cL0 (Fig. 13)
shows that the optimum Strouhal number StlS is about 0.3. With Stc = 1.43,
cμ = 1.36 × 10−3 and Rec = 1 × 106 cL was measured as a function of the
angle α (Fig. 14) and compared with the unforced case. The increase in cL is
about 8% and this can also be seen in the respective pressure distributions
where the manipulation does not only affect the pressure in the recompression
region but also upstream (Fig. 15).
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2.2.2 Double Slot Configuration (xslot1/c = 0.50, xslot2/c = 0.66)

Since the gain in lift for the single slot configuration was relatively small, the
airfoil was provided with a second slot parallel to the first one, but further
upstream (xslot1/c = 0.50). The width of the slots was 1.7mm. The parameter
study for Rec = 1×106 and α = 12◦ showed an increase of ΔcL to about 0.12
for the single wider slot at the upstream position and a further increase, when
both slots were open, to ΔcL = 0.15 (Fig. 16). Since the optimum forcing
frequency is related to the shedding frequency of the airfoil, the peak values
of ΔcL are achieved for forcing in a range 40Hz ≤ f ≤ 50Hz, equivalent
to StlS = 0.3. Figure 17 shows the influence of the manipulation on the
distribution of the lift coefficient as a function of the angle of incidence α.
In the experiments shown here cμ was kept constant for both slots and the
pressure distribution again reflects the higher lift (Fig. 18).

2.3 Manipulation of Closed Reverse-Flow Regions by Free-Stream
Turbulence (FST)

It has been shown by Hillier & Cherry [27] that the mean flow field of a closed
reverse-flow region responds strongly to free-stream turbulence intensity. They
investigated a separation bubble generated at the leading edge of a blunt flat
plate parallel to the flow (height h = 38.1mm). Reh was in the range 3.4 ×
104 ≤ Reh ≤ 8.0× 104. A free-stream turbulence level of 6.55% generated by
an upstream grid changed the non-dimensional bubble length from ΔxS/h =
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Fig. 18. Pressure distribution at α = 15◦; Rec = 1 × 106, xA/c = 0.50 and 0.66

4.88 at Tuδ = 0.2% to 2.70, achieving a significant reduction. The negative
mean pressure peak was increased by about 35%.
A second case, where the separation line was also fixed and where free-

stream turbulence changed the length of the reverse-flow region was the flow
over a straight backward-facing step of height h [35]. At a step height Reynolds
number Reh = 3.2×104 the non-dimensional reattachment length ΔxS/h was
reduced from 8.21 to 6.30 by increasing the free-stream turbulence intensity
from 0.25% to 7.4% where the FST was generated by means of a coarse
rectangular mesh. The mean reattachment length remained two-dimensional.
The turbulence intensity near the wall at the separation line played a sig-
nificant role in the development of the inner mixing layer leading to faster
reattachment. So an augmentation of the entrainment rate was probably an
important factor. Although skin friction was not measured in either case, the
first case probably exhibits a WRF-region and the second a SRF-region. In
neither case could the separation region, however, be eliminated completely.
The next two cases differ in that the separation and the reattachment lines
are free and the reverse-flow region is weak.
In a WRF-region the skin friction is small and negative, so that a small

increase of the kinetic energy in the vicinity of the wall should suffice to change
the slope of the mean velocity profile from negative to positive and thus change
the position of both separation and reattachment line. If the manipulation is
strong enough, the reverse-flow region can be reduced or even eliminated.
This was achieved by Obi et al. [43] who used a ZNMF-actuator to suppress
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separation in a plane asymmetric diffuser and by Kalter & Fernholz [38] who
used FST to shorten or even to eliminate an axisymmetric closed reverse-flow
region in a boundary-layer flow. The turbulence intensity was varied between
0.2% and 6% using upstream grids while the turbulence length scale was
on the order of the boundary layer thickness. Free-stream turbulence had a
small effect on the boundary layer in the mild adverse-pressure gradient region
but in the vicinity of separation and in the reverse-flow region mean velocity
profiles, skin friction and turbulence structure were strongly affected.
Three flow cases were investigated: case LFST with 0.2% FST (low), case

MFST with 3.4% (medium) and HFST with 5.6% FST (high). The result of
the manipulation for cases MFST and HFST in comparison with case LFST
is shown in Fig. 19, where distributions in the streamwise direction x are
presented for the static pressure coefficient cp, the mean skin friction coef-
ficient cf , and the reverse-flow factor at the wall χw (denoting the prob-
ability of reverse flow near the wall). Here cf and χw were measured by
means of a wall pulsed-wire. LFST shows the typical cp-distributions for a
flow with a separation bubble. Mean separation (xD = 344mm) and reat-
tachment (xR = 561mm) define a mean bubble length of ΔxS = 217mm and
are characterized as the locations where cf = 0 and χw = 50%. The length
of the “shoulder” in the pressure distribution corresponds roughly with the
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Fig. 19. Streamwise distribution of the wall parameters: static pressure coefficient
cp, skin-friction coefficient cf , and reverse-flow parameter χw. From Kalter & Fern-
holz [38]
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length of the bubble. The upstream cp and cf distributions are nearly iden-
tical for all three cases, showing the dominant effect of the pressure gradient
until instantaneous reverse flow occurs at the wall, with χw increasing from
zero. The cf values for the LFST and MFST flows which will separate are vir-
tually identical until χw reaches 50%, i.e. the onset of mean flow separation.
They then diverge both from each other and from the attached case HFST
which lies higher throughout. In the reverse-flow region the cf distributions
are typical of WRF.
Instantaneous reverse flow was observed for LFST in a region extending

from half a bubble length upstream of mean separation to one bubble length
downstream of mean reattachment (see Fig. 19). This is an indicator of the
“buffeting behavior” of the flow. The bubble location for LFST and MFST is
well defined in the mean, however.
Since the distributions of cp are almost identical for MFST and HFST

until χw departs from zero, it must be the effect of the FST on the mean
velocity profiles and the turbulence structure which changes the cf and χw

distributions when compared to those of case LFST. Although the boundary
layer of case MFST still separates, its mean reverse-flow length is reduced by
about half to ΔxS = 108mm and χw to a maximum value of 61% compared
with 82% for LFST. For HFST the mean value of cf is always positive but
χw has still a maximum value of 12.5% indicating that there is instantaneous
reverse flow in the near-wall region.
The reduction or elimination of weak reverse-flow regions by FST on the

blades of a radial fan in one of our wind tunnels has not only reduced flow
losses and the noise level but also low-frequency oscillations in the tunnel (see
also [18]).

3 Strong Reverse-Flow Regions

Strong reverse-flow regions, as defined in the introduction, occur, for example,
upstream and downstream of obstacles, such as a two-dimensional fence, or
downstream of a backward facing step. For a specific case the separation
line is generally fixed and the reattachment line of the closed reverse-flow
region is the object of the manipulation. In the case of the reverse-flow region
upstream of an obstacle the reattachment line is generally fixed and only the
separation line can be manipulated [53]. This introduces a severe restriction
in comparison with WRF regions.
Two cases (Fig. 20) will be considered briefly: Firstly, the flow over a 2-D

fence with manipulation by means of a spoiler or a ZNMF actuator upstream
of the fence [53, 54] and, secondly, the same flow with manipulation by a
ZNMF actuator at the tip of the straight or swept fence [33].
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Fig. 20. Schematic view of the fence test configuration. From Huppertz & Fernholz
[33]

3.1 Manipulation of the Closed Reverse-Flow Region
Downstream of a Fence

Measurements downstream of a straight backward facing step were performed
by Huppertz [32] and downstream of a swept step by Fernholz et al. [20] and
Kaltenbach & Janke [37]. The latter paper and the one by Wengle et al. [64]
compare the measured data with a direct numerical simulation. For lack of
space the reader is referred to the original publications about the step flows.
The fence flows have in common that there is a well defined 2-D boundary

layer upstream, the thickness of which is of the order of the fence height, h, an
aspect ratio w/h ≤ 50 and a blockage ratioH/h ≤ 41. The upstream boundary
layer was tripped and was fully turbulent. The corresponding profiles are
published in Huppertz & Fernholz [33] and Siller & Fernholz [58]. The free-
stream turbulence level Tuδ is below 0.3% and the wave form of the excitation
is sinusoidal and two-dimensional in spanwise direction. The sweep angles α∗
are 0◦ or 20◦, cases with larger sweep angles ≤ 50◦ were investigated but are
not discussed here for lack of space. Finally, the ratio b/h (b is the slot width)
was kept within the range 0.05 ≤ b/h ≤ 0.12 and the optimal non-dimensional
distance between the fence and the upstream actuator lSF /h was found to be
between 1.5 and 2. It has been shown, for example by Siller [53], that the non-
dimensional reattachment length xR0/h without forcing is mainly dependent
on the blockage ratio for Reh ≥ 5000. Results for xR0/h = f(H/h), from the
investigations of Siller [53], Good & Joubert [25], Castro & Fackrell [5] and
Durst & Rastogi [13] are shown in Fig. 21. The parameters of the investigations
discussed subsequently and some results of the optimization are presented in
Table 1.
The main differences between these fence-flow experiments are the location

of the actuator (UF or TF) and the respective optimal parameters for the non-
dimensional frequency and amplitude.
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Fig. 21. The length of the reverse-flow region downstream of the fence xR as a
function of blockage. ∗ Good & Joubert [25], ◦� Castro & Fackrell [5], � �× Durst
& Rastogi [13], • Siller [53]. From Siller [53]

In case UF the upstream and the downstream reverse-flow regions must
be manipulated in order to reduce the length of the downstream separation
bubble. In essence this means that upstream of the fence a roller with the
diameter of about h must be generated to lead the separated shear layer over
the fence and to change the flow angle in the downstream direction above
the fence, and further that large coherent structures must originate in the
shear layer close downstream of the second separation at the tip of the fence.
These coherent structures are caused by a stochastic roll-up process due to
the inflectional velocity profiles. On average there are preferred frequencies
(Fig. 22) which show as a bump in the power spectral density distribution of
the streamwise velocity and which shift to higher frequencies with increasing
mean velocity [33].
The frequencies of these amplified waves have been shown to be effective

excitation frequencies and lie here in the range of 40 to 50Hz, giving a non-
dimensional frequency of Sth ≈ 0.05. This agrees with the result of Siller [53]
and lies within the band of the shedding frequency of the bubble downstream
of the fence. With this Strouhal number (Fig. 23(a)) the non-dimensional
reattachment length xR/xR0 (where xR0 is the distance between the fence and
the reattachment line without manipulation) was determined as a function of
the excitation amplitude A = vrms/UN at the slot exit (UN is the velocity
in the free-stream normal to the fence which is the characteristic quantity to
account for various sweep angles α∗). For further investigations A was chosen
as 88% because this is the value of A where a change in slope occurs towards
an onset to saturation. With this value of A, xR/xR0 was determined as a
function of the excitation frequency (Fig. 23(b)) and the curves for sweep
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(a) (b)

Fig. 23. Non-dimensional reverse-flow length xR/xR0 for the excitation upstream
of the fence (23(a)) as a function of the excitation amplitude (Sth = 0.05, α∗ = 20◦)
and (23(b)) as a function of the excitation frequency, and the sweep angle α∗. From
Huppertz & Fernholz [33]

angles 0◦ and 20◦ confirm the above optimal Strouhal-number. The influence
of sweep is almost negligible in this case.
Siller [53] extended the frequency range to higher values using the sound-

pressure coefficient as a parameter for the amplitude (Fig. 24) and found two
local minima (see also [9], for a backward facing step flow). The first mini-
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mum is caused by the effect of large structures just downstream of the fence
increasing entrainment there. This corresponds to the shedding type insta-
bility of the bubble [52]. The second minimum occurs due to the effects of
the Kelvin-Helmholtz instability of the shear layer. Since the coherent struc-
tures amalgamate further downstream in the shear layer, their effect on the
separation bubble is, however, much weaker.
The effects of the shedding type instability on the reduction of the reverse-

flow region were investigated using both a mechanical oscillating spoiler and a
ZNMF-actuator upstream of the fence [54]. The results are presented in Fig. 25
showing that the spoiler (although not optimized) can achieve similar results
as the ZNMF-actuator which, however, is more versatile and mechanically
simpler. ΔH∗/h is the dimensionless height of the spoiler above the wall,
which was here 28% of the fence height, and lSF /h the location of the actuator
upstream of the fence (see also Table 1). The optimum value for lSF /h (spoiler)
was 3 and about 2 for the ZNMF-actuator.
Figure 26 shows the wall values of the flow downstream of the fence for an

optimized ZNMF-actuator (case UF) taken from Siller [53]. The distributions
of the pressure coefficient cp = 2(p(x) − pref )/(ρU2

∞), the mean wall shear-
stress coefficient cf = 2τw/(ρU2

∞), the reverse-flow factor χw, and the rms
fluctuation value c′f = 2(τ ′2w )1/2/(ρU2

∞) are plotted against (x−xf )/xR. Here
xR is the time averaged length of the reverse-flow region. In this scaling (see
also [46]) the distributions of cp and cf , respectively, fall onto each other with
and without forcing. The distributions of χw and c′f in the bubble are very
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Fig. 25. Non-dimensional reverse-flow length as a function of Sth for an oscillating
spoiler and a ZNMF-actuator with different blockage ratio and actuator position.
From Siller & Fernholz [54]

much affected by the high forcing amplitude and do not collapse. The large
increase of c′f due to forcing is also reflected in the distributions of the higher
moments of c′f with the skewness increasing and the flatness decreasing (see
[53]).
Manipulating the downstream reverse-flow-region with an actuator at the

tip of the fence (TF) appears to have advantages, at least at first sight. We
shall find that the necessary excitation amplitudes can be smaller but that
the frequencies must be higher, with the overall result that the reduction
of the bubble length is not much different from that of case UF. The main
mechanism for the manipulation is the Kelvin-Helmholtz instability using sin-
gle and bimodal forcing [33]. There the appropriate local Strouhal number
is Stδ2 = fδ2/Umax, where δ2 is the momentum-loss thickness of the sep-
arated shear layer and Umax(x) the maximum velocity of the profile. Stδ2

was determined as 0.020 resulting in an excitation frequency f = 114Hz.
The results from the parameter optimization are shown in Fig. 27. Here
the non-dimensional reattachment length xR/xR0 is plotted against the ex-
citation frequency as a function of two sweep angles and two amplitudes
A = vrms/UN . The optimum excitation frequency is approximately 100Hz,
independent of sweep angle and amplitude, and close to the maximum ex-
citation frequency of the Kelvin-Helmholtz instability. With the optimum
Strouhal number Stδ2 = 0.018 (Sth = 0.128) the development of the reat-
tachment length as a function of the amplitude vrms/UN shows a minimum
at A = 85% (for α∗ = 0◦ this value is practically identical). Huppertz & Fern-
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Fig. 26.

holz [33] have explained why the excitation of the Kelvin-Helmholtz instability
is optimal at f = 114Hz taking into account the behavior of the kinetic energy
of the coherent structures Ecoh integrated over the width of the shear layer:

Ecoh(u, f0) =

∞∫
0

u′2coh(f0)
U2

N

d(y/h) with u′2coh(f0) =

f0+Δf∫
f0−Δf

Suu(f) df

where Suu is the power spectral density of the u′ fluctuation (note that:
u′2 =

∫∞
0

Suu(f) df), [f0 − Δf, f0 + Δf ] is the spectral bandwidth of the
coherent energy and f0 is the excitation frequency fexc or the correspond-
ing subharmonic fsub = fexc/2. No subharmonic component of fexc could be
detected in the frequency spectrum of the shear layer, i.e. no vortex pairing
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(a) (b)

Fig. 27. Non-dimensional reverse-flow length xR/xR0 for the excitation at the tip
of the fence (27(a)) as a function of the excitation frequency and the sweep angle
α∗ and (27(b)) as a function of the excitation amplitude (Stδ2 = 0.018, α∗ = 20◦).
From Huppertz & Fernholz [33]

occurred [33]. Hence the coherent energy was only calculated for the excitation
frequency for A = 0.25.
Figure 28 presents the development of Ecoh(u) in streamwise direction for

α∗ = 20◦ andA = 25% at four excitation frequencies (f ={51, 75, 102, 150}Hz)
and a bandwidth ofΔf = 4Hz. Amplification, saturation and a decrease of the
coherent energy can be observed. Each curve has a saturation value Ecohmax

at a different height and at a different streamwise location x/h. This behavior
is typical of a Kelvin-Helmholtz instability. A comparison of Fig. 28 and 27(a)
shows that the largest reduction of the reverse-flow region (xR/xR0 = 0.84)
occurs at f = 120Hz which is not the curve with the absolute maximum
(f = 51 Hz) but the curve with the highest values of Ecoh very close to the
fence, since here the flow manipulation is most effective in reducing the reat-
tachment length.
For this case and single frequency excitation, PIV measurements were

made which show the expected roll-up of the shear layer to a large coherent
structure just downstream of the fence without vortex pairing (not shown
here, but see [33]).
After the discussion of single frequency excitation we shall now briefly refer

to bimodal forcing. Many investigations of free shear layers have shown that
the control range of forcing can be extended by adding the first subharmonic
frequency fsub = fopt/2 (e.g. [34]). The excitation signal is then described by

Signal = Afun sin(2πft) + Asub sin(2πft/2 + Δϕ) with 0◦ ≤ Δϕ < 180◦.

For the manipulation of the shear layer by bimodal excitation the amplitudes
and the frequencies of the fundamental and the subharmonicexcitation and
the initial phase difference Δϕ must be determined. The optimization process
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Fig. 28. Development of the coherent kinetic energy Ecoh(u) at four excitation
frequencies for A = 25 %, α∗ = 20◦ and Reh = 5330. From Huppertz & Fernholz
[33]

has been described in detail by Huppertz & Fernholz [33]. In order to ob-
tain an efficient reduction of the reattachment length, the energy containing
structures must be generated further upstream than they would be generated
with ffun = 102Hz and fsub = 51Hz and this was achieved by choosing
ffun = 204Hz, fsub = 102Hz and Δϕ = 80◦. In this case vortex pairing is
forced at about x/h = 5 leading to increased entrainment and a reduction of
xR/xR0 of 25%.
The results of single mode and bimodal excitation on the development of

the wall parameters downstream of the fence are shown in Fig. 29 where the
abscissa is x/xR, with x = 0 at the fence. As in Fig. 26 the distributions of
cp and cf , additionally that of χw, are quasi self-similar. The exception is the
one case where the excitation was introduced upstream of the fence (UF),
a case comparable to that of Siller [53]. The distribution of χw shows that
instantaneous reverse flow occurs to about one bubble length downstream of
mean reattachment. With increasing excitation amplitude the peak values of
c′f increase (≈ 100%) and move upstream of the mean reattachment line.

3.2 Manipulation of Strong Reverse Flow
Caused by a Trapped Vortex

Here we present two cases of strong reverse-flow regions which are caused
by pressure induced separation where the large negative skin friction was
generated by a “trapped” vortex.
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Fig. 29.

In the first case the vortex was in front of a two-dimensional obstacle
emerging above a turbulent boundary layer. Figure 30 combines a flow visu-
alization [65] and a skin friction distribution measured by a surface fence [45].
Such a vortex and its high skin friction is responsible for scouring out the bed
of a stream in front of a bridge pillar, for example.
A similar flow, this time over a two-dimensional fence, was investigated by

Siller & Fernholz [58] without manipulation and by Huppertz & Fernholz [33]
with manipulation. In the former case the distributions of the characteristic
mean wall values upstream of the fence cp, cf and χw as a function of the
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Fig. 30. Flow visualization [65] and wall shear-stress distribution [45] upstream of
a two-dimensional obstacle in a turbulent boundary layer

non-dimensional length (xf −x)/(xf −xD) are shown in Fig. 31. Here xf is the
position of the fence measured from the leading edge and xf − xD the mean
position of the separation line. The SRF-region is clearly visible although the
negative maximum of the skin friction coefficient cf could not be measured
owing to design problems of the configuration. In a related experiment [33]

Fig. 31. Streamwise distribution of the static pressure coefficient cp, the skin-friction
coefficient cf , the reverse-flow parameter χw, and the shape parameter H12 (lines
are for visual aid only). From Siller & Fernholz [58]
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A

B

Fig. 32. Phase-averaged vorticity component 〈ωz〉 at Sth = 0.07, A = 88%, and
α∗ = 20◦ (excitation upstream of the fence) for four phase angles. From Huppertz
& Fernholz [33]

the flow over the fence was manipulated by a ZNMF-actuator upstream of
the fence in order to reduce the length of the reverse-flow region downstream
of the fence. The manipulation of the trapped vortex in front of the fence
is demonstrated by means of PIV measurements of the phase-averaged vor-
ticity and the streamlines. Figure 32 shows the vorticity component 〈ωz〉 =
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〈∂v̄/∂x〉 − 〈∂ū/∂y〉 in the xy-plane −2 ≤ x/h ≤ 8 and 0 ≤ y/h ≤ 3 at four
phase angles ϕ (at A = 88%, Sth = 0.07 and α∗ = 20◦).
The streamlines are viewed from a coordinate system moving with the

convection velocity of the structures ūc ≈ 0.6UN . During the “suction” phase
of the actuator (ϕ approximately between 30◦ and 150◦) a structure (A) forms
downstream of the tip of the fence. Subsequently during the “blowing” phase
the trapped vortex (B) is enhanced in front of the fence, the angle of the
streamlines at the fence tip changes and structure (A) is convected down-
stream.
In a second, completely different experiment ([21], and [70] and 1993) the

vortex was generated and trapped on the suction side of a wedge-like body
which consisted of a NACA 0025 wing section (1m chord length) with the
sharp trailing edge pointing upstream (Fig. 33). The angle of incidence could
be varied between 0◦ and 27◦ and the manipulation of the separated flow was
achieved by a flapping sharp-edged spoiler (note the direction) at the leading
edge. The spoiler was driven by an electric motor with frequencies up to 70Hz
and an amplitude between 0.5 and 2mm. The chord Reynolds number was in
the range 3.7 × 105 ≤ Rec ≤ 1.4 × 106 and two angles of incidence, 18◦ and
27◦, were investigated because their separation scenarios and the results of the
manipulation, measured as lift and drag coefficients cL and cD, were rather
different. For the manipulation, the appropriate amplitude Δh∗ and frequency
f had to be chosen. With an amplitude ΔH∗ = 1 mm the non-dimensional
frequency Stc = fc/U∞ was varied between 0 and 14 (Fig. 34) and values
between 1 and 2 (10 and 20Hz) were found to be optimal.

Fig. 33. Test configuration. From Fernholz et al. [21]

At α = 18◦ the skin-friction distribution (Fig. 35) showed that a closed
reverse-flow region existed on the suction side between 0.10 ≤ x/c ≤ 0.52
which was reduced in length by the manipulation and moved upstream
(xR/c = 0.36). In both cases the reverse-flow region is strong, as shown by
the high negative values of the skin friction which were measured by means
of a wall pulsed-wire probe. With manipulation the pressure distribution has
a higher suction peak but the overall distribution of cp produced slightly
less lift than without manipulation (cL = 0.84 against 0.88 measured by a
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1mm. From Zhou et al. [70]
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1mm, lines are for visual aid only). From Zhou et al. [70]

six-component mechanical balance). The drag coefficient was practically un-
changed.
At α = 27◦, the skin friction distribution (Fig. 36) shows a large open

separation region (post stall) with weak or no reverse flow in the upstream
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part. Both cf and χw are practically zero ("dead air region") and reach higher
values only towards the rear of the wedge-like body owing to the massive
open separation. The pressure distribution remained flat (cp ≈ −0.85) over
the greater part of the wing (Fig. 37).
Manipulation by the spoiler forced the separated shear layer to reattach

(xR/c ≈ 0.77) generating a closed strong reverse-flow region in the range
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Fig. 37. Distributions of pressure coefficient cp and fluctuating skin-friction coeffi-
cient c′f with and without manipulation (Rec = 6.5 × 105, α = 27◦, ΔH∗ = 1 mm,
lines are for visual aid only). From Zhou et al. [70]
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0.10 ≤ x/c ≤ 0.77 as shown by the distributions of the skin friction and reverse
flow parameter (Fig. 36). This picture reveals a similar behavior of the flow to
what was found for α = 18◦. χw increased to about 90% and cf reached values
of about −3×10−3 on the upstream half of the suction side indicating forward
flow towards the rear end of the wedge-like body. The pressure distribution
(Fig. 37) shows a large increase of the suction pressure resulting in a rise of cL

from 0.72 to 1.17, again with cD remaining almost constant. Measurements of
the wake profiles showed however, that cD decreased with manipulation. All
these changes of relevant flow parameters point to a large vortex with fairly
stable circulation which occupied more than half of the suction side. The effect
of the vortex near the wall is also reflected in the increase of the fluctuating
skin friction coefficient c′f the distribution of which is shown in Fig. 37.
From this we may conclude that (a) it can be detrimental if the reverse-flow

region is shortened but moved at the same time upstream and into the region
of the suction peak (case 18◦) and (b) that if open separation is converted
to closed separation (case 27◦) the lift may increase considerably due to the
strong vortex captured in the bubble (see also [71], and [67]).

4 Conclusions

With growing experience from one test case to the next a certain pattern
evolved as to how to approach the successful manipulation of wall-bounded
turbulent shear-flows: Clearly define the goal of the manipulation, find the
flow region most suitable for the manipulation, decide whether the actuator
should be passive or active, determine the optimum properties of the actuator
signal and finally choose the quantity by which the success of the manipulation
can best be controlled.
In the case studies presented here, manipulation mainly had the goal of

reducing the length of the separation region as much as possible or increas-
ing the lift in the post-stall regime on an airfoil. Flows over wings with large
separation regions show interesting physical phenomena if manipulated, de-
pending on whether it is leading-edge or trailing-edge stall. The results are
often specific to an airfoil type and difficult to generalize, however.
The effectiveness of an actuator is severely reduced if it is not located

upstream and close to the mean separation line. Actuators built into the
wall have the advantage of not generating additional drag when they are
not in operation and therefore mainly active zero net-mass flux actuators
consisting of a piston (loudspeaker), a pressure chamber and a spanwise slot
were used. In three cases mechanical spoilers were employed which worked
almost equally well but are less versatile than the ZNMF-actuators and can
be run only at frequencies below 50Hz. The ZNMF-actuators function at low
and high frequencies, can vary the phase and the amplitude of the signal over
a wide range and generate, if two-dimensional, spanwise vortices and, if short
and driven in antiphase, longitudinal vortices. This gives them a wide range
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of applications, especially the possibility of reducing the unsteadiness of the
separation region.
In all case studies presented here, the skin friction was the quantity which

was the best indicator of the state of the separation region and the strength
of the reverse flow. Since in many cases the measuring time can be kept very
short skin friction may be used as a convenient control variable for closed-loop
control of separation regions.
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Abstract. The suppression of post-stall separation over an unconventional 2-D air-
foil at moderate Reynolds numbers (up to 106) using synthetic (zero net mass flux)
jet actuators is discussed. As shown by the authors in earlier investigations, the
apparent modification of the surface shape by the interaction domain between the
actuator jets and the cross flow results in a local displacement of the cross flow
streamlines. The concomitant modification of the streamwise pressure gradient up-
stream of where the flow nominally separates in the baseline configuration can lead
to complete suppression of separation over a significant range of angles of attack
in the post-stall domain. While in the absence of flow control the airfoil is stalled
at angles of attack exceeding 5◦, actuation leads to either completely or partially
attached flow within the entire range of angles tested (up to 25◦) that is accompa-
nied by a dramatic increase in lift and a corresponding decrease in pressure drag.
Actuation is typically effected at frequencies that are an order of magnitude higher
than the characteristic (shedding) frequency of the airfoil [i.e., F+ ∼ O(10) rather
than F+ ∼ O(1)]. When the actuation frequency F+ is O(1), the reattachment is
characterized by a Coanda-like tilting of the separated shear layer and the forma-
tion of large vortical structures at the driving frequency that persist beyond the
trailing edge of the airfoil and lead to unsteady attachment and consequently to
a time-periodic variation in vorticity flux and in circulation. In contrast, the sup-
pression of separation at high actuation frequencies [i.e., F+ = O(10)] is marked by
the absence of organized vortical structures along the flow surface. The dynamics of
the transient lift in controlled reattachment and separation are investigated using
pulsed amplitude modulation of the actuation input and is exploited to improve the
efficacy of the jet actuators by using pulse modulation of the excitation input.

1 Introduction

Optimum aerodynamic performance of aircraft wings that has been tradi-
tionally achieved by appropriate design of the airfoil section to avoid flow
separation may be somewhat compromised when the wing design is driven by
non-aerodynamic constrains (e.g., payload, or stealth). Hence, these designs
may rely on either active or passive flow control techniques to prevent flow
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separation and to maintain acceptable aerodynamic performance throughout
the normal flight envelope. Although the relative simplicity of passive flow
control devices (e.g. vortex generators, oscillating cavities, etc.) makes them
attractive means for delaying flow separation, they afford no proportional con-
trol and introduce a drag penalty in the absence of “natural” separation. In
contrast, conventional active control approaches which are based on the ma-
nipulation of fundamental instabilities of the separated free shear layer and
derive their effectiveness from its receptivity to relatively low-level actuation
input can be largely innocuous except when activated and have the potential
for delivering variable power.
Controlled reattachment of separated flows over lifting surfaces at mod-

erate and high angles of attack with the objective of improving aerodynamic
performance and extending the flight envelope has been the focus of a number
of investigations since the early eighties. Active control techniques that have
achieved varying degrees of separation control by manipulation of the unsta-
ble separated free shear layer have included external and internal acoustic
excitation (e.g., Ahuja and Burrin [1] and Zaman et al. [2]), vibrating ribbons
or flaps (e.g., Bar-Sever [3]), and steady and unsteady blowing/bleed (e.g.,
Seifert et al. [4] and Williams [5]).
The reattachment of a separated shear layer on an stalled airfoil by means

of internally-driven acoustic excitation of the boundary layer upstream of
separation (through a small rectangular orifice near the leading edge) was
first investigated by Huang et al. [6] and Hsiao et al. [7, 8] (on NACA 633-018
airfoil). While the actuation frequency used by Huang et al. [6] was limited to
the shedding frequency of the airfoil (i.e., dimensionless frequency F+ ∼ 1 ,
scaled with the separated flow region), Hsiao et al. [7] reported similar lift
recovery over a much broader range of excitation frequencies (up to F+ =
20) that far exceed the unstable frequency of the separating shear layer. In
the follow-on work of Chang et al. [9], the actuation level was quantified
using the orifice momentum coefficient (based on the amplitude of the velocity
oscillations) and the authors reported that actuation at F+ = 2 and Cμ <
10−4 led to a post-stall increase in lift of up to a 50%. However, as noted in
the earlier work of Hsiao et al. [7] separation could also be controlled up to
F+ < 20 at higher actuation levels.
Flow control work in the 50s showed that separation on lifting surfaces

could be avoided or at least delayed by the streamwise injection of fluid near
the surface using a tangential wall jet. The work of Seifert et al. [4] demon-
strated that separation over a flap (at 25% chord of a NACA 0015 airfoil)
can be effectively controlled with substantially less mass flux by replacing
the continuous wall jet at the flap hinge with oscillatory injection at the un-
stable frequency of the separating shear layer. These authors reported that
oscillatory blowing at reduced frequencies within the range 1< F+ < 3 com-
bined with a low-level steady blowing yielded effective actuation for maximum
aerodynamic performance augmentation. Similar approach was used in a later
investigation (Seifert et al. [10]) to control leading edge separation on the same
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airfoil where the dimensionless frequency for correlating Cμ was scaled with
the length over which reattached flow was maintained. In a related munerical
simulation of the post-stall (α = 22◦) flow about an NACA0012 airfoil actu-
ated at F+ ∼= 1 by a zero net mass flux jet, Donovan et al. [11] demonstrated
that the increased lift had substantial oscillations (up to 20% peak-to-peak)
at the actuation frequency.
The work described here is part of an ongoing investigation of the flow

mechanisms of a novel control approach of the performance of lifting surfaces
through fluidic modification of their apparent aerodynamic shape. Control is
effected by surface-mounted fluidic actuators based on synthetic jet technology
having the distinct feature that they do not require a fluid source and are
formed locally from the fluid adjacent to the flow surface in which they are
embedded (Smith and Glezer [12]). Thus, the interaction between these jets
and the cross flow over the surface leads to the formation of a domain that
displaces the local streamlines of the cross flow thereby inducing an ‘apparent’
or ‘virtual’ change in the shape of the surface and an apparent modification
of the flow boundary and the local streamwise pressure gradient.
While conventional flow control schemes have primarily focused on the

mitigation of flow separation by coupling to the instability of the separating
shear layer on the time scale of the flow about the airfoil, fluidic modification
of the apparent aerodynamic shape of aero-surfaces does not necessarily rely
on coupling to global flow instability and thus can be applied over a broader
range of flow conditions. Furthermore, this approach to flow control can ac-
commodate broader band control algorithms because the actuation frequency
is typically at least an order of magnitude higher than the characteristic fre-
quency of the flow. Smith et al. [13] and Amitay et al. [14, 15] demonstrated
the utility of synthetic (zero mass flux) jet actuators operated at F+ =O(10)
for the suppression of separation over an unconventional airfoil at moderate
Reynolds numbers (up to 10 [6]) and consequently a substantial increase in lift
and decrease in pressure drag. Recent experiments by Erk [16] demonstrated
suppression of separation on an FX61-184 airfoil at Reynolds numbers up to
3 × 106 using synthetic jet actuation at frequencies up to F+ ∼ O(100). As
shown by Amitay et al. [17], the quasi-steady lift coefficient of the attached
flow can be further augmented by exploiting the flow transients associated
with the onset of separation using a prescribed unsteadiness of the locally
separated flow domain that is induced by a temporally-modulated control
input.
The present paper reviews some of the elements of the work on the modifi-

cation of the aerodynamic performance of the unconventional airfoil of Amitay
et al. [14, 15, 18] using fluidic control that is effected by synthetic jet actuators
near the airfoil’s leading edge (Sect. 3). The control effectiveness at actuation
frequencies that are either on of the order of or well above the natural shedding
frequency of the airfoil [i.e., F+ ∼ O(1) and O(10)] are discussed in Sect. 4.
The mechanisms of flow transients that are associated with the reattachment
and separation processes are discussed in Sect. 5. Finally, Sect. 6 describes
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how these reattachment and separation flow transients can be exploited to
augment the actuation efficiency by using pulsed modulated actuation input.

2 Experimental Apparatus and Procedure

The application of synthetic jets for separation control over an unconventional
airfoil are demonstrated using a thick airfoil (Fig. 1) model that was developed
in collaboration with Boeing’s PhantomWork Group in St. Louis (Smith et al.
[13]). The airfoil’s leading edge is formed by a 62 mm circular cylinder mounted
within an aerodynamic fairing that is based on a uniformly stretched NACA
four-digit series symmetric airfoil for which the thickness to chord ratio is
t/c = 0.24 (c = 254mm).

+

+

U0
x

y

Fig. 1. Unconventional airfoil model

The fairing section is laminated using a rigid foam material with an epoxy-
fiberglass overlay. The surfaces of the cylinder and of the fairing are well
polished and the transition between the surface of the cylinder and the edge of
the fairing is designed to have a close fit such that the surface discontinuity at
the edge of the overlap domain is less than 0.1 mm (and is too small to trigger
local separation). The gap between the cylinder and fairing is specifically
designed to prevent leakage between the pressure and suction sides of the
airfoil, and at a given angle of attack and actuator jet angle, the junction
between the cylinder and the fairing is sealed with thin (less than 0.05 mm)
tape.
The airfoil is mounted in the test section of an open-return, low-speed wind

tunnel having a square test section measuring 91 cm on a side (the maximum
air speed is 32 m/s with a free-stream turbulence level less than 0.25%). The
upper and lower walls of the wind tunnel are adjusted to compensate for
blockage created by the airfoil (wall interference effects are estimated to result
in a 1.5–2% over-prediction of the drag coefficient). Distributions of surface
pressure are measured using 47 pressure taps that are located in the spanwise
mid-plane and are equally spaced circumferentially around the cylinder and
additional 45 pressure taps at mid span along the top and bottom surfaces of
the fairing.
The center section of the leading edge cylinder houses a pair of parallel

synthetic jet actuators each having a flush-mounted 140 mm × 0.5 mm orifice
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that are 2.5 mm apart azimuthally and co-linear with the axis of the cylin-
der. The jet actuators can be positioned at an azimuthal angles γ between
−90◦ to +90◦ (at α = 0◦) relative to the incoming flow direction by rotating
the cylinder independently of the fairing. Two fences are placed at the edges
of the actuator orifice to maintain a nominally two-dimensional flow in the
controlled section of the airfoil. High-frequency synthetic jets are produced at
F+ = 10, 14.7 and 20 (fa = 740 Hz, 1088 Hz and 1480 Hz, respectively) us-
ing piezo-electrically driven diaphragms mounted in compact shallow cavities
underneath the surface of the cylinder. Low-frequency synthetic jets are pro-
duced through the same orifices (in the absence of the piezoelectric drivers)
at F+ = 0.95, 2.05, and 3.3 (fa =71 Hz, 148 Hz, and 246 Hz, respectively)
by conventional pressure speakers mounted on opposite ends of the cylinder
cavity outside of the wind tunnel’s test section.
In the present work, the performance of the actuators is measured using

the momentum coefficient,

Cμ =
Īj

1
2ρoU

2
o c

where Īj is the time-averaged momentum flux per unit length during the
outstroke and is given by

Īj =
1
τ
ρjb

τ∫
0

〈u2
j (φ)〉dφ ,

τ = T/2 (T is the period of the diaphragm motion), ρj and ρo are the jet
and free-stream fluid densities, respectively, b is the jet orifice width, c is
the chord, Uo is the free-stream velocity, and 〈uj(φ)〉 is the phase-averaged
velocity at the jet exit plane. The velocity within the jet orifice is measured
using a miniature hot-wire sensor and the velocity traces are rectified when the
velocity reverses its direction at mid-cycle. Thus, during the suction part of
the cycle the velocity is inverted to reflect the correct flow direction following
the procedure of Smith and Glezer [12].
Cross stream distributions of the streamwise and cross-stream velocity

components are measured in the wake of the airfoil using X-configuration hot
wire miniature sensors that are mounted on a computer-controlled traversing
mechanism. The velocity and vorticity fields in the cross-stream (x-y) plane,
z = 0, above the airfoil (i.e., on the suction side) are measured using Particle
Image Velocimetry (PIV). The flow is seeded using smoke particles and it
is illuminated using a double-pulse ND-YAG laser. Image pairs are captured
using a 1008 × 1016 pixel CCD camera with a magnification of 53μm/pixel
(the nominal particle diameter is sub-pixel). Velocity vectors are computed
on a 62 × 62 grid using a standard cross-correlation technique. All data are
averaged over 300 realizations (150 image pairs).
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3 Modification of the Time-Averaged
Aerodynamic Performance

This section reviews briefly some of the effects of jet actuation on the aerody-
namic performance (as measured by pressure distributions, lift and pressure
drag) of the unconventional airfoil described in Sect. 2. The distributions of
the static pressure coefficient about the circumference of the airfoil in the
presence and absence of actuation (closed and open symbols) are shown in
Figs. 2a-f (α = 0◦, 5◦, 10◦, 15◦, 20◦ and 25◦, respectively) for Rec = 310, 000.
The jet angle for the controlled flow is γ = 60◦ (relative to the oncoming free
stream), the jet momentum coefficient is Cμ = 3.5 · 10−3, and x̂ = x/c.
In the absence of flow control, the airfoil stalls at angles of attack exceed-

ing 5◦ (Fig. 2b). At α = 0◦ (Fig. 2a), the baseline flow is attached over the
entire airfoil surface. These data show that while the suction peak is almost
the same on both sides of the airfoil, there are slight differences in the domains
where the fairing blends into the cylinder. Although for the present momen-
tum coefficient the effect of the jets on the attached flow is small, it appears
that despite the (top-to-bottom) asymmetry of the actuation the pressure
distributions on the top (where the jets are located) and bottom surfaces be-
come more similar when the jet are activated. For α ≤ 15◦ (Figs. 2b-d), the
flow becomes fully reattached when control is applied, and the resulting pres-
sure distributions exhibit a large suction peak in the vicinity of the maximum
thickness (near x̂ = 0.1). A rapid pressure recovery occurs for 0.1 < x̂ < 0.2
followed by a more gradual pressure recovery towards the trailing edge.
It is interesting to note that at moderate angles of attack the pressure

within some streamwise domains in the absence of actuation is higher on the
upper (suction) surface than on the lower (pressure) surface of the airfoil re-
sulting in a reduction in lift (e.g., 0.075 < x̂ < 0.30 and 0.06 < x̂ < 0.22
in Figs. 2b and 2c, respectively). However, when the jets are activated and
the flow becomes fully attached, the pressure on the upper surface is contin-
uously lower than on the lower surface from the leading edge and along most
of the airfoil (through x̂ = 0.62 for α = 5◦ and x̂ = 0.72 for α = 10◦). The
existence of small domains near the trailing edge in which the pressure differ-
ence between the two surfaces is reversed indicates that the streamwise rate
of pressure recovery resulting from the reattached flow on the upper surface
exceeds the rate of recovery associated with the curvature of the bottom sur-
face. This effect decreases with increasing angle of attack where the pressure
distribution on the lower surface becomes almost invariant with x̂ (Figs. 2d
and 2e) and finally decreases with x̂ (Fig. 2f).
At α = 20◦ (Fig. 2e), the jet actuation produces only partial reattachment.

The flow remains attached through x̂ = 0.22 but subsequently separates and
the pressure distribution within the separated flow domain is almost identical
to the corresponding distribution in the absence of control. When α = 25◦
(Fig. 2f), the baseline flow separates farther upstream (x̂ = 0.02) and as a
result the pressure within the separated flow domain is actually higher than
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Fig. 2. Pressure coefficient distributions around the airfoil at different angles of
attack. Forced (—•—), and unforced (—o—). α = 0◦(a), α = 5◦ (b), α = 10◦ (c),
α = 15◦ (d), α = 20◦ (e) and α = 25◦ (f)

for α = 20◦. However, even though the attained suction peak in the presence
of actuation is lower than at α = 20◦, separation still occurs at the same
streamwise location (x̂ = 0.2) and as a result the pressure in the separated
region of the actuated flow is considerably lower than in the baseline flow.
While the increase in the pressure difference (compared to the baseline flow)
results in increased lift, at these angles of attack there is also a significant
increase in pressure drag. Nevertheless, as shown in Fig. 3 below, the lift-to-
pressure drag ratio increases compared to the baseline case.
The pressure distribution on the airfoil is integrated to yield the lift co-

efficient, the pressure drag coefficient and the lift-to-pressure drag ratio over
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Fig. 3. Lift coefficient (a), pressure drag coefficient (b) and lift-to-pressure drag
ratio (c) vs. angle of attack, α for γ = 60◦. Forced (—•—) and unforced (—o—)

a range of angles of attack (Figs. 3a-c, respectively). The corresponding dis-
tributions of the baseline flow are also shown for comparison (open symbols).
Without control, the aerodynamic performance of this airfoil is rather poor
(e.g., the lift-to-pressure drag ratio at α = 5◦ is 0.115), and the airfoil is
stalled even at low angles of attack. However, with actuation (γ = 60◦,
Cμ = 3.5 · 10−3), the lift coefficient increases almost linearly with angle of
attack as might be expected for a conventional airfoil. Furthermore, the at-
tached flow in the presence of actuation results in a substantial reduction
in the pressure drag coefficient. For example at α = 5◦, the pressure drag
decreases by 45% with respect to the baseline case. Even at relatively high
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angles of attack (α = 25◦), where the flow is only partially attached, the lift
curve has yet to exhibit the downturn characteristic of stall. However, the
monotonically increasing pressure drag (which exceeds the drag coefficient of
the baseline airfoil at α = 25◦) and the pressure distribution (Fig. 2f) suggest
that stall is imminent. Figure 3c shows that synthetic jet actuation signif-
icantly improves the lift-to-pressure drag ratio through the entire range of
angles of attack in the present investigation. At α = 5◦, this ratio is increased
by almost two orders of magnitude. However, the improvement in the L/Dp

diminishes as the angle of attack increases.

4 The Role of the Actuation Frequency

As noted in Sect. 1, much of the earlier work that focused on extension of
the pre-stall envelope of various conventional airfoils by utilized active (time-
periodic) actuation upstream of separation. The characteristic period of the
actuation typically has been comparable to the time of flight over the sepa-
rated flow domain corresponding to a dimensionless frequency F+, which is
the ratio between the latter and former time scales, of order 1 (i.e., the actu-
ation frequency is comparable to the shedding frequency of the airfoil). The
natural receptivity of the separating shear layer to this frequency band results
in a Coanda-like tilting of the shear layer towards the surface of the airfoil
and therefore in partial restoration of the lift. In contrast to this approach, in
the present work the actuation frequency is selected to be at least an order
of magnitude higher than the “natural” (or shedding) frequency of the air-
foil in order to bypass flow separation altogether. Furthermore, as shown in
Sects. 5 and 6, the broadening of the actuation bandwidth enables coupling
to transient effects within the flow that can be exploited for enhancement of
the actuation effectiveness (e.g., by reducing the required Cμ).
To demonstrate the effect of the actuation frequency on the control ef-

fectiveness, the synthetic jet actuators are activated at six frequencies corre-
sponding to F+ = 0.95, 2.05, 3.4, 10, 14.7 and 20 (71 Hz, 148 Hz, 246 Hz, 740
Hz, 1088 Hz and 1480 Hz, respectively). At F+ = 0.95, 2.05 and 3.4, the jets
are driven by audio speakers while at high frequencies the jets are formed by
compact, piezo-electrically-driven actuators (cf. Sect. 2). The actuators are
calibrated at each operating frequency outside of the wind tunnel, and then
once again in the presence of a cross flow in the wind tunnel. It is found
that when the operating frequencies are below F+ < 4, the jets driven by the
speaker actuators are spanwise-uniform (along the long dimension of the ori-
fice). However, at higher frequencies the speaker-driven jets develop spanwise
non-uniformities due to three-dimensional acoustic effects within the actuator
cavity. Velocity measurements (not shown here) within the actuator orifice
using a miniature hot-wire sensor reveal that for F+ > 4, the performance
of the speaker-driven actuator jets is markedly different in the presence and
absence of a cross flow. In fact, in the presence of a cross flow, the velocity of
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the speaker driven jets at a given spanwise position along the orifice decreases
by more than 80% and thus their ability to affect the separating shear layer
is substantially reduced. In contrast, the velocity of the high-frequency jets
produced by the piezoelectric actuators is spanwise-uniform, virtually invari-
ant with tunnel speed and leads to a complete reattachment of the separated
flow.
Distributions of the pressure coefficient around the airfoil for F+ = 0.95,

2.05 and 3.4 and F+ = 10, 14.7 and 20 are shown in Fig. 4a and Fig. 4b,
respectively (the shedding frequency of the baseline flow is F+ = 0.7). Here,
Rec = 310, 000, γ = 60◦, Cμ = 3.5 · 10−3 and α = 17.5◦. The pressure
distribution for the stalled flow (solid line) is also shown for reference. Actu-
ation at low frequencies (Fig. 4a) results in a very sharp suction peak near
x̂ = 0.075, which corresponds to the location of the separation in the base-
line flow. Concomitantly, the degree of pressure recovery towards the trailing
edge is reduced with increasing control frequency, leading to an increase in
pressure-drag. The pressure distributions for F+ ≥ 10 (Fig. 4b), which is over
an order of magnitude higher than the shedding frequency (F+ = 0.7), are
significantly different and exhibit larger and wider suction peaks with a cor-
responding larger increase in the lift coefficient. Following the suction peak
the pressure difference between the suction and pressure sides is smaller than
at corresponding stations at the low actuation frequencies resulting in lower
pressure drag. Moreover, while at low actuation frequencies (Fig. 4a) the pres-
sure distribution varies with F+, at high actuation frequencies (Fig. 4b) the
pressure distribution appears to be independent of F+, suggesting that when
the actuation frequency is high enough, the details of the flow reattachment
become independent of the frequency.
The variation of the ratio of lift to (pressure) drag, L/Dp, with actuation

frequency is shown in Fig. 5. Two distinct domains are immediately apparent.
In the first domain (I), where the actuation frequencies are of the same order
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Fig. 4. Variation of the pressure coefficient with the dimensionless forcing frequency;
F+ ∼O(1) (a) and F+ ∼O(10) (b). (The distribution for the unforced flow is shown
in a solid line)
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Fig. 5. The variation of the lift-to-pressure drag ratio with dimensionless actuation
frequency, F+ for γ = 60◦. The unforced value is shown in the dashed line

as the shedding frequency (F+ < 4), L/Dp decreases with increasing F+ (from
2.65 for F+ = 0.95 to 2.35 for F+ = 3.3), which may be the result of reduced
receptivity of the separated shear layer. In the second domain (marked as
II on the figure), the actuation frequency is at least an order of magnitude
higher than the shedding frequency (i.e., F+ ≥ 10) and the lift to pressure
drag ratio is higher (L/Dp ≈ 3.2). It appears that L/Dp is almost independent
of the actuation frequency, suggesting that the mechanism that leads to the
suppression of separation is not associated with the stability of the separated
shear layer. Note that bandwidth limitations of the low- and high-frequency
actuators prevented overlap within the domain 4 < F+ < 10.
The nominally two-dimensional flow field associated with each of the two

frequency bands is computed from a sequence of PIV images that are captured
in the x-y plane (z = 0) above the suction side of the airfoil. Each PIV data
set is comprised of three partially overlapping frames measuring 100 mm on
the side where time- or phase-averaged velocity distributions are computed
from an ensemble of 150 image pairs.
Figures 6a-g show cross-stream maps of the velocity vector distributions.

The figure includes a map of the time-averaged baseline flow (Figs. 6a) fol-
lowed by pairs of phase- and time-averaged maps of the actuated flow for
F+ = 0.95, 3.3 and 10. Each pair includes a phase-averaged velocity field
(Figs. 6b, 6d and 6f) in which the data is taken phase-locked to the actua-
tion waveform, and a time-averaged field (Figs. 6c, 6e and 6g). In the absence
of control, the velocity vector map of the time-averaged baseline flow (Fig. 6a)
exhibits a large recirculating flow domain with reversed flow above the sur-
face of the airfoil. Figure 6b (F+ = 0.95) clearly shows that the separating
shear layer is effectively tilted towards the surface resulting in the rollup and
advection of coherent vortical structures at the actuation frequency (having
a characteristic wavelength of ∼ 0.4c). In fact, the eddy that precedes the
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Fig. 6. Cross-stream maps of velocity vectors. unforced (a), phase- and time-
averaged map pairs of the forced flow: F+ = 0.95 (b, c), 3.3 (d, e) and 10 (f,
g)

vortex centered at x̂ = 0.7 is already within the wake of the airfoil. The time-
averaged flow (Fig. 6c) exhibits a broad region of low-velocity near the surface,
and the time-averaged flow is actually reversed near the surface of the airfoil,
indicating that the flow is not fully attached there. When the excitation fre-
quency is increased to F+ = 3.3 (Figs. 6d and e), the streamwise wavelength
of the shear layer vortices decreases to approximately 0.15c and the coher-
ent structures appear to lose their phase coherence (relative to the actuation
waveform) around x̂ = 0.7, although they are clearly present in the individual
snapshots. Again, the velocity vector maps of the time-averaged flow suggest
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that the flow is not fully attached and there is a region of reversed flow near
the surface that is induced by the passage of the large vortical structures.
For actuation frequency that is an order of magnitude higher than the “nat-

ural” baseline frequency of the separating shear layer (Figs. 6f and 6g), the
phase coherence of the structures within the attached flow is greatly reduced
compared to the lower actuation frequencies, and the boundary layer of the
actuated flow appears to be fully attached over the entire length of the airfoil.
In fact, the time- and phase-average vector fields are almost identical. Com-
parison of the time-averaged velocity profiles for the actuated flow (Figs. 6c,
e and g) suggest that at low actuation frequencies the boundary layer of the
mean flow is reminiscent of a thick separating boundary layer in an adverse
pressure gradient while for F+ ∼ 10 the boundary layer is significantly thin-
ner. The data in Figs. 6b and d also indicate that the time-periodic formation
and shedding of the vortical structures can lead to synchronous time-periodic
variation in the circulation and consequently in the lift (and drag) forces as
shown in Fig. 15 below and is also confirmed in the numerical simulations of
Donovan et al. [11] and Wu et al. [19].
The power spectra of the streamwise velocity measured at x̂ = 2 on the

lower side of the airfoil’s wake at a cross-stream elevation where the stream-
wise velocity deficit is half the maximum deficit are shown in Figs. 7a-d (the
spectrum of the baseline flow is reproduced, using a dashed line, in each of the
figures for reference), where the dimensionless frequency is v+ = (f · c)/U0. As
evident from the cross-stream distributions of the velocity vector maps (Fig. 6)
when the flow is actuated (and nominally attached to the upper surface of the
airfoil) the cross-stream extent of the wake is reduced substantially and is
accompanied by a reduction in the magnitudes of rms velocity fluctuations
within the wake. At F+ = 0.95 (Fig. 7a) there is a strong spectral component
at the actuation frequency and the entire spectrum appears to be attenuated
by approximately 3.5. As F+ is increased to 2 and 3.3, the spectral peak at
the actuation frequency shifts towards the decaying part of the spectrum (it is
virtually indistinguishable from the background at F+ = 3.3) and the atten-
uation imposed by the collapse of the separated flow domain increases to 4.5
and 7, respectively. The spectrum of the actuated flow at F+ = 10 (Fig. 7d)
is remarkably different from the spectral distributions at the lower actuation
frequencies. There is a stronger attenuation (well over an order of magnitude)
at both the low and high spectral ends, and the spectrum includes a distinct
inertial sub-range for ν+ > 3 over almost two decades (which includes the ac-
tuation frequency). The reduced power at all spectral components (compared
to actuation at lower F+) indicates that the attached flow removes less energy
from the uniform stream resulting in a lower drag.
The effect of the actuation frequency on the flow structure over the present

airfoil was also investigated numerically by Palaniswamy [20] using a novel
limited numerical scales (LNS) approach, which is effectively a hybrid between
RANS and LES approaches. In LNS the small-scale flow features are resolved
wherever computational grid is adequate, and diffused in coarse parts of the
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mesh. The computations presented here are based on a CFD++ flow solver
with a hybrid RANS/LES turbulence closure. Figures 8a and b are each a
superposition of a map of the flow streamlines and a color raster plot of
the pressure coefficient (Rec = 310, 000, α = 17.5◦ and γ = 60◦) for the
baseline and actuated (F+ = 10 and Cμ = 3.5 × 10−3) flows, respectively.
As shown in Fig. 8a, in the absence of actuation the airfoil is completely
stalled and the image also shows the formation of a clockwise (CW) vortex
near the leading edge and the previous CW vortex within the wake. Note
also the formation of a counter clockwise vortex (CCW) near the trailing
edge of the airfoil. It is remarkable that when the jets are activated (Fig. 8b),
the flow becomes completely attached with a narrow wake and there is no
discernible shedding of large-scale vortical structures. The attached flow is
also characterized by the appearance of a low pressure domain (corresponding
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Fig. 9. Pressure coefficient distribution around the airfoil. F+ = 10. (—o—) exper-
imental, and (——) numerical

to the suction peak in Fig. 4b) on the upper surface of the airfoil near the
leading edge. The LNS results are validated by comparing the numerical and
measured pressure distributions around the airfoil (Fig. 9). The agreement
between the results emphasizes the importance of resolving and capturing
the spatial and temporal variations of the small-scale motions that are an
important feature of LNS for simulating the effect of small-scale actuation
devices on the macro scale flow structure.
An important consequence of the LNS simulations is the ability to capture

the instantaneous pressure distribution on the surface of the airfoil during
the actuation cycle at relatively low actuation frequencies (e.g., F+ < 4).
Figures 10a, b are phase-averaged streamlines maps and color raster plots of
the on the pressure coefficient at two instances during the actuation cycle for
F+ = 3.3. These images clearly show the advection of a CW vortex (which is
formed time-periodically at the actuation frequency). As noted in Sect. 1 and
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in earlier numerical investigators (e.g., Donovan et al. [11] and Wu et al. [19]),
the recovery of lift at low F+ results in the tilting of the separating shear
layer towards the surface of the airfoil and by the advection of large-scale
vortical structures along the surface that may result in unsteady aerodynamic
forces. The instantaneous pressure distributions about the surface of the airfoil
corresponding to the data in Figs. 10a and b are shown in Fig. 10c along
with the measured time-averaged pressure distribution (for F+ = 3.3). The
surface pressure distributions show domains of low pressure (suction) that are
comparable to the instantaneous suction peaks near the leading edge of the
airfoil and are somewhat weaker than the measured time-averaged peak. The
time-periodic advection of these suction peaks contribute to the momentary
lift and drag forces on the airfoil and clearly contribute to oscillations in the
pitching moment (as discussed further in Sect. 5 below).
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5 Elements of the Dynamics of Flow Reattachment
and Separation

The dynamic response of controlled reattachment and separation at a post-
stall angle of attack (α = 17.5◦) is investigated using pulsed amplitude mod-
ulation of the actuator (control) input at actuation frequencies that are of
the order of and an order of magnitude higher than the natural frequency of
the separating shear layer. The modulation is synchronized with the actua-
tor’s driving signal such that the leading edge of the modulating waveform
coincides with a zero crossing of the actuator signal and continues for 0.5 sec
(370T). The flow transients resulting from this pulsed excitation are mea-
sured in detail across the near wake (x̂ = 2) using x-wire anemometry (in
what follows, γ = 60◦, Cμ = 3.5 · 10−3 and Rec = 310, 000).
The transient effects of pulsed modulation are captured in color raster plots

of the phase-averaged cross-stream distributions of the dimensionless spanwise
vorticity 〈Ω̂〉 that is computed from the streamwise and cross-stream velocity
components (Fig. 11). The jet actuators are driven at F+ = 10 and the flow
is unforced before and after the modulation is applied (marked with “up” and
“down” arrows on the time scale). The flow transients associated with the
onset of the modulation are sensed at the measurement station at t̂ = 100
(approximately 25 actuator periods after the modulation is effected). When
the flow is separated (i.e., before and after the pulse modulated excitation
is applied), the vorticity distribution in the wake is comprised of a train of
vortical structures of alternating sign (clockwise vorticity is taken to be neg-
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ŷ

Fig. 11. Phase-averaged color raster plot of the cross-stream distribution of the
spanwise vorticity; F+ = 10
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ative) having a nominal passage frequency of 50 Hz. Nevertheless, the total
vorticity flux across the wake during one period of the (‘natural’) shedding
frequency is approximately zero. As shown in Sect. 3, the actuation leads to
flow reattachment and the establishment of a higher (positive) lift force on the
airfoil, which must be accompanied by a change in the vorticity flux and a net
increase in circulation associated with positive (counter-clockwise) vorticity.
However, following the reattachment, a strong clockwise vortex indicating a
reduction in lift is initially advected past the measurement station followed
closely by a stronger counter-clockwise vortex indicating the re-establishment
of lift. These two large vortices are followed by a series of smaller vortices
of alternating signs and diminishing strength. It appears that the reduced
wake of the attached airfoil ultimately reaches a state of symmetric vorticity
distribution as can be seen for t̂ > 300 in Fig. 11. When the pulse modu-
lation control is turned off, the flow separates again and the airfoil loses its
lift. This reduction in lift is accompanied by a decrease in circulation and the
shedding of negative (clockwise) vorticity. However, immediately following the
termination of the control, a counter-clockwise vortex indicating a momentary
increase in lift is advected past the measurement station before the separated
vorticity field is established.
As noted by Amitay et al. [15], the time rate of change of the circulation

is given by the phase-averaged vorticity flux

d〈Γ̂ 〉
dt̂

=
∫ ∞
∞

〈Û〉 · 〈Ω̂z〉dŷ

and the incremental change in the circulation with respect to the baseline case,
Δ〈Γ̂ 〉, are estimated from the phase-averaged cross-stream distributions of the
streamwise velocity and spanwise vorticity, and are shown in Figs. 12a and b,
respectively. Note that the integration does not account for contributions of
the fluctuating components, and it is assumed that because the measurement
station is located only one chord-length downstream of the trailing edge of
the airfoil, which is shorter than the wavelength of the shedding frequency,
the interaction between successive vortices within this domain is minimal. The
vorticity flux in the separated flow (Fig. 12a) oscillates about a zero mean dur-
ing the passage of counter-rotating wake vortices, which corresponds to small
fluctuations in the lift force. The application of pulsed modulation results in
a sharp positive peak (0.3), which corresponds to the passage of a clockwise
vortex shed from the top surface of the airfoil. The positive peak is followed
by a negative peak (with a peak level of −0.27) that is associated with the
passage of a counter-clockwise vortex corresponding to the re-establishment
of lift. Subsequently, the vorticity flux changes sign two more times before
reaching low-level oscillations about zero.
When the flow reattaches, the incremental change in the circulation with

respect to the baseline flow −Δ〈Γ̂ 〉 (Fig. 12b) initially diminishes to a value of
−0.6 (resulting in a momentary decrease in the lift coefficient) and then recov-
ers to a value of 0.46 with the shedding of the second counter-clockwise vortex.
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Fig. 12. Phase-averaged vorticity flux (a) and circulation increment (b) for α =
17.5◦, γ = 60◦, and F+ = 10

It appears that the shedding of the “starting vortex” causes partial trailing
edge separation, which is manifested by the shedding of another (weaker)
clockwise vortex followed by a train of vortices of alternating signs (see car-
toon). The circulation (and lift coefficient) ultimately converges to its attached
value, which is in good agreement with the lift coefficient obtained from the
pressure measurements. When the control is turned off the circulation initially
increases before settling at the baseline-stalled level, which is similar to the
transient variation of lift on a pitching airfoil during dynamic stall.
The flow mechanisms associated with the reattachment process are demon-

strated in a sequence of smoke visualization images in Figs. 13a-f (the sep-
arated flow, in the absence of control, is shown for reference in Fig. 13a).
The smoke is injected in a sheet at the center span and is illuminated using
a pulsed laser. At t̂ = t/T = 8 after the control is activated (Fig. 13b) a
vortex with a negative vorticity, which is associated with the shedding of the
“trapped” vorticity of the separated flow, is formed near the leading edge. At
t̂ = 18 (Fig. 13c), this vortex has grown in size and is advected downstream.
Note the beginning of the formation of a second vortex with a negative vor-
ticity near the leading edge. As time progresses these two vortices continue to
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Fig. 13. Phase-averaged images at different times during the reattachment process
for α = 17.5◦, γ = 60◦, and F+ = 10

advect towards the trailing edge while increasing in size (by the time the first
vortex reaches the trailing edge its size is more than half of the airfoil’s chord,
Fig. 13d). At t̂ = 33 (Fig. 13e) a third vortex is formed, however, this vortex
resides near the surface of the airfoil and does not increase in size as the first
two vortices. Following the transient (t̂ = 125, Fig. 13f) the flow is completely
attached to the surface of the airfoil and there is no evidence of vortical struc-
tures. Note that the vortices with a positive vorticity that contribute to the
establishment of a positive lift are not present in these flow visualization im-
ages because they are shed from the trailing edge off the window used for the
flow visualization.
In the measurements described above, the reduced frequency of the actu-

ator jets is F+ = 10. As noted in Sects. 1 and 3, earlier investigations [4, 10]
of separation control have primarily emphasized actuation frequencies F+ ∼
O(1) regardless of the choice of actuators. In order to demonstrate the effect of
the actuation frequency on the details of reattachment and on the concomitant
variation in lift, a series of experiments are conducted in which the synthetic
jets are driven at F+ = 0.95 (71Hz). Similar to Fig. 11, Fig. 14 shows a color
raster plot of the phase-averaged cross-stream distributions of the spanwise
vorticity. It is remarkable that the initial transient following the application
of the pulse-modulated control are very similar to the measurements shown



Aerodynamic Flow Control Using Synthetic Jet Actuators 65

0

-0.6

0.6

0 350 700t̂

ŷ

Fig. 14. Phase-averaged color raster plot of the cross-stream distribution of the
spanwise vorticity; F+ = 0.95

in Fig. 11. However, in contrast to the reattachment at the higher reduced
frequency in which the shedding of organized vortical structures appears to
subside following the transient, the reattachment at a reduced frequency of
order one appears to be accompanied by the coherent shedding of a train
of strong vortices at the actuation frequency. The flow transients associated
with the termination of the pulse modulation and the subsequent relaxation
of the wake are similar to the corresponding transients at the higher actuation
frequency suggesting that the separation process in both cases is similar.
Using the phase-averaged cross-stream distributions of the streamwise ve-

locity and spanwise vorticity, the phase-averaged increment (relative to the
baseline flow) of the circulation is estimated and shown in Fig. 15 (F+ = 0.95
and 10 are shown using solid and dashed curves, respectively). When the flow
reattachment begins, −Δ〈Γ̂ 〉 exhibits a similar transient at both control fre-
quencies (i.e., a negative peak followed by a positive peak). However, while
for high frequency actuation the circulation ultimately reaches a steady level,
low frequency actuation results in oscillations of −Δ〈Γ̂ 〉 at the actuation fre-
quency with peak-to-peak fluctuations of up to 45% of the mean level for the
attached flow.

6 Pulse-Modulated Reattachment

The flow transients associated with the reattachment and separation processes
that are described in Sect. 5 are exploited to further enhance the effectiveness
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of the jet actuators. Pulse-modulation of the actuation input, which may be
useful in situation when either the streamwise placement or the strength of
the jet actuators are sub-optimal, is demonstrated by placing the jet actuator
at γ = 42◦, where as shown in the earlier work of Smith et al. [13], Cμ yields
some measure of proportional control of the lift coefficient. The effect of Cμ on
the distribution of the pressure coefficient around the airfoil (at F+ = 10) is
shown in Fig. 16 for Cμ = 3.7 · 10−3 and 4.6 · 10−3 (open and solid symbols,
respectively; the pressure distribution in the absence of control is shown using
a solid curve). It is evident that when Cμ = 4.6 · 10−3, the flow is fully at-
tached (CL = 0.8) and a strong low-pressure region is present near the leading
edge on the suction side of the airfoil followed by a rapid pressure recovery
towards the trailing edge. However, a relatively small (18%) reduction of the
momentum coefficient to Cμ = 3.75 · 10−3, results in a partially reattached
flow and a substantial degradation of the lift coefficient to CL = 0.4. The
pressure distribution exhibits a much smaller suction peak near the leading
edge followed by a separation bubble that extends throughout most of the
upper surface of the airfoil.
By exploiting the flow transients that are associated with the onset and

removal of the actuation (cf. Sect. 5), the performance of the actuators at re-
duced levels of momentum coefficient, can be substantially enhanced by pulse
modulation of their resonance waveform (nominally at F+ = 10). While the
period t’ and duty cycle d̃ of the modulating pulse train can be independently
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varied, in what follows d̃ = 0.25 and the modulating frequency f+ = 1/t’ is
varied between 0.27 and 5.0.
The long-term variation of the phase-averaged circulation (phase locked

to the modulating wave train) with f+ following the decay of the initial tran-
sients is shown in Figs. 17a-d for f+ = 0.27, 1.1, 3.3 and 5.0, respectively
(the time trace corresponding to the unmodulated actuation is shown for ref-
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erence in each plot using symbols). The modulation frequency f+ = 0.27
(Fig. 17a) corresponds to the “natural” passage frequency of the vortices dur-
ing the initial (transient) stages of the reattachment process (Fig. 12). The
resulting circulation exhibits oscillations that are similar in magnitude and
duration to the transient stages of the reattachment with shedding of simi-
lar vortical structures. The phase of each pulse of the modulating wave train
is timed so that it re-triggers reattachment before the flow separates again.
This phase is evidently a bit off, because the circulation apparently exhibits
low-frequency variations (having a period of the order of 60T). When f+

is increased to 1.1 the elapsed time between pulses within the modulating
wave train is decreased (Fig. 17b) and the large oscillations in the circula-
tion are substantially attenuated. This suggests that the modulating pulses
are timed to prevent continuous shedding of large vortical structures and the
corresponding variations in circulation. The recovery of an asymptotic circu-
lation of approximately −ΔΓ = 0.45 also suggests that the actuation allows
the accumulation and maintenance of (clockwise) vorticity on the suction side
of the airfoil even though the reattachment is unsteady and the circulation
oscillates with peak-to-peak variations of 42% of its asymptotic mean level.
Further increase in f+ to 3.3 (Fig. 17c) results in a circulation that is

similar to the magnitude of the piecewise-averaged circulation in Fig. 17b
(f+ = 1.1). However, the absence of oscillations at the modulating frequency
indicates optimal timing between the modulating pulses. It is remarkable that
pulse modulation yields an increase of ∼ 400% in the lift coefficient (when it
reaches steady state) compared to continuous high-frequency actuation but at
25% of the jet momentum coefficient. Finally, when the modulating frequency
is further increased to f+ = 5 (Fig. 17d), the time between successive pulses
of the modulating wave train is apparently too short to capture the unsteady
vortical structures. The effectiveness of the modulation is minimal and the
circulation returns to the same levels obtained with a continuous pulse train.
Given these results, it might be argued that a lift coefficient increment sim-

ilar to that of Fig. 17c may be obtained by simply operating the jet actuators
time-harmonically at F+ = f+ thus bypassing the need for pulse modulation
altogether. This argument is tested by comparing the effect of both actuation
approaches namely, time harmonic excitation at F+ = 3.3 and pulse modula-
tion at f+ = 3.3 while maintaining the same jet momentum coefficient Cμ.
Time traces of the normalized circulation for both cases are shown in Fig. 18
(time harmonic actuation is plotted using symbols). Also shown are the input
waveforms that lead to identical Cμ over one period of the actuation. These
data show that time harmonic actuation does not yield the same levels of lift
coefficient as pulse modulated actuation.
The flow field above the airfoil is computed from a sequence of PIV images

taken in the x-y plane (z = 0) that are each comprised of three partially
overlapping frames (each consisting from 150 image pairs) measuring 10 cm ×
10 cm (α = 20◦, Rec = 310, 000, γ = 45◦, and Cμ = 4.5 · 10−3). Cross-stream
maps of time-averaged velocity vectors are shown in Figs. 19a-d. In the absence
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Fig. 18. Phase-averaged circulation increment for α = 17.5◦ and γ = 42◦.
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Fig. 19. Time-averaged vector field for α = 20◦ and γ = 45◦. Baseline (a), F+ =
10 (b), f+ = 1.1 (c), and F+ = 1.1 (d)

of control (Fig. 19a), the separated flow exhibits a large recirculating flow
domain above the entire upper surface of the airfoil. At this low level of Cμ,
unmodulated actuation at F+ = 10 (Fig. 19b) leads to a slight downstream
migration (to x̂ ≈ 0.3) of the point of separation and the flow is completely
separated thereafter.
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ŷ

0.2 1.00.6

-0.4

0.2

0

Fig. 20. Phase-average velocity vector fields for α = 20◦, γ = 45◦; f+ = 1.1 (a)
and F+ = 1.1(b)

When the flow is actuated using pulse modulated actuation at f+ = 1.1
of an F+ = 10 carrier (Fig. 19c), the flow is attached over most of the sur-
face of the airfoil. It is interesting to note that for x̂ > 0.7, the boundary
layer of the attached flow becomes noticeably thicker presumably as a re-
sult of a sub-optimal pressure recovery. The vector image suggests that the
flow may be separated just upstream of the trailing edge of the airfoil. A
comparison of this vector map with the corresponding map for unmodulated
actuation at F+ = 1.1 (Fig. 19d) shows that the unmodulated actuation re-
sults in thickening of the wall layer that commences much farther upstream
(i.e., x̂ > 0.2). Phase-averaged velocity vector maps corresponding to the
pulse modulated and unmodulated actuations are shown in Figs. 20a and b,
respectively. While the phase-averaged vector map for actuation at f+ = 1.1
(Figs. 20a) exhibits an attached flow and is virtually identical to the time-
averaged map in Fig. 19c, unmodulated actuation at F+ = 1.1 (Figs. 20b)
results in the rollup and advection of coherent vortical structures at the ac-
tuation frequency having a nominal characteristic wavelength of 0.4c.

7 Conclusions

Earlier approaches to partial restoration of lift for various configurations of
stalled airfoils sought to affect the fundamental instability of the separating
shear layer and thereby exploit a Coanda-like deflection of that shear layer
towards the airfoil surface. This has been typically achieved by using time-
periodic (mostly time-harmonic) actuation input having a dimensionless fre-
quency (that nominally scales with the length of the separated flow domain)
of order one, which is also within the receptivity of the separating shear layer.
The present work explores the potential of bypassing flow separation by direct
alteration of the streamwise pressure distribution along the surface that is in-
duced by a local displacement of the cross flow as a result of its interaction
with surface-mounted actuator jets. The quasi-steady interaction domain is
formed using synthetic (zero net mass flux) jets that are typically operated at
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frequencies that are at least an order of magnitude higher than the “natural”
(or shedding) frequency of the airfoil.
The utility of this actuation approach for the prevention of flow separation

over unconventional airfoils where aerodynamic design may be constrained
and compromised by other design considerations is investigated on an uncon-
ventional symmetric airfoil for which the baseline configuration is normally
stalled for angles of attack exceeding 5◦. Actuation is effected in the vicinity
of the leading edge (on both sides of the stagnation point) at a dimensionless
frequency that is at least an order of magnitude larger than the characteristic
shedding frequency of the airfoil. The actuation results in fully or partially at-
tached flow with substantial augmentation of lift over a broad range of angles
of attack (up to the maximum angle tested, α = 25◦). Over a smaller range
of angles of attack (up to 17.5◦), the increases in lift (up to 100% compared
to the corresponding baseline) is also accompanied by a decrease in pressure
drag (up to 45%).
In the present experiments, the synthetic jet actuators are operated over

a range of frequencies up to F+ = 20 (which is about 30 times higher than
the natural shedding frequency of the separated flow). While at low actuation
frequencies (i.e., F+ < 4) the recovered lift to (pressure) drag ratio L/Dp

decreases with increasing F+, actuation at F+ ≥ 10 results in larger L/Dp that
appears to be invariant with the actuation frequency. Spectral measurements
in the wake of the airfoil indicate that there is a substantial difference in the
nature of flow attachment at low and high actuation frequencies. While at low
actuation frequencies the spectra are typically dominated by a large spectral
component at the actuation frequency, actuation at higher frequencies result
in a featureless spectrum and the emergence of a spectral band having a −5/3
slope indicating enhanced dissipation.
Numerical simulations (using LNS) of the flow over the airfoil yielded ex-

cellent agreement with the measured time-averaged surface pressure distribu-
tions for the baseline (stalled) flow and in the presence of actuation (F+ = 10
and Cμ = 3.5 × 10−3). While the stalled flow is dominated by the forma-
tion of clockwise (CW) vortices near the leading edge, which are advected
into the airfoil’s wake, actuation results in a completely attached flow with
no discernible shedding of large vortical structures. On the other hand, sim-
ulations at low actuation frequencies (e.g., F+ = 3.3) show the time-periodic
formation (at the actuation frequency) of a CW vortices that are advected
along the surface of the airfoil and appear to be the result of the tilting of the
separating shear layer towards the surface. The instantaneous pressure distri-
butions about the surface of the airfoil show that the motion of these vortices
is accompanied by suction (low pressure) peaks that are comparable to the
instantaneous suction peaks near the leading edge of the airfoil and therefore
may contribute to variations in the lift and drag forces on the airfoil.
The flow transients that are associated with flow attachment and separa-

tion are investigated using time-modulated control input using phase-locked
two-component hot-wire anemometry in the wake of the airfoil. Flow attach-
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ment begins with the shedding of a strong clockwise vortex indicating a mo-
mentary reduction in lift that is followed by a stronger counter-clockwise vor-
tex indicating the re-establishment of lift. The flow transients associated with
the application of the actuation are similar at low and high actuation fre-
quencies. However, while at high actuation frequencies the reduced wake of
the attached flow ultimately reaches a quasi steady symmetric vorticity dis-
tribution, at F+ ∼ O(1) there is coherent shedding of a train of vortices of
alternating sign at the actuation frequency and therefore oscillations of the
circulation owith peak-to-peak fluctuations of up to 45% of the mean level for
the attached flow).
The flow transients that are associated with the onset (or removal) of the

actuation are exploited to improve the efficacy of the actuation by pulsed
modulation of the excitation input. The pulsed modulation frequency of suc-
cessive bursts of the driving signal apparently helps to “capture” the vorticity
produced during the initial stages of the separation process on the suction
side of the airfoil and thus to increase the lift force. The actuator resonance
waveform (nominally at F+ = 10) is pulse modulated where the period and
duty cycle of the modulating pulse train are independently controlled. In the
present work, the (dimensionless) modulation frequency f+ is varied between
0.27 and 5.0 and the duty cycle (and consequently Cμ) is reduced to 25%. The
oscillations in the circulation become minimal when f+ is 3.3. At higher mod-
ulation frequencies, the effectiveness of the modulation is minimal and the lift
coefficient has the same level as with continuous high frequency actuation.
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Abstract. The interdisciplinary field of reactive flow control is one that holds a
great deal of promise for the optimization of complex phenomena occurring in many
practical systems, ranging from automobile and gas turbine engines to environ-
mental thermal destruction systems. The fundamental underpinnings of combustion
control, however, require a detailed level of understanding of complex reactive flow
phenomena, and, in the case of closed-loop active control, require the ability to sense
(monitor) and actuate (manipulate) flow processes in a spatially distributed manner
in near real time. Hence the ultimate growth and success of the field of reactive flow
control is intimately linked: 1) to advances in the understanding, simulation, and
model reduction for complex reactive flows, 2) to the development of experimental
diagnostic techniques, in particular, to the development of physically robust sensors,
and 3) to the development of a framework or frameworks for generation of closed
loop control algorithms suitable for unsteady, nonlinear reactive flow systems. The
present paper seeks to outline the potential benefits and technical challenges that
exist for mixing and combustion control in fundamental as well as practical systems
and to identify promising research directions that could help meet these challenges.

1 Introduction

The control of combustion processes in practical systems is often related to
the control of the mixing processes in the device (e.g., fuel-air mixing, dilution
air-hot product mixing, etc.). Maximizing the degree of mixing is often sought
in a number of applications for purposes of enhancing combustion processes,
for example, in scramjet engines where supersonic airspeeds entering the com-
bustor require rapid fuel-air mixing and combustion completeness in a rela-
tively short distance [1, 2]. Yet there are also situations in which “maximized”
fuel-air mixing does not always produce optimal effects. This can happen, for
example, in combustor configurations in which increased fuel-air mixing or
partial premixing can actually increase NOx (nitrogen oxide) emissions due
to the competition between the effects of radiative losses from the flame (due
to sooting) and (lean) premixing in lowering flame temperatures [3, 4].
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Thus in the optimization and eventual control of reactive flow processes, it
becomes necessary not only to be able to understand the complex underlying
physics governing the nonlinear coupling between flowfield and reaction, but
to be able to identify sets of conditions which lead to optimal performance
and to be able to sense and actuate within the flowfield in order to recover
optimal conditions in response to system upsets. Hence the burgeoning field of
combustion control and its application to practical systems requires significant
advances in the fundamental fields of reactive fluid mechanics and dynamic
systems control, as well as in the design and development of physically robust
sensors and actuators.

2 Passive Control Methodologies

“Control” of combustion processes in practical systems has a long history, in
many cases without being specifically called such. Most systems have employed
passive control of the combustion process, in which specific configurations
for components such as fuel injectors, combustor liners, and flameholders, are
used to achieve specific performance goals or to ameliorate undesirable effects
for a prescribed range of operating conditions. One example of passive con-
trol from the 1950s is the development of methods to control the “screech”
combustion instability observed to occur in ramjet engines [5]. The screech
phenomenon is caused by vortices, coincident with flame structures, which
are shed alternately from the edges of the step or flameholder in the com-
bustor. The vortices excite transverse modes of acoustic oscillation within
the cavity due to periodic heat release associated with the generation of hot
products. This combustion instability has been controlled in ramjet dump
combustor designs by means of flow obstructers or dampers [6], yet an under-
standing of and ability to control longitudinal-mode combustion instabilities
has been sought more recently through active means [7, 8, 9, 10]. Other ex-
amples of passive combustion control include swirlers and atomizers for fuel
jets in combustion chambers [11], primary and dilution air jet injection for
controlling NOx formation as well as temperature pattern factor [12, 13], and
for scramjet engines, transverse fuel injection into supersonic airflow behind
a rearward-facing step [14, 15, 16], or shock-induced mixing concepts [17, 18].

3 Passive Control Example: The Lobed Fuel Injector

Many passive mixing and combustion control methodologies employ systems
which generate streamwise vorticity in the flowfield [19]. Examples of flow-
fields which generate streamwise vorticity include the transverse jet, with
which there is associated strong streamwise vortical structures [13, 20], and
the shock-induced mixing concept [17, 18], whereby streamwise vorticity arises
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from baroclinic torque generated by the interaction of a shock with a jet con-
taining light gas (fuel). Other examples, such as swirling jets [11], provide
further evidence of the ability of streamwise vorticity to assist with molecular
mixing as well as flame stabilization.
An example of a passive mixing/combustion control concept explored in

recent years by our research group at UCLA is that of the Lobed Fuel In-
jector. The lobed injector, shown schematically in Fig. 1, is a device in which
very rapid initial mixing of reactants can occur through streamwise vorticity
generation, producing high strain rates which can delay ignition at fuel-air
interfaces. The injector consists of two parallel, corrugated plates (which are
initially flat) with a ramp angle α representing growth of the corrugation. Fuel
is injected from between the plates into coflowing air. Streamwise vorticity is
created by the oppositely oriented secondary flows which develop along the
sides of each of the lobes; the secondary flows roll up into counter-rotating
vortices oriented in the streamwise direction. These vortical structures act
to strain fuel-air interfaces, potentially delaying ignition while assisting with
molecular mixing of reactants. Further downstream of the vortical structures,
the strain field relaxes, potentially allowing ignition to occur in a premixed or
partially premixed mode.

AIR

AIR

FUEL

A-A

View A-A

α)

Fig. 1. Schematic of the general lobed injector geometry
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The general principle of the lobed geometry has been applied to two-
stream, non-reactive, passive mixing control in turbofan engines using a single
corrugated plate or interface to mix initially separated fluids [21, 22, 23, 24].
Combustion experiments in a lobed mixer geometry, with fuel and oxidizer
initially separated by a single lobed splitter plate, demonstrate that the flame
spread angle is double that created by a flat splitter plate, indicating enhanced
mixing processes and an increased rate of flame propagation [25, 26, 27].
Studies pertaining to the lobed injector by our group have included non-

reactive mixing experiments, both low speed [28] and transonic [29], com-
bustion experiments with alternative flameholder configurations [30, 31], nu-
merical simulations of lobed injector mixing and reaction processes [32, 33],
and fundamental simulations of strained fuel strip processes relevant to the
lobed injector concept [34, 35]. Alternative lobe geometries were explored in
all of these studies; sample exit plane geometries are shown in Fig. 2, where
comparison is generally made with a straight (non-lobed) injector.
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Fig. 2. Comparison of exit plane geometries for three injectors examined in passive
combustion control: lobed fuel injectors A and B and straight fuel injector C
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Non-reactive mixing experiments [28] employed planar laser-induced fluo-
rescence (PLIF) imaging of acetone seeded with the injectant (carbon diox-
ide or CO2 as a fuel “surrogate”) to examine the evolution of the flowfield
and to quantify local unmixedness and average scalar dissipation rates, from
which strain rates were estimated [36]. Molecular mixing was quantified here
using the “unmixedness” parameter U [37], which is related to the second
moment of the scalar concentration field, enabling comparisons of the local
scalar field to be made with the scalar field that would be present if the fluids
were completely mixed or completely unmixed. Here the unmixedness U ap-
proaches zero for the case of completely molecularly mixed fluids. The local
scalar dissipation rate χ [38] was computed as well from the local gradients
in mixture fraction [36], then were averaged over the injectant/air interfaces
for the fuel injector under examination.
Sample results are shown in Fig. 3 for the evolution of unmixedness for

the two lobed injectors (A and B) as compared with the straight fuel injector
(injector C). These results suggest that a sharply peaked, sinusoidal injector
such as A could have the potential for improved local mixing. Further results,
shown in Smith, et al. [28], suggest that lobed injectors produce higher strain
or scalar dissipation rates as compared with the non-lobed injector under
specific flow conditions.
Yet the implications of this increased local mixing and local and average

straining by a lobed configuration do not necessarily always translate directly
into lowered NOx emissions. Results from combustion experiments [30, 31]
show dramatic differences in the visual structure of the flames formed in the
combustion tunnel, with lobed injectors creating flames which were much
bluer and far better mixed, at least locally, than flames created by a straight
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Fig. 3. Lobed injector measurements of local unmixedness U as a function of down-
stream distance x (in mm) for air flow at 11.5m/s. Comparisons are made among
injectors A, B, and C (results from Smith, et al. [28])
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injector. This would imply that the flame structures created by lobed injectors
were locally leaner than for non-lobed injectors, which in fact created long,
planar diffusion flame-like structures which soot rather heavily. As shown in
emissions plots in Fig. 4, there was a very strong dependence of NO (nitric
oxide) and overall NOx emissions from the lobed injectors on the combustion
tunnel’s fuel-air mass flux (or equivalence) ratio M (also called φtunnel), but
with a much lesser dependence on M for emissions from the straight injector.
At very lean mixtures, the lobed injector NOx emissions could be made lower
than for the non-lobed injector, but at higher equivalence or mass flux ratios,
the strong sooting by the straight injector actually appeared to reduce local
flame temperatures due to radiative losses [3, 4], thus reducing thermal NO
formation [39] as compared with the lower-sooting lobed injector flames. In
addition, at very low equivalence ratios, carbon monoxide or CO emissions
could increase (see Fig. 4) since the reaction converting CO to CO2 is quenched
under such conditions [40, 41] due to the flow of cooler air exterior to the fuel-
air mixture.
When this exterior airflow was restricted by the placement of confining

ceramic wedges about the lobed injectors, as described in Mitchell, et al. [31],
significantly leaner local mixtures were formed downstream of flameholders
without air bypassing, and both NOx and CO emissions were simultaneously
reduced, to levels below 5 and 1 ppm, respectively, and indicated in Fig. 5. In
the case where the wedges extended to create an effective flameholder of length
Z = 7 cm, visual flame structures suggested much greater and more intimate
fuel-air mixing achieved prior to flameholding. It was thus possible to operate
at higher air speeds (lower φtunnel) so that leaner premixed flames could be
stabilized in a distributed fashion along the edge of the step formed by the
blocks. As a result of burning in a lean premixed mode (which lowered the
local flame temperature), Fig. 5 demonstrates that the NOx emissions were
significantly decreased. Simultaneously, the CO emissions were much lower
than CO emissions for the flameholder configuration 1. Confining the air to
flow mainly between the lobes virtually eliminated the surrounding blanket
of coflowing cold air, thus promoting the oxidation of CO in the cases shown
in Fig. 5. Hence operating conditions were identified which simultaneously
produced low NOx and CO emissions from the lobed injectors. No such simul-
taneous lowering of emissions was possible from the non-lobed injector.
Hence the complex relationships among mixing, temperature, soot, ex-

cess air, and flame character must be taken into account when attempting to
achieve passive control. This interplay is especially critical for active mixing
and combustion control, as will be discussed below.

4 Active Control Methodologies

While passive control has been used extensively in combustion systems, active
control of combustion has had more recent focus, whereby flow and reaction
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flow rate was kept constant and the air flow rate was varied to change the value of
φtunnel. Here ZFH represents the length of the ceramic block flameholder beyond the
extent of the fuel injector exit plane. Larger ZFH values allow greater fuel-air mixing
to occur prior to ignition and flameholding



Control of Mixing and Reactive Flow Processes 83

processes are externally acted upon (by an “actuator”) as a function of time
and flow conditions. Active control is particularly well suited to deal with
physical processes in which oscillations (e.g., resulting from acoustically driven
combustion instabilities) can occur. Active control in combustion systems is
often “open loop”, in which the operation of the actuator is not modified in
real time in relation to the evolution of the flow or reaction process. More
recently, however, “closed loop” control has been explored, whereby sensors
placed within the flowfield (generally in cooler sections of the combustor) feed
back information to the actuators such that the actuators’ operation is altered.
The problem of the closed loop control of combustion processes is especially

challenging, even in simple configurations. Because of the high temperatures
generated by the combustion process, realistic actuators can operate only
within specific regions of the flow (e.g., in the fuel line or near the orifice
of a fuel jet), and currently practical sensors (e.g., flush-mounted pressure
transducers) can be placed only in relatively cool regions or at the exhaust
of the combustion chamber. Consequently, there is a relatively large time lag
between the time at which the actuator modifies the flow and the time at which
the sensor measures the effect of this action on the reactive flowfield. During
this time lag, unsteady mixing and combustion chemistry are dominated by
nonlinear effects.
Most active control methods (open or closed loop) have been directed

at 1) reducing large amplitude pressure oscillations arising from combustion
instabilities in a reactive flow system [42], 2) reducing emissions such as NOx

[39], 3) improving engine performance, e.g., via control of the temperature
pattern factor upstream of the turbine blades [43, 44, 44, 45], or all of the above
[47]. Examples of open loop methods for control of combustion instabilities
include periodic forcing of inlet boundary layers associated with the generation
of instability in a dump combustor configuration [10, 48] and control of exit
pressure amplitude for a fixed frequency of oscillation [49], while open loop
acoustic control of dilution air jets has been demonstrated to reduce NOx

emissions as well as optimize temperature pattern factor [43, 44, 44, 45].
Closed loop control methods vary widely according to the actuation and

sensing methods employed and the goals of the control scheme. Closed loop
control strategies can be developed on the basis of a reduced order (simpli-
fied) model for the reactive flow process [50, 51, 52, 53, 54], or from system
identification via input/output data derived from an experiment or from a
detailed model [55, 56]. Closed loop control of pulsating combustion in ducted
flame configurations (such as the Rijke tube) has been demonstrated using a
loudspeaker as the actuator and microphones and/or photomultiplier tubes
(PMTs) as sensors to measure sound pressure level and flame emissions, re-
spectively [51, 57, 58, 59, 60]. Poinsot, et al. [9] implement a “self-calibrating”
fast response adaptive controller with both PMT and microphone sensing,
with considerable success in suppressing combustion instabilities in a large
scale combustor. Control of acoustically driven combustion instabilities in
dump combustors has been explored using upstream boundary layer forcing
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and then sensing via pressure transducers and photodiode arrays for emissions
measurements [53] and by using separately pulsed air and/or fuel injection
with pressure transducers for sensing [52, 61]. More recently, closed loop con-
trol of combustion instabilities and emissions in gas turbine combustors has
been achieved using microphones and OH emission detection for sensing [62].

5 Active Control Example: The Acoustically Resonant
Dump Combustor

Pulsating combustion does have benefits in practical systems, and can be
exploited to improve burner performance due to quantifiable reductions in
emissions (NOx and CO) and soot, particularly with fuel staging [63, 64,
65]. There has been the suggestion that pulsating combustion increases the
convective heat transfer rates as well as turbulence intensity in the flowfield
[63]. It is also felt that lower NOx (thermal NO) emissions can result from
periodic rapid mixing of hot combustion gases with cooler residual gases in
a highly strained flowfield, with a resulting reduction in residence times of
gases at higher temperatures [64, 65]. The following example of an actively
controlled, acoustically driven dump combustor demonstrates the potential
benefits of control of such pulsating combustion processes.
An active mixing/combustion control concept (open loop) explored in re-

cent years by our research group at UCLA is that of an acoustically driven,
two-dimensional dump combustor which has been examined for its appli-
cation to thermal waste destruction [66, 67, 68, 69, 70, 71, 72, 73, 74, 75]. The
general configuration for the dump combustor is shown in Fig. 6, including
an expanded view of flow/reaction processes in the combustion cavity.
In the dump combustor experiments, propane (C3H8) and air at room tem-

perature were introduced into the plenum/mixing section of the combustor,
then were accelerated through an inlet section before entering the combus-
tion cavity at the sudden expansion or “dump plane”. Premixed flames were
then stabilized due to the formation of high temperature recirculation regions
downstream of the dump plane [76], but as noted above, vortex shedding co-
incident with the flames did occur on occation under conditions of natural
acoustic excitation [66, 67, 68, 69, 70, 71]. Quartz windows bounded each end
of the system in the spanwise direction, allowing appropriate optical access;
additional quartz window slits were installed in the side walls to allow the
introduction of a sheet of laser light for optical diagnostics [68, 74, 75].
A set of movable ceramic plugs defined the outlet section of this combus-

tor. Gaseous waste surrogates, liquid waste surrogates, or pyrolysis off-gas
surrogates were introduced through injectors embedded in these plugs as in-
dicated in Fig. 6. Injection into the recirculation zones allowed surrogates to
be trapped for relatively long residence times under potentially high tem-
perature and/or oxygen rich conditions (depending on the inlet gas mixture)
so that they could be destroyed more efficiently. Acoustic data were taken
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Fig. 6. Schematic of the acoustically resonant dump combustor, including features
of the combustion chamber cavity. Dimensions are given in units of mm

using pressure transducers located in the plenum and inlet, and were used
for phase-locked imaging [74, 75] While certain operating conditions could
produce naturally-occurring acoustic resonances in the device [66], external
acoustical forcing could also be imposed using a loudspeaker situated at the
bottom of the plenum section [72, 73]. Using a signal generator it was possible
to sweep through a range of input forcing frequencies from 0 to 1000Hz, with
forcing amplitude variation up to 150 dB. Thus it became possible to force
the loudspeaker at frequencies corresponding to the natural (“on-resonant”)
modes of the device as well as other (“off-resonant”) frequencies.
Performance of the combustor as a potential thermal waste destruction

system was quantified in terms of the “destruction and removal efficiency” or
DRE for the particular waste surrogate examined, where the DRE is defined
as
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DRE ≡ (ṁin − ṁout)100%
ṁin

(1)

and where ṁin and ṁout are the mass flow rates of the principal organic
hazardous constituent (waste) entering and leaving the system, respectively.
The U.S. Environmental Protection Agency requires a minimum of 99.99%
(or “four nines”) DRE for hazardous waste incinerators [77].
A variety of different diagnostic techniques were utilized to interrogate flow

and reactive processes taking place in the dump combustor. The diagnostics
performed included phase-locked hydroxyl radical (OH) PLIF for flame zone
characterization [68, 71], NO PLIF from which temperature fields were ex-
tracted and quantified [74], particle image velocimetry (PIV) for 2D velocity
field characterization [68, 75], and OH∗ chemiluminescence [72]. Detection of
waste destruction the device was made using a gas chromatograph equipped
with an electron capture detector or, alternatively, with a flame ionization
detector, depending on the waste surrogate examined. Waste surrogates in-
cluded gases (sulfur hexafluoride or SF6, methyl chloride or CH3Cl, and a
mixture of ethylene (C2H4), benzene (C6H6), and nitrogen (N2)) and liquids
(acetonitrile or CH3CN), each with differing thermodynamic mechanisms for
destruction.
The effects of external acoustic actuation on waste destruction and NOx

emissions in the device were found to be significant. For example, Fig. 7 shows
that, for certain ranges of forcing frequencies (around 300Hz, between 500

Fig. 7. Destruction and Removal Efficiencies (DREs) of the gaseous waste surrogate
SF6 in the resonant dump combustor during externally forced acoustical excitation
for the case where inlet equivalence ratio φ = 0.83. (results from Pont, et al. [72])
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and 600Hz, and around 800Hz, coincident with the system natural modes
[66]), marked improvement in DREs for the waste surrogate SF6 was achieved.
When the device was forced at frequencies other than resonant modes, some
improvement over the non-forced combustor performance was achieved, but
not nearly as dramatically as at the resonant modes. Destruction of other
waste surrogates produced similar levels of improvement during external on-
resonance forcing. OH∗ chemiluminescence as well as NO PLIF images indi-
cated that the enhancement of waste destruction at certain natural modes
coincided with flame/core region shortening and broadening due to vortex
shedding during the acoustical excitation. Thermocouple as well as NO PLIF
quantification of temperature fields in the combustor [73, 74] suggested that
the temperatures in the core and recirculation zones (into which the waste sur-
rogates were injected) rose by an average of 30–50 degrees during on-resonance
external acoustic excitation; there was no appreciable change in temperatures
in these regions during off-resonance external excitation. These observations
were consistent with the destruction of SF6, a surrogate which is pyrolyzed
and thus which is sensitive to temperature. Velocity fluctuations as well as in-
let core/jet spread were also observed to increase during on-resonant forcing,
with little appreciable change during off-resonant forcing [72, 75].
Interestingly, the NO emissions from the combustor simultaneously dropped,

in some cases by more than 50%, during external excitation at these same res-
onant modes, as shown in Fig. 8. These results appear to be consistent with
the observations of Keller, et al. [64] who suggest that NO reduction during
acoustical excitation in general occurs due to shorter gas residence times at
higher temperatures. That the present NO emissions dropped even further
at natural frequencies could indicate enhanced residual gas mixing as well at
these frequencies.
While closed loop control in this device could provide further improve-

ments in combustor/incinerator performance, and in particular, recovery from
upset conditions, current sensing technologies generally limit the location of
detection to the regions upstream of flame structures, outside of the com-
bustion zone. Future advances in sensor technologies that could significantly
impact combustion control will be identified in the section below.

6 Future Directions

It is clear from the foregoing examples that reactive flow control (passive and
especially active control) holds a great deal of promise for improved perfor-
mance in practical combustion systems. Closed loop active control is partic-
ularly challenging in that it requires utilization of sensors (and, to a lesser
extent, actuators) that are capable of operating in severe environments and
development of robust control algorithms that can be applied over a wide
range of operating conditions.
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Fig. 8. Nitric oxide (NO) emissions in the dump combustor during externally forced
acoustical excitation for the case where inlet equivalence ratio φ = 0.83, inlet velocity
Ui = 4.7m/sec, and cavity length = 10.2 cm. No surrogate is injected into the
recirculation zones here. Zero forcing frequency refers to the unforced case. (results
from Pont, et al. [73])

There are a number of promising sensor technologies which are being
developed for and implemented in combustion systems. As noted above, oper-
ation of these sensors in the severe combustor environment (high temperatures
and pressures) becomes a key requirement. MEMS-based sensors are receiv-
ing a great deal of attention for applications in non-reactive flow control [78],
yet since these are largely silicon-based, their direct applicability in a com-
bustion environment is limited. Aiming at future advances which will allow
incorporation of more refractory materials in MEMS devices, Bowman [79]
has proposed a microscale chemical sensor for time-resolved NOx emissions
detection. Wireless, ceramic-based RF sensor technology currently under de-
velopment at UCLA [80] well could be the key to eventual implementation
of such flush-mounted sensors (which could detect pressure, species, temper-
ature, etc.) in practical combustors.
Since most critical flow and reaction processes take place away from solid

surfaces in a combustion chamber, optical diagnostic methods have become
essential interrogation tools for fundamental combustion experiments. Their
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evolution as real-time sensors also holds great promise. Hanson [81, 82] has de-
veloped a diode laser-based system for detection of NO and has implemented
the concept in a Navy combustor/incinerator. Fiberoptic sensors have also
been used for OH emissions detection and have been incorporated success-
fully into a closed loop control system for a laboratory gas turbine combustor
[83]. The practicality of these optical methods for long cycle time use in an
operating engine remains to be seen.
The successful design of a closed-loop combustion controller is pos-

sible when a model is identified which is able to reasonably capture the dy-
namics of the flow and combustion processes. The controller dimension is an
important parameter in any engineering application because of the amount
of hardware and computer power necessary to compute a real-time control
law. Modern synthesis methods produce controllers with dimensions on the
order of the process model. Thus, it is essential, from detailed reactive flow
models, to derive reliable, reduced-order models of the combustion process for
controller evolution. At present, relatively low order models for combustion
processes (e.g., which globally represent transient heat release and pressure
perturbations) have been developed and successfully implemented into real-
time controllers [47, 51, 52, 53, 54].
Benefits for future combustion controller development may be derived from

concepts being employed for non-reactive flow control, which has recently
moved in the direction of developing hierarchies of models of differing com-
plexity. These approaches yield insights into methods that may be devised for
combustion control. Among the approaches for developing a reduced-order
model for non-reactive fluid flow control are: 1) transformation of the gov-
erning (Navier-Stokes) equations into a set of ordinary differential equations
using, for example, vortex methods [84, 85], Galerkin’s methods [86, 87], or
proper orthogonal decomposition [88, 89], and 2) system identification [56, 90].
As suggested by Cortelezzi [85, 91], the process of transferring the control
strategy from a low-dimensional model to a higher or infinite dimensional
model, and eventually to a real flow, should be guided and supported by a
dynamical system and time series analysis. In general, the control strategy
should be transferable from a low-order model to the next high-order model,
provided that the phase space of the two models are topologically equivalent.
This framework has been successfully applied to the linear feedback control of
near-wall turbulence [86, 87] and to the nonlinear feedback control of the wake
past a plate perpendicular to the free-stream [91]. An analogous framework for
hierarchies of combustion models could have similar benefits so that, in con-
junction with the utilization of high temperature sensors, robust combustion
control in a wide range of systems could be a practical reality.
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Abstract. Active control technology has been used in the context of continuous
combustion processes for the past twenty years. Over this time, active control has
shown to be successful in reducing unsteady pressure oscillations in a variety of
combustion systems ranging from benchtop combustors to large-scale industrial rigs
with an energy release of 260MW. In recent years, it has been shown that it is pos-
sible to develop control strategies based on dynamic models that are derived using
a combination of physically based principles and input-output measurement data.
The models developed include both linear models that capture thermoacoustic insta-
bilities and nonlinear models that characterize stable limit cycles. The approaches
for deriving model-based controllers include optimization, adaptation, time-delays,
and neural networks. These strategies have been used to modulate fuel-flow and
air-flow rates entering the combustion process in a number of practical combustors
and shown to result in an order of magnitude improvement in performance. In this
article, highlights of the area of active combustion control with particular emphasis
on models and model-based control strategies are presented. Both linear and non-
linear models that are reported in the literature are discussed. Linear, time-delay,
adaptive, and neural control methods that have been developed thus far are pre-
sented. The accruing results and experimental verification in laboratory-scale and
large-scale combustors are discussed.

1 Introduction

Continuous combustion processes are prominently encountered in many ap-
plications related to power generation, heating and propulsion. Examples are
domestic and industrial burners, gas turbines, afterburners, waste incinera-
tors, and scramjet/ramjet engines. Typical requirements in these applications
are reduced emissions, large volumetric heat-release, high power density, large
turn-down ratios, and high efficiency. As the processes are pushed towards
these performance objectives, an ubiquitous characteristic exhibited in sev-
eral instances is an increased level of pressure oscillations, referred to as ther-
moacoustic instability. The use of active control where the incoming reactants
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Fig. 1. Thermoacoustic instability in a combustion system

are suitably modulated according to a carefully designed algorithm is becom-
ing increasingly common and attractive for realizing these high performance
goals.
A typical continuous combustion process consists reacting mixture flowing

in a constant area duct with a flame anchored at a specific location. The
latter ignites the reactants, releasing their chemical energy in the form of heat,
thus raising their temperature and reducing their density. Flames, which are
essentially surfaces across which reactants are converted into products, not
only possess their own inherent instabilities, but are also known to respond
readily to imposed oscillations. Dynamic instabilities occur in combustion
processes due to the feedback coupling between the two dominant processes,
acoustics and heat-release (see Fig. 1). The heat release from the combustion
of reactants affects the acoustics, and the acoustic perturbations alter the heat
release dynamics, closing the loop. As described by Rayleigh in 1845 [1], and
later quantified in [2, 3] if the heat-release rate from the combustion process is
in phase with the pressure, the system is unstable, and when the heat-release
rate is out of phase with the pressure, the system becomes stable. While indeed
the above statement pinpoints the basic components in play that induce the
dynamic instability, the problem of modeling is a precise quantification, first of
the dynamics of these components, and next of all of the coupling mechanisms
between these components to produce the stability behavior.
The recent twist in this old problem is that of active control. Simple demon-

strations on a Rijke tube in the 80’s [4, 5] showed that by using a very small
fraction of the system energy, the pressure amplitude can be reduced by sev-
eral orders of magnitude, thereby establishing the feasibility of active com-
bustion control. Subsequently, several laboratory scale tests were conducted
simulating conditions of afterburners, ramjets, and gas turbine dynamics, and
attempting active control of the ensuing instability. During 1999–2000, several
successes have been reported in large-scale industrial rigs [6, 7, 8], showing
that active combustion control is indeed a viable and feasible technology.
Much of the experimental results related to active combustion control have

thus far utilized empirical strategies where the idea is to isolate the oscilla-
tion frequency, phase-shift the signal, and feed it back as a control input so
that noise cancellation occurs. These methods have shown that active control
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can lead to a pressure reduction. However, several questions remain regarding
the use of such an active control approach, the most important of which is
that since this approach is empirical, it is not clear what factors affect the
suppression levels the most, or if the achieved levels are indeed optimal for a
given type of actuator. The more general question for a combustor of given
geometry, mixing conditions, and equivalence ratio, is what the most appro-
priate actuators are and their most effective locations. A model-based active
control strategy enables one to analyze the behavior of the combustor, quan-
tify its characteristics in terms of parameters such as geometry, equivalence
ratio, flow rate, flame stabilization mechanism, and heat loss, thus enabling
one to optimize the control design against the desirable objectives.
Carrying out a thorough analytical investigation of the behavior of a com-

bustion process is an exceedingly difficult task since the fundamental princi-
ples governing its dynamics have to be brought together from a number of
disciplines including acoustics, combustion dynamics, hydrodynamics, ther-
modynamics, and heat transfer. In addition, the investigation must include
a study of how these distributed systems behave in the presence of local-
ized control sources which introduce time-varying boundary conditions in the
process. The distributed nature of these processes makes partial differential
equations that are highly nonlinear and coupled as their governing entities.
For the purpose of understanding the dominant dynamic behavior of the sys-
tem as well as designing active control inputs, reduced-order models are most
useful. In recent years, significant progress has been made towards modeling
the dominant dynamics that are responsible for producing the thermoacoustic
instability in combustion processes.
In this paper, highlights of modeling and model-based control of com-

bustion dynamics are presented. While details of linear modeling theory and
experimental results that have been reported in the literature can be found
in [9], in this article, our emphasis is on nonlinear models and control, and
in particular, on models that have been explicitly used for control design and
experimental implementation. Experimental results that have been reported
in the literature using these model-based controllers are also described in this
paper. Section 2 addresses models of combustion dynamics while Sect. 3 deals
with model-based control methods. In Sect. 4, summary and concluding re-
marks are presented.

2 Dynamic Models of Combustion Instability

Dynamic instabilities occur in combustion processes due to feedback coupling
between two dominant processes, acoustics and heat-release (see Fig. 1). Sig-
nificant research has been carried out in modeling the detailed dynamics of
these two processes and their feedback interactions, and are described below.
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2.1 Linear Models

Acoustics represents the host oscillator, that leads to large and sustained
unsteady pressure oscillations. In order to model the underlying acoustics,
utilizing the predominantly one-dimensional configurations typically present
in combustors, the acoustic equations for longitudinal, bulk, and azimuthal
modes can be derived using the standard wave equation [10, 11]. Using an
expansion

p′ (x, t) = p

n∑
i=0

ψi (x) ηi (t) , (1)

where ψi denote basis functions of the form ψi (x) = sin (kix + φi0), i =
1, . . . , n, and ki and φi0 determined from the boundary conditions, and if the
heat-release rate is the only dominant source that is localized at xf , the modal
amplitudes can be shown to satisfy the following equation [12]:

η̈i + 2ζωi
.
ηi +ω2

i ηi =
n∑

i=1

b̃iQ̇
′ (2)

where Q is the total heat-release rate, b̃0 = γ − 1, b̃i = γV aoψi(xf )/E for
i = 1, . . . , n, E =

∫ L

0
ψ2

i (x) dx, γ is the specific ratio, ao = γ−1
γp , ζ represents

the passive damping ratio in the combustor1, L is its length, ω2
0 =

√
An

LnV ,
V is the volume of the combustor, An and Ln are the cross-sectional area
and length of the inlet/outlet neck connected to the combustor. and ωi = kic,
i = 1, . . . , n. Typically, ω0 << ωi, for i = 1, . . . , n. The acoustics of azimuthal
modes can be computed in a similar manner. For acoustic modes in a dump
combustor, which is a commonly used configuration, the spatial modes can be
determined by considering the cold and hot sections separately, and are not
necessarily in the form of a sinusoid. It should be noted that in the case of
a dump combustor, the corresponding equations will assume a more complex
form since the underlying basis functions are not necessarily orthogonal. An
alternate procedure for deriving the acoustics equation is to adopt a wave
approach, as in [13], which has been used successfully to design model-based
controllers [14].
The second process that contributes to the combustion dynamics is due

to unsteady heat release. Models of unsteady heat-release have been derived
at two different conditions, which correspond to high and low Damkholer
numbers, respectively. At high Damkohler numbers and weak to moderate
turbulence intensity, the heat release can be represented as a thin flame. The
flame surface is described by a single-valued function ξ(r, t) which represents

1Dissipation in a combustor can be caused by heat losses in the flame zone and
friction due to viscous effects.
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the instantaneous axial displacement of the flame, 2, and the total heat release
rate, Q, is proportional to the integral of this surface over an anchoring ring:

Q = κ(φ)Af (r, t) (3)

Af = 2π
∫ R

0

r

√
1 +

(
∂ξ

∂r

)2

dr, κ(φ) = ρuSu(φ)Δhr(φ) (4)

∂ξ

∂t
= u− v

∂ξ

∂r
− Su(φ)

√(
∂ξ

∂r

)2

+ 1, (5)

where u and v are velocities in the x and y directions, φ is the equivalence
ratio, Su is the burning velocity, ρu is the density of the unburnt mixture,
Δhr is the heat of reaction, and Af denotes the flame area.
Since unsteady heat-release can be produced in response to both pertur-

bations u′ and φ′ in the flow velocity and equivalence ratio, respectively, the
linearization of (3)–(5) with respect to both quantities must be considered,
which leads to a linear model of the form [15]

.
Q
′
= d0u

′ + d1

(
u′τf

(t)
)

+ d2

(
φ′τf

(t)
)

+ d3φ
′ + dφφ̇

′ (6)

where

xτ (t)
�
=

∫ t

t−τ

x(ζ)dζ, (7)

d0 = κR, d1 = −κ Su, n d2 = −κSu
∂Su

∂φ

∣∣∣∣
φ

∂ξ(r)
∂r

∣∣∣∣
0

,

d3 = −κ
∂Su

∂φ
ξ(0), κ = 2πρΔhrSu, τf =

R

Su

,

dφ = 2πρu

(
Su

dΔhr

dφ

∣∣∣∣
φ

+ Δhr
dSu

dφ

∣∣∣∣
φ

)(∫ R

0

rξdr

)
.

τf represents the characteristic propagation delay of the flame surface into the
reactants flow. If only u′ perturbations are significant, it can be shown that
the unsteady heat-release is given by [16, 12]

Ȧ′f = −2πSu

∫ t

t−τf

u(t′)dt′ + 2πRu′ (8)

≈ −bfA
′
f + 2πRu′ bf = 2

Su

R
Q′ = κA′f

2We consider here a flame stabilized over a perforated plate, R is the radius of
the perforation.
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At large turbulence intensities, assuming that the combustion zone can
be modeled as a Well Stirred Reactor [17], with the reactant and product
thoroughly mixed and indistinguishable in the combustion volume [18, 19],
the response to velocity perturbations can be modeled as [20]

Q̇′ + αQ′ = βu′ (9)

where α and β are related to the time-constant of the evolution and consump-
tion of mass flow rates of various species.
Perturbations in equivalence ratio could be introduced due to the feedline

dynamics in the following manner. For a choked fuel-nozzle and an unchoked
air-nozzle, the instantaneous equivalence ratio φs at the exit of the fuel nozzle
due to air flow fluctuations is determined as

φs =
φ

1 + u′s/u
(10)

where us denotes the velocity at the fuel supply, and is similar to a relation
used in [21]. When linearized, we obtain the relation [21]

φ′(t) = −φ

u
u′s(t− τc) (11)

where φ′ denotes the equivalence ratio perturbation at the burning zone, τc is
a convective delay due to transport lag from the supply to the burning plane
of the flame, and is given by τc = L/u, where L is the distance from the supply
to the burning plane. The coupling between u and p can be determined using
the conservation equations

∂p′

∂t
+ γp

∂u′

∂x
= (γ − 1)q′ (12)

∂u′

∂t
+

1
ρ

∂p

∂x
= 0 . (13)

With the acoustics, heat-release, and coupling effects modeled as above,
we obtain the following model of combustion instability:

η̈i + 2ζωiη̇i + ω2
i ηi =

b̃i

V

[
d0u
′ + d1

(
u′τf

(t)
)

+ d2

(
φ′τf

(t)
)

+ d3φ
′(t) + dφφ̇

′(t)
]

(14)

φ′(t) =
n∑

i=1

diηi(t− τc) (15)

u′ =
n∑

i=1

c̃iη̇i + θa0Q
′ (16)

where
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c̃i =
dψ

dx
(xf )

1
γk2

i

, di =
dψ

dx
(xs)

φ

ρu
,

and θ represents the effect of the flow velocity before and ahead of the flame.
Equation (14) indicates that two different coupling mechanisms are possible
excitations for the acoustics, one resulting from the velocity perturbations u′
and the other from equivalence ratio perturbations φ′. Equation (14) also in-
dicates that two different time-delays, τf and τc can induce these excitations,
one arising from propagation effects, and the other from convection. An ad-
ditional point to note from (14) is that if the dominant pressure mode is that
of a bulk-mode, then it can be excited only due to perturbations in the equiv-
alence ratio. However, if longitudinal modes are the ones that are dominant,
they can be excited either by u′-perturbations or by φ′-perturbations.
The structure of these equations show that the combustion dynamics in

general is given by a 2n + 1th order ordinary differential equation with time-
delays τf and τc. In the simplest case, when only one acoustic mode is dom-
inant, setting ηi = η, the combustion dynamics can be shown to be of the
form

η̈ + (2ζω − γ1)η̇ + (ω2 + γ2)η − γ2η(t− τf ) = 0 (17)

if the variations are mainly in u′, where

γ1 = 2πρRΔhr b̃c̃, γ2 = 2πρRΔhr Sub̃c̃

c̃ =
1

γk2

dψ

dx
p, b̃ = γao

ψ(xf )
E

, τf =
R

Su

and of the form

η̈ + 2ζωη̇ + ω2η − β1η(t− τc) = 0 (18)

if they are due to φ′, where

β1 = 2πb̃
φ

u
c̃γk2

(
Su

dΔhr

dφ

∣∣∣∣
φ

+ Δhr
dSu

dφ

∣∣∣∣
φ

)(∫ R

0

ξdr

)
, τc =

L

u

Both (17) and (18) have been shown to predict instability, match experimen-
tally observed results [12, 15, 22], shown to explain anomalies such as sec-
ondary peaks with empirically designed controllers [23], and lead to optimal
model-based controllers in experimental investigations [24, 25].

2.2 Nonlinear Models of Combustion Oscillations

Nonlinear features are abundant in a combustion process. The most dominant
of these is a limit-cycle behavior which is exhibited by almost all the variables
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in the process including pressure, velocity, and heat-release. The typical dy-
namic response of any of these variables consists of a divergent set of oscilla-
tions which transition then to a sustained periodic signal, that is almost sinu-
soidal in nature. Several speculations have been made regarding mechanisms
responsible for such a behavior. Nonlinearities in the heat-release dynamics
have been noted in [13, 21, 26, 27, 28] while nonlinearities in acoustics are
claimed to be responsible for these limit-cycles in [11, 29, 30]. Below, we dis-
cuss these further and present plausible nonlinear models that describe some
of these mechanisms.
The presence of such limit-cycles, many of whom are stable, suggests the

obvious presence of bifurcations. One of the key parameters that appears to
induce these bifurcations is the mean equivalence ratio, φ. Two distinct ranges
of φ appear to be of interest, depending on the application. In ramjet engines
and afterburners, close to stoichiometry, instability appears to result followed
by the presence of supercritical bifurcation. In engines with strict emission
requirements, as one attempts to burn lean, a “blow-out” limit is reached which
once again is accompanied by these bifurcations. In many of these cases, more
than one limit-cycle is encountered [28] suggesting the presence of both sub-
and supercritical bifurcations.
Finally, in [28, 31, 32, 33], hysteresis mechanisms have been observed and

discussed. The parameters in question are the mean equivalence ratio and
the mean inlet velocity. In [32], keeping other parameters a constant, as φ is
increased steadily and then decreased, the behavior at the same value changes
from instability to stability which is sometimes accompanied also by a drastic
change in the flame structure. In [32] and [33], it is shown that once such a
mechanism is present, appropriate use of it can be made in designing active
control strategies and reduce the amplitude of oscillations.
Of all the nonlinear mechanisms in combustion processes, it is limit-cycles

that have been examined the most. As mentioned earlier, nonlinearities in
both acoustics and heat-release have been analyzed and shown to result in
limit-cycles. Since in most of the combustion systems, the pressure ampli-
tudes are in general small, nonlinearities due to the acoustics can be assumed
to be negligible [34]. We consider in this paper, the latter case, and begin
with the linear acoustics model as in (2) and the nonlinear heat-release model
given by (3)–(5) and the coupling by the relation (10). While different sources
contribute to the heat-release nonlinearity, at least three different mechanisms
have been studied and analyzed in the literature. The first two concern non-
linearities in the area as well as the burning velocity of the flame, resulting in
a nonlinear response of the heat-release rate as the incoming velocity increases
[13, 26]. The third is due to the varying fuel-air ratio that is delivered to the
flame [21] resulting from the feedline dynamics. We briefly state each of these
nonlinearities below:

1. Nonlinear Burning Velocity: The starting point for the model in [26]
is (5) which is reduced to a nonlinear ordinary differential equation by using
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an expansion

ξ∗ (r, t) = ξ + R

m∑
j=1

xqj
(t)ψfj

(r) , (19)

ψfj
(r) =

( r

R

)j−1

, j = 1, 2, . . . ,m . (20)

The choice of ψf ( · ) is made based on flame structures typically found in
weakly turbulent flames. When substituted in (5), (19)–(20) lead to the dif-
ferential equation

m∑
j=1

Bjkẋqj
= −Ak + Uk (21)

Ak =
∫ R

0

ψfk
SuAr(x)dr, Ar(x) = r

√√√√√1 +

⎛⎝dξ

dr
+ R

m∑
j=1

xqj

dψfj

dr

⎞⎠2

Uk =
∫ R

0

rψfk
u′dr, Bjk = R

∫ R

0

rψfk
ψfj

dr

Q = c0

∫ R

0

Ar(x)dr, c0 = 2πρuΔhr (22)

The quantities that were unspecified in the flame surface equation are u,
ξ, and Su which are in general spatially distributed. The exact nature of the
functions is exceedingly difficult to determine since they depend on heat losses,
flame stretch and flow entrainment. Using the flow field profile of a laminar
jet [35], we have

u(r) = k0
1

(k1 + ξ)
(
1 + ξ

2

4

) , ξ(r) = k2r (23)

where ki, i = 0, 1, 2 are suitably chosen constants. Also, since the local burning
rate depends on the heat loss to the stabilizing disc as well as the oscillating
flow, Su depends on both the location of the flame and the velocity perturba-
tion, and is chosen as

Su

(
ξ, u′

)
= Su

(
1 − ec1ξ

)
+ c2|u′|3u′ (24)

where c1 and c2 are suitably chosen positive constants. The exponential term
emphasizes the exponential dependence of the reaction rate on the temper-
ature, while the cubic nonlinearity stems from the dependence of the heat
transfer coefficient on the flow velocity.
It can be shown that for suitable choices of the parameters, the heat-

release model as in (21) together with the linear acoustic model in (14) leads
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Fig. 2. Change in the phase between the velocity u′ and the heat-release rate Q′ as
the amplitude |u′| increases in the presence of a nonlinear Su

to limit cycles when only u′-perturbations are present. It is also interesting
to note that the relation between u′ and Q′ is characterized by phase rather
than gain; as the amplitude of u′ is increased, the phase between Q′ and u′

was observed to change from –90◦ to 0◦ (see Fig. 2). It was observed that
the limit-cycle behavior persisted as φ and the flow-rate was changed in the
model over a large range of values, with the limit-cycle amplitude increasing
as φ increased. Preliminary studies from an experimental investigation of a
1kW combustor support these phase-changes [36].
2. Saturation nonlinearities:Yet another nonlinearity that affects the heat-
release rate is saturation, and was suggested by Dowling in [13]. which appears
in the following way: While for small amplitudes, Q(t) is linearly proportional
to u(t), as the amplitudes increase, the flow-velocity reverses and becomes
negative. However, the physical constraint on the heat-release dictates that
Q remain positive, which implies that Q(t) saturates. Such a flow-reversal is
seen occur in the experimental rig containing the bluff-body stabilization [37].
The underlying model can be expressed in this case as

Q̇ = −bfQ + f2(u′) (25)

where
f2(u) = u if |u| ≤ u0

= u0 if |u| > u0
(26)

An analysis of the acoustics as in (2) together with (25) and coupling as in (16),
with the equivalence ratio fluctuations assumed to be small (due to proper
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mixing, for example), can be shown to lead to limit cycles [13, 27]. In [13],
a comparison is made with experimental results of [37], and the limit-cycle
characteristics are shown to be similar.
3. Fuel-air ratio nonlinearities: In [21], starting from the flame kinematic
model as in (3)–(5), on the basis of experimental observations, the area nonlin-
earities are neglected, while the change in the heat of reaction due to changes
in φ as well as the nonlinearity due to the fuel-air delivery as in (10) are
retained. Assuming that only one acoustic mode is dominant, this yields a
representation of the form

η̈ + ω2η = b
d

dt

[(
Af + A′f

)
f3(φ(t))

]
Ȧ′f = −bfA

′
f + 2πRu′

f3(φ) = k1(φ− k2)p exp
(−(1 − φ + k3)2

)
φ =

φ

1 + u′(t− τc)/u
u′(t) = k4η̇ (27)

where constants ki represent a variety of physical features including the change
in the heat of reaction as φ approaches the blow-out limit and acoustic ad-
mittance, and τc is a convective time-lag. It can be shown that for small
amplitudes, the above system exhibits instability for banded values of τc [31],
and for larger amplitudes, it exhibits limit cycles. A comparison of the model
with a single nozzle rig over a range of pressures, temperatures, and equiva-
lence ratios is made in [21], where it is shown that the limit-cycle amplitudes
match the model prediction fairly well. As φ increases, a 20% mismatch is
shown in the frequency prediction, while the time-delay prediction is fairly
accurate at low equivalence ratios.

2.3 Linear Models Using a System Identification Approach

Even though the combustion response is clearly nonlinear, in an experimental
run, one seldom captures the signal growth within the linear range and transi-
tion phase due to its brevity. It is the periodic pressure/heatflux signal, which
is the more persistent feature and the one that is experimentally recorded.
If it is the periodic oscillations that need to be modeled, one can choose a
linear model structure and a system identification procedure to identify the
model parameters that capture the pressure characteristics. In [38]–[41] and
[25], such an approach is adopted. Assuming that the control input that cor-
responds to an actuator output is denoted as V and the resulting pressure by
p′, the system identification model structure can be chosen as

ẋ = Ax + bV + dW p′ = cTx (28)

where A, b, c are model parameters that are to be identified using input-output
data, x is the state of the system, and W is an exogenous noise signal. The
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dimension of x is to be chosen a priori so that the model order is commensurate
with the dominant dynamics that needs to be modeled. By using a pseudo-
random-binary signal in V , these parameters can be identified accurately.
It should be pointed out that the linear model has been derived under

the following assumptions: i) the limit cycle response can be approximated
by the homogeneous response of a linear differential equation; ii) the effect
of an external input on the pressure response can be represented by a lin-
ear term. Since (a) the nonlinear response in combustion systems is a stable
limit cycle, (b) the sustained pressure response, in most cases, is sinusoidal
in nature, and (c) since the effect of a small external input, in general, is
small compared to the unforced response, both assumptions (i) and (ii) are
reasonable for pressure responses that are close to the limit cycle. This implies
that any model-based controller is guaranteed to be accurate in a neighbor-
hood of the limit cycle, and therefore can reduce its size. The extent of this
neighborhood depends on how well the gain and phase of the linear model
can approximate that of the nonlinear system as the size of the limit cycle
reduces. For all amplitude levels of the pressure where this approximation
error remains small, the model-based based controller will continue to reduce
the amplitude further until the pressure amplitude reaches background noise
levels. In [25], it has been shown that such an approach can be used success-
fully to suppress pressure oscillations down to background noise in a 30 kW
swirl-stabilized combustor.

3 Control of Combustion Instability

The most commonly used controls strategy to reduce combustion oscillations
is a phase-shift controller that consists of isolating the pressure component
at the unstable frequency through proper filtering, adding a phase-shift, and
feeding the signal back to modulate a suitably chosen control input. Typical
inputs are secondary fuel and secondary air that are pulsed using fuel-injectors
and acoustic drivers, respectively. While these controllers are quite success-
ful [6, 42], quite often their scope of performance is constrained in terms of
level of improvement and range of operating conditions. At some of the op-
erating conditions, secondary peaks are generated due to the control action
thereby compromising on the maximum damping that is achievable. If more
than one frequency is dominantly present, the control design seems to prove
quite challenging. In some cases, the phase-shift controller appears to be quite
sensitive to perturbations. Model-based controllers are currently being imple-
mented with success over a range of rigs, and are shown to result in an order
of magnitude improvement in the performance. The reader is referred to [9]
for further details.
In this section, we focus on the highlights of these model-based controllers,

and show how each aspect of the model is accommodated in the control design.
In particular, we discuss the behavior of (i) a linear controller in the presence
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of stable limit-cycles, (ii) a linear time-delay controller that provides stabi-
lization even in the presence of large time-delays, (iii) an adaptive time-delay
controller that combines the properties of the controller in (ii) and accommo-
dates parametric uncertainty, and (iv) a neural controller that accounts for
uncertainties in the nonlinearity.
The first step in the design of a model-based controller is the quantification

of the effect of the active control input on the combustion dynamics. Examples
of typical active control devices are fuel-injectors and loudspeakers, where
the former has a dominant effect of additional mass-flow which results in
additional heat-release, and the latter introduces additional velocity which
impacts on both acoustics and heat-release. If the quantity added is fuel, in
addition to the mass-flow, heat input is introduced as well, since it changes
the equivalence ratio. Defining

φc =
ṁ′c

ṁaφ0

where ṁ′c is the perturbation in the fuel-flow rate, ṁa is the mean air mass
flow rate, and φ0 is the fuel to air ratio at stoichiometry, and vc as the velocity
of the diaphragm of the loudspeaker, and neglecting the time-delays τc and
τf in the combustion model, the effect of the active control input on the
combustion dynamics can be quantified as follows: If a fuel-injector is used as
an actuator, it can be shown that when only φ′-perturbations are present, in
the linear case, the heat release dynamics in (6) is altered as

.
Q
′
= d2

(
φ′τf

(t) + φ′cτf
(t− τco)

)
+ d3(φ′ + φc(t− τco)) + dφ(φ̇′ + φ̇c(t− τco))

where τco = Lc/u, and Lc is the distance between the burning plane and
the location of the fuel-injector. For the case when a speaker is used as the
actuator, assuming that no equivalence ratio perturbations are present, it can
be shown that the above equations simplify to the form [24]

η̈i + 2ζ0ωηi + ω2
i ηi = bi

.
q
′
f +bci

v̇c (29)

y =
n∑

i=1

cci
ηi, (30)

.
q′f =

n∑
i=1

(
f(gfci

.
ηi +kaoαrvc)

)
In addition to the above model, the actuator dynamics itself must be

included in the control design. In the case of a fuel-injector, the mechanical
and fluid parts of the device can be modeled as [15]

ṁ′c(s)
V (s)

=
km

τms + 1
, (31)
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where V is a voltage applied to the injector, while in the case of a speaker,
the transfer function between the voltage applied and the acceleration v̇c can
be derived as [24]

Gl(s) =
k1s

2

s2 + 2ζlωls + ω2
l

(32)

where kl, bl, and ml denote the stiffness, friction, and mass properties, and
k1 is a calibrating gain.
The discussions in Sect. 2 show that combustion dynamics predominantly

exhibit two characteristics, with the first being linear instability which re-
sults in diverging pressure oscillations which are then followed by a nonlinear
limit-cycle which results in the oscillations becoming sustained. In Sect. 2.1, it
was shown that the instabilities could be produced either due to a time-delay
or due to negative damping which is produced due to the phase-lag between
the unsteady heat-release rate and the unsteady velocity. In Sect. 2.2, we
noted that limit-cycles can be produced by more than one type of nonlinear
mechanism that may be present in the heat-release response. While both the
saturation and fuel-air nonlinearities produce gain-changing mechanisms, the
nonlinearity in the burning velocity seems produce a phase-changing nonlin-
earity. In different rigs, as well as under different operating conditions in the
same rig, it is quite possible that the actual mechanism that produces the
limit cycle may vary. In practice, therefore, the nonlinear phenomenon re-
sponsible for the limit-cycle behavior may not be possible to identify or vary
with operating conditions. This implies that if a controller design relies on the
structure of f , then the accuracy of the controller and the resulting closed-
loop performance can be directly compromised by the lack of fidelity in the
model. In such cases, it may be more advantageous to use a linear controller
which is designed by entirely neglecting the nonlinearity and using the linear
model only.
In order to evaluate the behavior of the closed-loop system with the non-

linear model together with a linear controller, we focus our attention on the
case when only u′-perturbations are present, neglect the time-delays, which
leads to a feedback system of the form

ũ′f = G(s)[q̃′ + V ]

q̃′ = −f(ũ′f )
(33)

where G(s) represents linear dynamics in the acoustics and heat-release dy-
namics as well as in the actuator, and f represents the nonlinearity.

3.1 Linear Control

Suppose a linear controller is designed using a linearized model of (33) as

V = Gc(s)y (34)
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to achieve closed-loop stability. Expressing the nonlinear function f as

f(u) = u− g(u),

the resulting closed-loop system can be described as (see Fig. 3)

y = Wcl(s) [−g (y)] (35)

whereWcl (s) represents the stabilized closed-loop system with the linear con-
troller, whereas g ( · ) represents the deviation in f from linearity. Under cer-
tain conditions on Wcl (s) and g ( · ), it can be shown that the closed-loop
system will be stable. The following theorem summarizes these conditions
[43]:

Theorem 1. If the components in the closed-loop system in Fig. 3 are such
that

(i) Wcl (s) is strictly positive real,
(ii) g (x)x > 0 for all x 	= 0

g (0) = 0

Then the closed-loop system is globally asymptotically stable.

3.1.1 Experimental Results

We present two different experimental demonstrations of a linear LQG-LTR
controller [44], where in (1), the controller is designed using the model in
(29)–(30) and implemented in a 1 kW combustor with a constant area of cross-
section, while in (2), the controller is designed using a system-identification
model as in (28) and implemented in a 30 kW swirl-stabilized combustor.

-

Fig. 3. Stable nonlinear feedback systems
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The results in both cases show that the nonlinear combustion process can be
successfully controlled using a linear controller.
(1) A bench-top tube-combustor rig was constructed to evaluate the model-

based approach to control design. A condensor microphone was used as the
sensor and a 0.2W loudspeaker was used as an actuator. Measurements on the
test rig were recorded using a Keithley MetraByte DAS-1801AO data acqui-
sition and control board, with a maximum sampling frequency of 300 KHz.
Most experiments were conducted with an equivalence ratio between 0.69 and
0.74 and an air flow rate of 333mL/s (0.38 g/s), which corresponded to an
unstable operating condition without control. The pressure response showed
a limit-cycle behavior at all of these operating conditions. Linear LQG-LTR
and H∞ strategies were implemented to suppress the pressure oscillations. A
50 dB pressure reduction was achieved using the former using a peak electrical
power of 3 mW (see [24] for further details). These results show that a linear
model-based controller is successful in suppressing the pressure oscillations
despite the presence of the nonlinearities.
(2) In [45], experiments were performed in a swirl-stabilized combustor

operating at 30 kW heat release to validate model-based controllers. The av-
erage fuel flow rate was kept constant at 0.75mL/sec. Primary air with a flow
rate of 0.056-0.283 m3/sec, at five atmospheres, was used to atomize the fuel.
The fuel stream was modulated using a Bosch fuel injector driven by a signal
processor, and pressure and heat-release measurements were made. The com-
bustor exhibited a stable limit-cycle at almost all of the operating conditions.
A linear-model based LQG-LTR controller was designed and implemented,
which brought the pressure oscillations down to background noise.

3.2 Time-delay Control

In the presence of an actuated input φc that may be due to a fuel injector,
the combustor model in (18) gets modified as

η̈ + 2ζωη̇ + ω2η − β1η(t− τc) = kφc(t− τco) (36)

where τco is the transport delay due to the distance between the point of injec-
tion and the combustion zone. The model in (36) indicates that the requisite
control must explicitly include time-delays into its control design, since these
delays are comparable to the system time-constants if not larger. One control
strategy that can be employed in this context is Posi-Cast control [46, 47, 48].
The idea behind this control strategy is forecast the future output using the
system model and use this in turn to stabilize the system. It has been shown
that (i) Posi-Cast controllers are successful in stabilizing system models of
the form of (36), even when τc is significantly large compared to the acoustic
time-constants [15], (ii) stability robustness properties of these controllers can
be quantified [49], (iii) adaptive posi-cast controllers can be derived to accom-
modate parametric uncertainties [14, 49]. The highlights of this approach are
summarized below.
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The plant to be controlled is assumed to be of the form

y(t) = Wp(s)u(t− τ) (37)

with the goal of reducing the plant output to zero. In such a case, the following
controller can be shown to be stabilizing [15]:

V (t) =
c(s)
Λ(s)

V (t− τ) +
d(s)
Λ(s)

p′(t) + V1(t), (38)

V1(t) =
n∑

i=1

(∫ 0

−τc

e−λiσV (t + σ)dσ
)
, (39)

where λi’s are the poles ofWp(s), Λ(s) is a chosen stable polynomial of degree
n−1, d(s), n1(s) and n2(s), are polynomials of degree n−1 at most, and c(s) is
of degree n−2. It can then be shown that for suitable values of the polynomials
c, d, n1, and n2, the plant can be stabilized for any time-delay τ [48].

3.2.1 Simulation Results

The controller in (38) and (39) was implemented assuming that the fuel-
injector is located at a distance of ∼ 3 cm upstream the burning zone. τc is
estimated to be 100ms, which is about 50 times the time constant of the un-
stable frequency. The closed-loop simulation is illustrated in Fig. 4. Although
control is switched on at t = 50ms, the pressure keeps increasing for an addi-
tional t = τc = 100ms (from t = 50 − 150ms), then stalls for another 100ms
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Fig. 4. Response of the controlled combustor with a time-delay of 100ms in the
input signal, proportional injector
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(from t = 150 − 250ms) before decaying. The reason for the former delay is
physical and is due to the time taken for the pulsed-fuel to reach the burning
zone. The latter is due to a computational delay in the controller.

3.3 Adaptive Control

Active adaptive control of combustion using the well known LMS algorithm
[50] has been implemented in the literature [51, 52] with mixed results. In both
cases, the measured output was the acoustic pressure and the heat release,
and the actuator was an acoustic driver which was used to modulate either
the fuel or the airflow rate. In [51, 52], it was observed that while in some
cases, this adaptive approach was successful, in others, the adaptive filter led
to divergence in the filter coefficients. In contrast to the above, model-based
self-tuning control methods provide guaranteed stability and lead to improved
performance, and is discussed below.

3.3.1 Model-based Self-tuning Control

For a plant of the form y = Wp(s)u, if the plant is minimum phase, and is of
relative degree two, the following control strategy guarantees stabilization:

u = k0(t)
[
p′(t) + k̇0p

“(t)
]

p′ = kc
s + zc

s + pc
[p′], p“ =

1
s + a

p′

.
k̃0 = −γkp

′p“ γk > 0

This follows since the pressure output of the controlled combustor can be
rewritten as

p′ = Wcl(s)(s + a)
[
k̃0p

“(t)
]

where Wcl(s) is an underlying closed-loop transfer function such that (s +
a)Wcl(s) can be made SPR. In [53], it was shown that for a combustion system,
for 20% parametric uncertainties, the pressure oscillations decay. For the same
level of uncertainties, controllers with fixed parameters were shown to result
in destabilization.

3.3.2 Adaptive Time-delay Control

The structure of the model, and in particular, the fact that the relative degree
was two was utilized in the above to design a stable adaptive controller. The
same fact was also used in designing an adaptive controller in the presence of
the delay in [14, 54]. In [14], the following adaptive controller was shown to
be stabilizing:
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ω̇1 = Λ0ω1 + �u(t− τ)
ω̇2 = Λ0ω2 + �y(t)

u = θT
1 (t)ω1 + θT

2 (t)ω2 + r(t) + λ
T
(t)u(t) (40)

θ̇(t) = −y(t)ω(t− τ)

where Λ0 is an n × n matrix, (Λ0, �) is controllable, θ = [θT
1 , θT

2 , λ
T
]T , ω =

[ωT
1 , ωT

2 , uT ]T , and ui, the ith element of the vector u(t) is the ith sample
of u(t) in the interval [t − τ, t), i = 1, . . . , p. The above controller can be
guaranteed to stabilize the plant in (37) for any τ , for all initial conditions
in a compact domain, whose size increases as τ approaches zero. Further
extensions to the case when a saturation constraint is present in the control
input have also been carried out [55].

3.3.3 Simulation and Experimental Results

An uncontrolled combustor simulated at an operating condition of Mach num-
ber = 0.08, equivalence ratio = 0.7 and mean temperature of 287.6K, which
corresponds to a 250 kW combustor considered in [56]. A low-order controller
was implemented as in (40). A background noise that is 10% of the mean
pressure was added to test the robustness properties of the controller and a
time-delay of 7.5 ms was included in the plant. The advantage of the time-
delay controller is clearly illustrated in the figure. It was also observed that a
controller that altogether neglects the presence of the delay was ineffective at
this delay value. The same controller was also implemented experimentally in
a Rijke tube, where time-delay was introduced through software. The adaptive
time-delay controller was shown to result in successful pressure suppression
with a 50% variation in the unstable frequency, and a time-delay that is four
times the period of instability [57].

3.3.4 Extremum-seeking Control

In [8], an adaptive version of the phase-shift controller based on an extremum-
seeking approach has been proposed for the control of a single nozzle sector
rig. The idea behind the extremum approach is the following: Suppose the
pressure dynamics is given by

ṗ = −α(θc)(p− g(θc))

and the idea is to determine θ∗c where g( · ) achieves a local minimum. By
choosing θc(t) = θm(t) + a sinωt, and determining algorithms for adjusting
θm on-line, θm can be driven to a locally optimal value [58]. The same idea
can be extended for the pressure dynamics in a general combustor.
In [8], the model in (27) is used as the starting point, which is simplified

using the method of averaging. An Extended Kalman Filter (EKF) is used
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as an observer in order to track the frequency on-line so that variations in
the frequency of the pressure oscillations can be reliably tracked. Using the
resulting model and observer, the extremum seeking controller is used and it
is shown that satisfactory pressure suppression can be achieved over a range
of operating conditions in a full-scale engine.

3.3.5 Observer-based Control

Instead of an EKF, a different nonlinear observer is constructed in [59] where
the sustained pressure oscillations are modeled as a sinusoidal signal whose
parameters including amplitude, frequency, and phase are determined using
the observer. The resulting parameters are then used to design a phase-shift
controller. The following is a summary of the approach in [59]: The combustor
pressure p(t) is modeled as a sum of N sinusoids

p(t) =
N∑

i=1

(Sn sinΩnt + Cn cosΩnt)

For the case when N = 1, dropping the subscripts, the quantities Ω, S, and
C are identified using the equations

Fig. 5. Response of the controlled combustor with a time-delay of 7.5 ms in the
input signal
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˙̂
Ω =

Ω̂2

2πξ

[√
1 +

p(t) − p(t− τ)

π(Ŝ cos(Ω̂t) − Ĉ sin(Ω̂t))
− 1

]
˙̂
S =

Ω̂

π
[F (t) − F (t− τ)] sin(Ω̂(t− τi−1))

˙̂
C =

Ω̂

π
[F (t) − F (t− τ)] cos(Ω̂(t− τi−1))

where τ = 2π/Ω̂, τi = 2π/Ω̂(ti), and the values of Ĉ and Ŝ are reset at ti,
i = 1, . . ., where ti = ti−1 + 2τi, using functions A(t) and B(t) which are
adjusted as

˙̂
A =

Ω̂

π
F (t) sin(Ω̂(t− τi−1))

˙̂
B =

Ω̂

π
F (t) cos(Ω̂(t− τi−1))

While the analytical properties of this algorithm have not been studied at
length, simulation studies show that for a large number of initial conditions,
these estimates indeed converge to their true values. This algorithm has also
been experimentally validated successfully in [7]. Using a fuel injector with a
bandwidth of about 1 kHz [60], a phase-shift control algorithm in conjunction
with the observer described above was implemented in a semi-scale gas turbine
and shown to result in a four-fold reduction in the pressure oscillation level
[7].

3.4 Neural Control

An alternate approach for controlling the combustion given the uncertain
nature of the nonlinearities is to use a nonlinear controller that adapts to
the uncertainties. One such nonlinear controller is based on neural networks
where the latter seeks to identify the requisite nonlinear controller through
training. The idea behind the neural controller is briefly described below.
Suppose the plant to be controlled is given by a vector differential equation

ẋ = f(x) + Bu y = Cx

and the stabilizing controller is given by

u = γ(x)

In general, the stabilizing controller γ( · ) cannot be determined either because
f is unknown or if f has a complex structure that does not satisfy the necessary
involutive conditions [61]. In these cases, a neural controller may stabilize the
system if it is appropriately constructed. One such method can be found in
[62] which is described below: Construct the neural controller as
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u = N(x,W ) (41)

where W are the weights of the neural network to be adjusted, and N is
any neural network that has a universal approximator property [62], includ-
ing multilayered perceptrons and radial basis functions. The weights W are
adjusted as

ΔWj = −ρ
∂J

∂Wj
ρ > 0

such that the cost function J defined below is minimized:

J =
M∑
i=1

ΔV 2
ei

ΔVei
= V̇i − V̇di

(42)

V̇ = 2xTP [f(x) + BN(x,W )] V̇d = −xTQ(x)x

Q(x) = 1 + e−a‖x‖2

P is the solution of the Lyapunov equation of the linearized plant, M is the
number of nodes, and V is the Lyapunov function for the linearized plant.
The choice of J as in (42) is motivated by the following: The combustion

system is strongly unstable at the origin with the degree of instability decreas-
ing as the system approaches the limit-cycle. This is reflected in the choice of
Q(x) which becomes large as x approaches zero.

Simulation Results: Using the nonlinear model as in (22), and acoustics as
in (2), a neural controller as in (41) was simulated, with a = 0.17, in parallel
to an LQG-LTR controller. The resulting pressure responses are shown in
Fig. 6 which shows a 50% improvement in the settling time with the neural
controller compared to the linear controller [26].

4 Summary

In this paper, highlights of the area of modeling of combustion dynamics and
model-based control strategies were presented. Linear models that capture
the instability as well as nonlinear models that characterize limit-cycle be-
havior were described. In the latter case, it was shown that models stemming
from distinct physical mechanisms can all lead to sustained pressure oscilla-
tions. Various model-based control strategies were also described in the paper.
These include linear control methods where the underlying nonlinearities were
ignored, time-delay control methods, adaptive control strategies that accom-
modated time-delays and parametric uncertainties, and neural network based
strategies that suitably compensated for the presence of limit-cycle nonlinear-
ities.
Active combustion control is a very viable and feasible technology, as il-

lustrated by a range of experiments from a 1 kW benchtop rig to a 265 MW
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Fig. 6. Response of the combustor using a neural network-based controller; the
correspnding response using a linear LQG-LTR controller is shown for comparison

industrial rig. Results accruing from model-based control strategies illustrate
that an order of magnitude improvement in the pressure response can be ob-
tained over their empirical counterparts. Buoyed by these results, the time is
quite appropriate to investigate the realization of uniform performance over a
range of equivalence ratios and flow-rates in the presence of variations in fuel,
combustion, boundary conditions, and system parameters.
While better models are being generated for heat-release dynamics, their

interaction with the underlying hydrodynamics remains to be quantified.
Vortex-driven heat-release dynamics is an area where much work remains
to be carried out. Systematic methods for deriving control-oriented models
from detailed computational models of the reactive flow field in a combustor
are needed. Further investigations are also required in synthesizing actuators
with the requisite bandwidth and can sustain hazardous conditions of high
pressure and temperature typically encountered in practice.
Combustion instability suppression is but one objective of combustion con-

trol. Maintaining high premixedness, low NOx levels, complete combustion,
and control of pattern factor are some of the other typical concomitant require-
ments in applications such as gas turbines, afterburners, and ramjet engines.
This requires the judicious use of multiple and distributed actuators that func-
tion synergistically with the combustion dynamics and provides simultaneous
optimization of various objectives in the next generation engines and power
systems.



118 A.M. Annaswamy

Acknowledgements

This work is sponsored in part by the National Science Foundation, contract
no. ECS 9713415, and in part by the Office of Naval Research, contract no.
N00014-99-1-0448.

References

[1] J.W.S. Rayleigh. The Theory of Sound, volume 2. Dover, New York, 1945.
[2] B.T. Chu. “Stability of systems containing a heat source–The Rayleigh crite-

rion”. Technical report, NASA Research Memorandum RN 56D27, 1956.
[3] A.A. Putnam. Combustion Driven Oscillations in Industry. American Elsevier

Pub. Co., NY, 1971.
[4] P.J. Dines. Active control of flame noise. PhD thesis, Cambridge University,

England, 1984.
[5] M.A. Heckl. Active control of the noise from a Rijke tube. In G. Comte-Bellot

and J.E. Flowers Williams, editors, Aero- and Hydro-Acoustics, pages 211–216.
Springer, Berlin Heidelberg, Berlin Heidelberg, 1986.

[6] J. Hermann, A. Orthmann, S. Hoffmann, and P. Berenbrink. Combination of
active instability control and passive measures to prevent combustion instabil-
ities in a 260 mw heavy duty gas turbine. In NATO RTO/AVT Symposium on
Active Control Technology for Enhanced Performance in Land, Air, and Sea
Vehicles, Braunschweig, Germany, May 2000.

[7] S.S. Sattinger, Y. Neumeier, A. Nabi, B.T. Zinn, D.J. Amos, and D.D. Darling.
Sub-scale demonstration of the active feedback control of gas-turbine combus-
tion instabilities. ASME Journal of Engineering for Gas Turbines and Power,
122:262–268, 2000.

[8] A. Banaszuk, Y. Zhang, and C. Jacobson. Active control of combustion in-
stabilities in gas turbine engines for low emissions. Part II: Adaptive con-
trol algorithm development, demonstration, and performance limitations. In
NATO RTO/AVT Symposium on Active Control Technology for Enhanced Per-
formance in Land, Air, and Sea Vehicles, Braunschweig, Germany, May 2000.

[9] A.M. Annaswamy and A.F. Ghoniem. Active combustion control: Theory and
practice. IEEE Control Systems Magazine, 2001 (under review).

[10] F.E.C. Culick. Nonlinear behavior of acoustic waves in combustion chambers.
Acta Astronautica, 3:715–756, 1976.

[11] F.E.C. Culick. “Combustion instabilities in liquid-fueled propulsion systems -
An Overview”. In AGARD Conference Proceedings, paper 1, 450, The 72nd(B)
Propulsion and Energetics Panel Specialists Meeting, 1988.

[12] A.M. Annaswamy, M. Fleifil, J.P. Hathout, and A.F. Ghoniem. Impact of
linear coupling on the design of active controllers for thermoacoustic instability.
Combust. Sci. Tech., 128:131–180, 1997.

[13] A.P. Dowling. “A kinematic model of of a ducted flame”. Journal of Fluid
Mechanics, 394:51–72, 1999.

[14] S. Evesque, A.P. Dowling, and A.M. Annaswamy. Adaptive algorithms for
control of combustion. In NATO RTO/AVT Symposium on Active Control
Technology for Enhanced Performance in Land, Air, and Sea Vehicles, Braun-
schweig, Germany, May 2000.



Nonlinear Modeling and Control of Combustion Dynamics 119

[15] J.P. Hathout, A.M. Annaswamy, and A.F. Ghoniem. Modeling and control of
combustion instability using fuel injection. In NATO RTO/AVT Symposium
on Active Control Technology for Enhanced Performance in Land, Air, and Sea
Vehicles, Braunschweig, Germany, May 2000.

[16] M. Fleifil, A.M. Annaswamy, Z. Ghoniem, and A.F. Ghoniem. Response of a
laminar premixed flame to flow oscillations: A kinematic model and thermoa-
coustic instability result. Combust. Flame, 106:487–510, 1996.

[17] Y.B. Zeldovich, G.I. Barenblatt, V.B. Librovich, and G.M. Makhviladze. The
mathematical theory of combustion and explosions. Consultant Bureaum, New
York, NY, 1985.

[18] M.C. Janus and G.A. Richards. Results of a model for premixed combustion
oscillations. In Proceedings of the 1996 AFRC International Symposium, Bal-
timore, MD, 1996.

[19] T. Lieuwen and B.T. Zinn. “The role of equivalence ratio oscillations in driving
combustion instabilities in low N0x gas turbines”. The Twenty Seventh Inter-
national Symposium on Combustion, pages 1809–1816, 1998.

[20] S. Park, A.M. Annaswamy, and A.F. Ghoniem. Heat release dynamics modeling
of kinetically controlled burning. In 38th AIAA Aerospace Sciences Meeting and
Exhibit, Reno, NV, 2001.

[21] A.A. Peracchio and W. Proscia. Nonlinear heat release/acoustic model for
thermoacoustic instability in lean premixed combustors. In ASME Gas Turbine
and Aerospace Congress, Sweden, 1998.

[22] J.P. Hathout, M. Fleifil, A.M. Annaswamy, and A.F. Ghoniem. Heat-release ac-
tuation for control of mixture-inhomogeneity-driven combustion instability. In
28th International Symposium on Combustion, University of Edinburgh, Scot-
land, July 2000.

[23] M. Fleifil, J.P. Hathout, A.M. Annaswamy, and A.F. Ghoniem. The origin of
secondary peaks with active control of thermoacoustic instability. Combustion,
Science, and Technology, 133:227–265, 1998.

[24] A.M. Annaswamy, M. Fleifil, J. Rumsey, J.P. Hathout, R. Prasanth, and A.F.
Ghoniem. Thermoacoustic instability: Model-based optimal control designs and
experimental validation. IEEE Transactions on Control Systems Technology,
8(6):905–918, November 2000.

[25] S. Murugappan, S. Park, A.M. Annaswamy, A.F. Ghoniem, S. Acharya, and
T. Allgood. Optimal control of a swirl stabilized spray combustor using system
identification approach. In 38th AIAA Aerospace Sciences Meeting and Exhibit,
Reno, NV, 2001.

[26] M. Fleifil, A.M.J.P. Annaswamy, and A.F. Ghoniem. “A physically based non-
linear model of combustion instability and active control”. In Proceedings of
the Conference on Control Applications, Trieste, Italy, August 1998.

[27] J. Rumsey, M. Fleifil, A.M. Annaswamy, J.P. Hathout, and A.F. Ghoniem.
“Low-order nonlinear models of thermoacoustic instabilities and linear model-
based control”. In Proceedings of the Conference on Control Applications,
Trieste, Italy, August 1998.

[28] T. Lieuwen and B.T. Zinn. “Experimental investigation of limit cycle oscilla-
tions in an unstable gas turbine combustor”. In AIAA 2000-0707, 38th AIAA
Aerospace Sciences Meeting, Reno, NV, January 2000.

[29] V. Yang and F.E.C. Culick. “Nonlinear analysis of pressure oscillations in
ramjet engines”. AIAA-86-0001, 1986.



120 A.M. Annaswamy

[30] F.E.C. Culick. “Some recent results for nonlinear acoustics in combustion cham-
bers”. AIAA, 32:146–169, 1994.

[31] G.A. Richards, M.C. Yip, and E.H. Rawlins. Control of flame oscillations with
equivalence ratio modulation. Journal of Propulsion and Power, 15:232–240,
1999.

[32] G. Isella, C. Seywert, F.E.C. Culick, and E.E. Zukoski. A further note on active
control of combustion instabilities based on hysteresis. Short Communication,
Combustion, Science, and Technology, 126:381–388, 1997.

[33] R. Prasanth, A.M. Annaswamy, J.P. Hathout, and A.F. Ghoniem. “When
do open-loop strategies for combustion control work?”. 36th AIAA/ASME/
SAE/ASEE Joint Propulsion Conference, paper no. 2000-3350, 2000.

[34] A.P. Dowling. Nonlinear acoustically-coupled combustion oscillations. 2nd
AIAA/CEAS Aeroacoustics Conference, May 6-8 1996.

[35] P. Shih-I. Fluid Dynamics of Jets. D. Van Nostrand Co., Inc., USA, 1954.
[36] S.B. Park, J.P. Hathout, M. Fleifil, A.M. Annaswamy, and A.F. Ghoniem. Non-

linear flame dynamics and limit cycles in a combustor. Technical report, Adap-
tive Control Laboratory, MIT, Cambridge, MA, April 2001.

[37] G.J. Bloxsidge, A.P. Dowling, N. Hooper, and P.J. Langhorne. “Active control
of reheat buzz.”. AIAA Journal, 26, No. 7, July 1989.

[38] J.E. Tierno and J.C. Doyle. Multimode active stabilization of a Rijke tube. In
DSC-Vol. 38. ASME Winter Annual Meeting, 1992.

[39] R. Prasanth, R.K. Mehra, and A.M. Annaswamy. A system identification model
of the mit laminar combustor and model based control. Technical report, Adap-
tive Control Laboratory, Department of Mechanical Engineering, MIT, Cam-
bridge, MA, 1999.

[40] S. Koshigoe, T. Komatsuzaki, and V. Yang. Adaptive control of combustion
instability with on-line system identification. Journal of Propulsion and Power,
15:383–389, 1999.

[41] B.J. Brunell. “A system identification approach to active control of thermoa-
coustic instabilities”. Master’s thesis, Department of Mechanical Engineering,
M.I.T., Cambridge, MA., 1996.

[42] K. Yu, K.J. Wilson, and K.C. Schadow. Scale-up experiments on liquid-fueled
active combustion control. In 34th AIAA/ASME/SAE/ASEE Joint Propulsion
Conference, pages AIAA 98–3211, Cleveland, OH, 1998.

[43] J. Rumsey, M. Fleifil, A.M. Annaswamy, and A.F. Ghoniem. “Low order non-
linear models for thermoacoustic instability”. In Proceedings of the Conference
on Control Applications, Trieste, Italy, August 1998.

[44] G. Stein and M. Athans. The LQG/LTR procedure for multivariable feedback
control design. IEEE Transactions on Automatic Control, 32:105–114, 1987.

[45] S. Murugappan, S. Acharya, E. Gutmark, and T. Messine. “Active control
of combustion instabilities in spray combustion with swirl”. AIAA-2000-1026,
38th AIAA Aerospace Sciences Meeting, Reno, NV, 2000.

[46] O.J. Smith. “A controller to overcome dead time”. ISA Journal, 6, 1959.
[47] A.Z. Manitius and A.W. Olbrot. Finite spectrum assignement problem for

systems with delays. IEEE Transactions on Automatic Control, AC-24 no. 4,
1979.

[48] K. Ichikawa. Frequency-domain pole assignement and exact model-matching
for delay systems. Int. J. Control, 41:1015–1024, 1985.



Nonlinear Modeling and Control of Combustion Dynamics 121

[49] S.I. Niculescu and A.M. Annaswamy. A simple adaptive controller for positive-
real systems with time-delay. In Proc. American Control Conference, Chicago,
IL, February 2000.

[50] B. Widrow and S.D. Stearns. Adaptive signal processing. Prentice-Hall, Inc.,
Englewood Cliffs, N.J., 1985.

[51] G. Billoud, M.A. Galland, C. Huynh Huu, and S. Candel. Adaptive active
control of combustion instabilities. Combust. Sci. and Tech., 81:257–283, 1992.

[52] A. Kemal and C.T. Bowman. Active adaptive control of combustion. In Proceed-
ings of the IEEE Conference on Control Applications, pages 667–672, Albany,
NY, 1995.

[53] A.M. Annaswamy, O. El-Rifai, M. Fleifil, J.P. Hathout, and A.F. Ghoniem. A
model-based self-tuning controller for thermoacoustic instability. Combustion
Science and Technology, 135:213–240, 1998.

[54] S. Niculescu and A.M. Annaswamy. A simple adaptive controller for positive-
real systems with time-delay. In The American Controller Conference, Chicago,
IL, 2000.

[55] S. Evesque, A.P. Dowling, and A.M. Annaswamy. Adaptive combustion insta-
bility control with saturation. In 37th AIAA/ASME/SAE/ASEE Joint Propul-
sion Conference (to appear), Salt Lake City, Utah, July 2001.

[56] P.J. Langhorne, A.P. Dowling, and N. Hooper. Practical active control system
for combustion oscillations. Journal of Propulsion and Power, 6(3):324–333,
1990.

[57] S. Evesque. Adaptive Control of Combustion Oscillations. PhD thesis, Univer-
sity of Cambridge, Cambridge, UK, November 2000.

[58] M. Krstić. Performance improvement and limitations in extremum seeking
control. Systems and Control Letters, 39:313–326, 2000.

[59] Y. Neumeier, N. Markopoulos, and B.T. Zinn. A procedure for real-time mode
decomposition, observation, and prediction for active control of combustion
instabilities. In Proceedings of the IEEE Conference on Control Applications,
Hartford, CT, 1997.

[60] Y. Neumeier. Investigation of the open loop performance of an active-control
system using a fuel injector actuator. In 32nd AIAA/ASME Joint Propulsion
Conference, Lake Buena Vista, FL, 1996.

[61] A. Isidori. Nonlinear Control Systems: An Introduction. Springer-Verlag, New
York, NY, 1985.

[62] S. Yu and A.M. Annaswamy. Stable neural controllers for nonlinear dynamic
systems. Automatica, 34:669–679, May 1998.



Control of Acoustics

Stephen Elliott

Institute of Sound and Vibration Research, University of Southampton, Highfield,
Southampton SO17 1BJ, UK

Abstract. The active control of sound transmission in a duct is used to illustrate
both the physical principles of control and its practical implementation. The control
of more complicated acoustic fields, such as those inside enclosures, is then described,
with particular reference to the reduction of noise inside aircraft. Finally, the poten-
tial for controlling sound generation at source is discussed, using flow-excited cavity
oscillations as an example.

1 Introduction

Control can potentially be applied either to the generation of an acoustic dis-
turbance, or to its transmission as sound. The control of sound transmission
is considered in the first part of this chapter, starting with the control of plane
acoustic waves in a one-dimensional duct to illustrate the physical principles
of reflection and absorption. The formulation of this problem in terms famil-
iar from automatic control is considered next, in which the availability of a
time-advanced reference signal leads to the use of a feedforward controller.
In practice the system under control is not exactly known and the feedfor-
ward controller is generally made adaptive, in which case the control system
becomes closed-loop with provable stability and performance properties.
Although commercial systems using these principles are available for the

control of low frequency sound in air conditioning systems, for example, recent
research has focused on the active control of multiple modes in short ducts
because of the interest in reducing the inlet noise from turbofan engines while
an aircraft is landing.
The active control of internal noise in propeller aircraft is also an important

application area. The physical principles behind the control of such an enclosed
soundfield is described in the following section, in which it is emphasised how
the modal characteristics of such an enclosure impose a fundamental high-
frequency limit on the use of active control.
Both the control of sound in ducts and in enclosures are generally lin-

ear problems for the applications described above. Sound is often generated
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CONTROL OF SOUND

Control of Radiation:

Sound transmission:
    generally linear

Control at Source:

Sound generation:
  often nonlinear

Fig. 1. Structure of the chapter

by a nonlinear process, however, and the active control of sound at source
must take this nonlinearity into account. The technology for such a control
approach is far less developed, but because of the extreme sensitivity of many
nonlinear processes to small perturbations, it does hold the promise in the
long term of being able to suppress powerful sources of sound with modest
control actuators. Potential applications in controlling the flow-induced sound
in cavities and in the control of suppressor surge are very briefly discussed.
The distinction between the control of sound transmission, or radiation, and
sound generation, i.e. control at source, is indicated in Fig. 1.

2 Control of Plane Waves in Ducts

At frequencies below the cut-on frequency, only plane sound waves can prop-
agate in a duct, and the sound transmission problem becomes essentially one-
dimensional. Provided the acoustic pressure p(x, t) is always much less than
the ambient pressure, then away from any sources it obeys the one-dimensional
homogeneous wave equation.

∂2p(x, t)
∂x2

=
1
c 2
o

∂2p(x, t)
∂t2

, (1)

where co is the speed of sound. The waveform of a sinusoidal acoustic wave of
frequency ω can be represented as the real part of the complex pressure

p(x) = p+ e−jkx + p− e+jkx , (2)

where k = w/co is the wavenumber, and p+ and p− are the complex ampli-
tudes of the waves travelling in the positive and negative x directions, i.e.
downstream and upstream.
If an incident downstream wave of amplitude A is present in the duct,

together with a secondary monopole acoustic source at x = 0, which generates
upstream and downstream waves of amplitude B, then the total complex
pressure is

p(x) = A e−jkx + B e−jkx for x > 0 (3)

and
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Fig. 2. The distribution of pressure amplitude in a duct carrying an incident plane
wave in the positive x direction alone (dotted line) and when the sound transmission
is actively controlled by a single secondary source, which reflects the incident wave,
(a), and by a pair of secondary sources, which absorb the incident wave, (b)

p(x) = A e−jkx + B e+jkx for x < 0 . (4)

The amplitude and phase of the secondary source can be adjusted so that
the total pressure everywhere downstream in the duct is zero, as originally
suggested by Lueg (1936) [1], in which case B = −A and so

p(x) = 0 for x < 0 , (5)

in which case

p(x) = −2jA sin kx x < 0 . (6)

The single secondary source has effectively created a pressure-release con-
dition at x = 0, which reflects the incident acoustic wave back down the duct
and generates perfect cancellation on one side and a standing wave on the
other. Figure 2(a) illustrates the distribution of the pressure amplitude in
this case.
If two controllable monopole sources are used as secondary sources in the

duct then not only can the incident wave be cancelled in the downstream
direction, but the reflected wave in the upstream direction can be suppressed
(Swinbank, 1973) [2], in which case the secondary source array absorbs the en-
ergy of the incident soundwave, and the distribution of the pressure amplitude
is as shown in Fig. 2(b).

3 Controller Design and Implementation

In practice the waveform of the incident soundwave must be measured by a
microphone acting as a reference sensor. The residual pressure may be mea-
sured by another microphone acting as an error sensor, as shown in Fig. 3(a).
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The system under control, as shown in Fig. 3(b), now has two inputs, one
generating the incident wave, which is exogeneous, and the other driving the
secondary actuator, which is the control input, and two outputs, one from the
reference sensor, the sensed output, and one from the error sensor, the regu-
lated output (Clark, et al., 1998) [3]. The individual transfer functions which
can be measured are denoted Ge and Gs and those from the unobservable
exogenous input are denoted Pe and Ps.
Assuming that the electronic controller contains an internal model of the

electroacoustic feedback path from the secondary actuator to the reference
sensor, which is used to cancel the effects of Gs in Fig. 3(b), the block diagram
can be written in the simplified feedforward form shown in Fig. 3(c).
Knowing the plant response, Ge(z), and the spectral properties of e(n)

and d(n), the transfer function of the feedforward controller which minimises
the mean-square value of the error can be calculated using Weiner filtering
theory, even when measurement noise is present in the output of the reference
sensor, which degrades the performance (Roure, 1985) [4]. In practice the
plant response and the spectral properties of e(n) and d(n) will change with
time and an adaptive algorithm is generally used to maintain good control
performance. This adaptation ensures that the control system is “closed loop",
and the algorithms can be analysed to give clear conditions for robustness and
performance [6].

4 Control of Higher-order Modes in Ducts

At higher excitation frequencies, when the acoustic wavelength is no longer
small compared with the dimensions of the duct cross section, higher order
modes can propagate in the duct. The number of higher order modes which
can propagate increases with frequency, as illustrated for a circular duct in
Fig. 4, and eventually is proportional to the square of the excitation. In general
it would require N secondary sources to control N modes in the duct, provided
the secondary sources could independently excite each of these modes.
Several authors have considered the active control of higher order modes

in ducts, e.g. Fedorynk (1975) [7], Zander and Hansen (1992) [8]. There is
currently an increasing interest in the control of tonal noise propagating as
higher order modes because of the potential application in controlling the fan
tones radiated from the inlet of aircraft engines, particularly as the aircraft is
coming in to land (see, for example, Burdisso et al., 1993) [9]. Unfortunately, at
the frequencies of these tones there may be 120 higher-order modes which can
propagate in the short inlet duct of an aircraft engine (Nelson, 2000) [11], and a
control system to control all of these modes would be very complicated. Joseph
et al. (1996) [10] have shown, however, that only a much smaller number of
modes need be actively controlled if only the sound radiated in particular
directions, such as on the ground, needs to be reduced. Nelson (2000) [11]
also suggests a way in which it may be possible to control these fan tones
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Fig. 4. The number of higher-order modes which can propagate in a circular duct
as a function of excitation frequency, f , normalised to the cut-on frequency of the
first higher-order mode, f1

by actively distorting the inlet flow conditions and thus interfering with the
sound generation mechanism.

5 Control of Sound in Enclosures

In most practical applications sound propagation is three-dimensional and
the simple control mechanisms of reflection and absorption seen in the one-
dimensional duct are complicated by geometric considerations. In this section
we consider the further complication of having the soundfield enclosed by a
hard boundary. An important application area for active control is the reduc-
tion of noise in vehicles, particularly aircraft. In order to keep the formulation
simple we will assume that the soundfield is tonal and continue to use the
complex pressure at a single frequency, ω, which may now be described in
modal form as

p(x, ω) =
∞∑

n=0

an(ω)Ψn(x) , (7)

where x is the position vector, an(ω) is the amplitude of the n-th acoustic
mode and Ψn(x) is its mode shape.
Although in principle an infinite number of modes must be used to describe

the sound in the enclosure, because it is a distributed parameter system, the
soundfield can always be approximated to arbitrary accuracy with a finite
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modal series. In the low frequency range, where active control is most effec-
tive, the modal description is a very efficient representation of the soundfield.
Conventional passive noise control techniques also do not work very well in
this low frequency region, unless very massive barriers or bulky absorbers are
used, and so active control conveniently complements the effect of passive
noise control techniques and can provide significant weight and space savings
at low frequencies.
Two active control problems will be briefly considered: global control and

local control. The objective of a global control system is to reduce the sound
throughout the enclosure by adjusting the amplitudes and phases of a number
of secondary sources, which are typically loudspeakers. The fundamental limits
of such a strategy can be assessed by calculating the reductions which are
possible in the total acoustic potential energy in the enclosure, which may be
written as

Ep(ω) =
1

4ρoc 2
o

∫
v

|p(x, ω)|2 dV . (8)

Assuming that the mode shapes are orthonormal, Ep(ω) is equal to the
sum of the modulus squared mode amplitudes (Nelson and Elliott, 1992) [12].
Since the secondary sources linearly couple into each mode amplitudes, Ep(ω)
is a quadratic function of the complex secondary source strengths, which has
a unique global minimum. This minimum value of Ep(ω) provides a measure
of the best performance that can be obtained in a global control system for
a given distribution of secondary sources and a given excitation frequency.
Figure 5(b), for example, shows the result of such a calculation for the levels
of Ep(ω) in a computer model of an enclosure of dimensions 1.9× 1.1× 1.0m
as shown in Fig. 5(a), which are approximately the conditions inside a small
car (Elliott, 2001) [5]. The solid line in Fig. 5(b) shows the energy due to a
primary monopole source in one corner of the enclosure, the dashed line the
energy after it has been minimised using a single secondary monopole source
in the opposite corner adjusted and the dot-dashed line after minimisation
using 7 secondary sources placed at all the corners of the enclosure away from
the primary. The first longitudinal resonance, at about 80Hz, is significantly
attenuated by the action of a single secondary source, but almost no reduction
is achieved in the energy at about 160Hz close to which three acoustic modes
have their natural frequencies. This is to be expected, since in general a single
source can only control a single mode,but even with 7 secondary sources a
reduction in energy of only about 5dB is achieved at this excitation frequency
and this reduction becomes less than 1dB at about 250Hz.
The number of significantly excited modes can be estimated from the

modal overlap, which is the average number of modes with natural frequencies
within the half power bandwidth of a single mode, and the value of the modal
overlap is plotted in Fig. 6 for an enclosure of the size used in the simulations
for Fig. 5. The modal overlap rises above 7 at about 250Hz, as expected, but
at higher frequencies the modal overlap rises as the cube of the excitation
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Fig. 5. The total acoustic potential energy in the enclosure as a function of excita-
tion frequency, when driven by the primary source alone, solid line, when the energy
is minimised using a single secondary source (dashed line) and when the energy is
minimised using 7 secondary sources (dot-dashed line)

frequency. This feature provides a very clear upper frequency limit to global
control with a reasonable number of secondary sources.
An alternative strategy to global control would be to only control the sound

at specific locations in an enclosure, such as close to the ears of passengers
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Fig. 6. The acoustic modal overlap for the enclosure shown in Fig. 5
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Fig. 7. The zone of quiet, within which the diffuse primary field is attenuated by
more than 10dB for a local control system in which a monopole acoustic source at
the origin is arranged to cancel the pressure at x = L for two different excitation
frequencies

in a vehicle. Such a local control strategy was originally suggested by Olson
and May (1953) [13] who describe an active headrest using a feedback con-
trol system from a microphone to a closely-spaced loudspeaker acting as the
secondary source. The acoustic performance of such a system depends on the
detailed geometric arrangement of the headset and the position of the passen-
ger’s head, but some physical insight can be gained by considering simplified
models. Figure 7, for example, shows a cross-section through the zone of quiet,
within which the sound has been attenuated by at lest 10dB, generated when
a diffuse primary soundfield is cancelled by an acoustic monopole at the origin
(Garcia-Bonito and Elliott, 1996) [14] at the point x = L. The two graphs
correspond to an excitation frequency for which L is much smaller than the
acoustic wavelength, in which case a “shell” of quiet is generated around the
secondary source, and to an excitation frequency for which L is of the order
of the acoustic wavelength, in which case the zone of quiet is spherical with
a diameter which is about one tenth of an acoustic wavelength (Elliott et al.,
1988) [15].

6 Control of Sound at Source

In this section we briefly consider the control of sound generated aerodynam-
ically. Many sources of sound are not aerodynamic but mechanical and the
control of a structure’s vibration to reduce sound radiation or active structural
acoustic control (ASAC) can then be employed (Fuller et al., 1996) [15], but
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Fig. 8. Simplified block diagram of the feedback control of a flow-excited cavity,
after Sunyach and Ffowcs Williams (1986)

the problem remains fundamentally linear. Aerodynamic sound sources are
generally nonlinear, but in their simplest form they often start off as single-
frequency oscillations, governed by a linear but unstable system of equations,
and then grow into limit-cycle oscillations, which are governed by a nonlinear
system of equations. An example of such a sound source is the flow-excited
cavity illustrated in Fig. 8, in which a simple linear feedback controller has
been assumed with a loudspeaker and microphone inside the cavity, as sug-
gested by Sunyach and Ffowcs Williams (1986) [22] for example.
If the control system can stabilise the flow-induced pressure oscillations

in the cavity while the amplitude of these oscillations are small, the system
behaves almost linearly and a linear analysis can be used to illustrate the
mechanism of control.
Assuming linear superposition and working in the frequency domain the

governing equations for small amplitude oscillations in the cavity can be
written in a form similar to that of Sunyach and Ffowcs Williams. The com-
plex external pressure, pe, can be written as

pe = pd − Zrq , (9)

where pd is a disturbance, Zr is the radiation impedance looking out of the
cavity and q is the complex volume velocity of the flow into the cavity. The
volume velocity drawn from the cavity by the loudspeaker and the feedback
loop can be expressed as

qs = Yfpi , (10)

where Yf is the response of the feedback controller and pi is the pressure inside
the cavity, which is assumed to be uniform and is given by
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pi = Zc(q − qs) , (11)

where Zc is the impedance of the cavity.
The pressure difference on either side of the cavity neck is finally assumed

to be related to the volume velocity flowing through the neck by a complex
frequency dependent impedance Zn, so that

pe − pi = Znq. (12)

Combining together these equations, the ratio of the internal pressure to
the pressure disturbance can be written as

pi

pd
=

Zc

Zc + (Zn + Zr)(1 + ZcYf )
. (13)

The combined effect of the acoustic neck impedance and the acoustic ra-
diation impedance can be written as

Zn + Zr = R + jωL (14)

where L is the total acoustic inertance and R is the total acoustic resistance.
Sunyach and Ffowcs Williams discuss the fact that these quantities depend on
the flow velocity over the neck and that the resistance R can become negative
under certain flow conditions. Assuming also that Zc = 1/jωC where C is the
acoustic compliance of the cavity, then

pi

pd
=

1
1 + (R + jωL)(Yf + jωC)

. (15)

In the absence of feedback control, Yf = 0, the cavity thus responds to
a disturbance like a second order resonator and if the flow conditions are
such that R is negative, the pressure oscillations at the natural frequency,
ωo =

√
1/LC, will build up until limited by nonlinear effects not accounted

for in the above analysis.
There are, however, a number of strategies which could be used in the feed-

back system to control this instability and thus not allow the pressure oscilla-
tions to build up to begin with. If Yf = −jωC, for example, the loudspeaker
motion would counteract the cavities compliance, in which case pi = pd so
that the system is stabilised. Alternatively, if Ya had a positive real compo-
nent which is greater than −RC/L then the feedback loop would add sufficient
damping to the cavity to suppress the oscillation. It is clear that the feedback
controller can stabilise the system in a variety of ways and it is interesting
to note that when an adaptive feedback controller was investigated for this
problem by Billout et al. (1991) [17] they found that the error surface had
multiple minima.
A practical application of such an adaptive feedback system for the control

of sun roof flow oscillations in a car has been described by Stothers et al. (1993)
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sensor

Phase shifter Amplifier

Plenum

Fig. 9. Physical arrangement of an experimental compressor system in which surge
was controlled using a feedback controller (after Hunang, 1987)

[18], in which a flow induced oscillation at 25Hz was reduced by about 30dB.
Although the loudspeaker drive voltage only needs to be small to suppress
this oscillation provided the feedback system was working continuously as the
car’s speed increased, if control was lost for any reason the loudspeaker had
to drive very hard for a few seconds to regain control.
A similar control system has been used by Hunang (1987) to control surge

in a model compressor as shown in Fig. 9. Figure 10 shows the waveforms of
the pressure and drive signal in this experiment, which have a similar form to
those experienced in the control of sun roof oscillations described above, and
the acoustic feedback control of flutter and the thermo-acoustic oscillation of
a Rijka tube as reviewed, for example, by Ffowcs Williams (1996) [19] and
Peak and Crighton (2000) [20].
The initial oscillations in the cavity and compressor described above can be

described by simple second-order equations. It is tempting to speculate about
the possibility of actively controlling much more complicated fluid phenomena
which also generate noise, such as turbulence (Ffowcs Williams, 1996). There
are many fundamental and practical problems in controlling such systems,
partly because the order of the governing equations is large and the flow is
three-dimensional, but some interesting work is being carried out in this field
(Gad-el-Mak, 1998) [21].
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Fig. 10. Waveforms of the plenum pressure in the compressor and the signal to
the control loudspeaker measured in the experimental control of surge by Hunang
(1987)

7 Conclusions

The active control of low frequency sound propagating linearly in ducts and
enclosures has been demonstrated by a number of authors. The physical mech-
anisms of control can be readily demonstrated in a one-dimensional duct in
which a single secondary source can be used to reflect the sound wave and a
pair of sources can be used to absorb it. Clear physical limitations exist on the
upper frequency at which such control systems work, however, when limited
to a reasonable number of control channels. nevertheless control systems with
typically 40 actuators and 70 sensors are commercially fitted to control the
low-frequency propeller noise inside aircraft (Ross and Purver, 1997) [23].
In many applications time-advanced information about the disturbance

to be cancelled is available from an external reference signal, and so feedfor-
ward controllers are commonly used in active control. In order to maintain
good performance in the face of non-stationary disturbances, practical control
systems are almost always made adaptive and are thus closed loop.
In contrast to sound transmission, sound generation by aerodynamic

sources is often a nonlinear phenomena, although the initial amplification
of small disturbances can be approximated by linear models. The control
of flow-induced pressure oscillations in cavities and surge in compressors is
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briefly discussed to illustrate how it may be possible for such systems to be
suppressed at source. It is very difficult to extrapolate from these simple lab-
oratory systems to many real aeroacoustic sources, but this does constitute a
continuing area of research.
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Abstract. Over the recent years, mostly under the impetus of the late JL Lions,
important progress have been made for the control of distributed systems. This
has contributed to the understanding of the duality which exist between the modal
analysis and the need of very localized actuators. This duality leads to the phenom-
ena of overspilling (excitation of higher order modes). On the other hand this type
of research is closely related to the analysis of the exterior problem for the acoustic
equation which was, under the influence of P. Lax, one of the main stimulus for the
development of microlocal analysis. In this contribution only the acoustic equation
is studied. However most of the idea carry on to other linear equations and to some
non linear equations when considered in a perturbative regime where linearization
techniques can be used; this includes perturbations of given solution of the Navier
Stokes equation following the work of Imanuvilov and Fursikov (cf [12]) for a recent
reference. Same ideas are used also in identification problems for instance in the
migration method for oil recovery.

1 Introduction

In the classical theory of control for dynamical systems one considers the issues
of controllability, observability, attainability and stabilization. The program of
J.L. Lions was to systematically extrapolate these questions to partial differen-
tial equations. Now it turns out that, with the high frequency approximation,
hyperbolic problems are the one that share the most common features with or-
dinary differential equation. Furthermore they have genuine application that
stimulate theoretical progress.
One of these motivations was the control of the vibrations of large scale

structures, like satellites antennas and the collaboration with mathematicians
goes back also, to the best of my knowledge to a workshop organized with
the NASA in Blacksburg 1984 where model problems were defined to help the
understanding of the phenomena.
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And more recently it was observed that the devices of time reversal, de-
veloped in the “Laboratoire Ondes et Acoustique” at the “Ecole de Physique
Chimie de Paris” by Mathias Funk and his coworkers is the most perfect illus-
tration of the the method presented in this note which focuses on the acoustic
equation.

2 The Acoustic Equation

In an homogenous media Maxwell equations, linearized version of elasticity
equations, and many others can be reduced to the equation

(∂2
t −Δx)u = 0 . (1)

However there are several good reasons to consider in some cases a slightly
more general form:

∂2
t u− 1√

detg(x)
∇x(A(x)

√
detg(x)∇xu) = 0 (2)

where Δx is replaced by the operator

u �→ Δgu =
1√

detg(x)
∇x(A(x)

√
detg(x)∇xu) . (3)

In (2) and (3) A(x) = (aij(x)) is a real n × n strictly positive symmetric
matrix with smooth variable coefficients, g(x) = A−1(x) defines a riemannian
metric with a volume element

dv(x) =
√
detg(x)dx . (4)

In fact several practical problems involve media which are no more homo-
geneous and therefore the use of space dependent coefficients and equation of
the type (2) becomes compulsory. Furthermore details proofs, which may be
omitted in the present contribution, require change of space variables which
do transform the (1) into the (2).
We consider problems in a bounded domain Ω with boundary ∂Ω and

exterior normal denoted by
→
n(x) Standard such conditions are the Dirichlet

boundary condition or the Neuman boundary condition:

u(x, t) = g(x, t) on ∂Ω (5)

or
∂u

∂n
= h(x, t) on ∂Ω . (6)

The term homogenous is used to characterize situations where g or h are
identically zero.
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Finally to stabilize vibrating structures one may introduce devices (for
instance piezo electric transducers in acoustic) which absorb energy (cf. (10)
below) and which are described by an impedance boundary condition on a
subdomain Γi of ∂Ω

∂tu + Z(x)
∂u

∂n
= 0 on Γi with Z(x) ≥ 0 . (7)

The energy of the wave at time t is the sum of its kinetic and potential energy
according to the formula:

E(t) =
1
2

∫
{|∂tu|2 + |∇xu|2}dx . (8)

Multiplying the (1) by ∂tu and integrating by part over Ω one obtains the
relation:

dE(t)
dt

−
∫

∂Ω

∂u

∂n
∂tudσx = 0 (9)

which shows that for the condition (5) and (6) the energy is an invariant of
the motion and that for the condition (7) it decays according to the formula:

dE(t)
dt

+
∫

∂Ω

Z(x)
∣∣∣∣∂u∂n

∣∣∣∣2 ∂tudσx = 0 . (10)

It is convenient to introduce the unbounded operator A acting on the pair
U = (u(x, t), v(x, t)) = (u(x, t), ∂tu(x, t)) according to the formula

AU

(
v
Δxu

)
=
(

0, I
Δx, 0

)
U

(11)

with a convenient definition of its domain D(A) which takes in account the
boundary condition. With this notation the wave equation is equivalent to the
equation

∂tU = AU . (12)

The following very classical facts are consequence of functional analysis.

Theorem 1. 1. With homogenous Dirichlet or Neuman boundary condition
the operator A is the generator of a group in the energy space

{H1(Ω), u = 0 on ΓD} × L2(Ω) .

with ΓD denoting the part of the boundary where the homogenous Dirichlet
boundary condition is assumed.

The solution of the homogenous Dirichlet or Neuman problem

(∂2
t −Δx)u = 0u(x, 0) ≡ 0, ∂tu(x, 0) = f(x) . (13)
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can be expressed in term of the eigenfrequencies ωk and eigenmodes φk of the
operator according to the formula:

u(x, t) =
∑

1≤k<∞

sin(ωkt)(f, φk)
ωk

φk (14)

2. Assume that the boundary ∂Ω is the union of three parts ΓD, ΓN and
ΓI then the operator A defined with homogenous Dirichlet boundary data on
ΓD, homogenous Neumann boundary data on ΓN and impedance boundary
condition on ΓI is the generator is the generator of a contraction semi group
in the space {u ∈ H1(Ω), u = 0 on ΓD} × L2(Ω). Furthermore if ΓI is of
positive measure in ∂Ω with Z(x) > 0 ∀x ∈ ΓI then semi group etA converge
strongly to zero with t → ∞. Ie for any initial data U one has

lim
t→∞ etAU = 0 . (15)

The above statements are very classical but deserves the following com-
ments.
1. The fact that the evolution of the solution is described by a group of

operator is the functional analysis transcription of the conservation of the
total energy (kinetic and potential)

∂

dt

1
2

∫
Ω

{|∂tu|2 + |∇xu|2}dx = 0 .

Observe that for solutions of the Homogenous Dirichlet problem (and for T
given ) the following norms are equivalent

1
2

∫
Ω

{|∂tu(x, 0)|2 + |∇xu(x, 0)|2}dx,
∫

]0,T [×Ω

|∇xu(x, 0)|2dxdt

and
∫

]0,T [×Ω

|∂tu(x, 0)|2dxdt .

2. The formula (14) seems very appealing but its main drawback is the
fact that in general the eigenfrequencies and eigenmodes are among the main
unknowns of the problem. Furthermore each eigenvector is a solution of an
elliptic equation:

−Δφk = ω2
kφk (16)

and therefore cannot be localized (ie they cannot vanish on a set of positive
measure).
3. The proofs of (15) follows (by a contradiction argument) from the fact

that in the corresponding situations there exist no finite energy stationary
solution of the problem. No information is given on the nature of the decay
to zero.
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However one could use the two followings facts. The domain of any power
As (0 ≤ s) is conserved by the evolution and for 0 < s this domain is com-
pactly injected in the space of solutions of finite energy. Therefore the Banach
Steinhaus theorem implies the existence of function f(t, s) with

for s > 0 lim
t→∞ f(t, s) = 0

such that one can supplement the relation (15) by the estimate.

1
2

∫
Ω

{|∂tu(x, t)|2 + |∇xu(x, t)|2}dx ≤ f(t, s)||(u(., 0), ∂tu(., 0)||D(As) . (17)

Observe that such statement contains no information on the rate of decay of
the function f(t, s)
The nature of the decay in the above problem can be explained in term

of fronts and rays and it turns out that it is closely related to the question of
observability which will by duality leads to the question of controllability. As a
consequence further developments need some comments about the “sympletic
geometry” related to the domain.

2.1 The Compressed Broken Hamiltonian Flow

2.1.1 The Hamiltonian Flow Inside Ω

To emphasize the effect of the inhomogeneities in the structure of the underling
Hamiltonian flow in the following sections one considers the equation

∂2
t u− 1√

detg(x)
∇x(A(x)

√
detg(x)∇xu) = 0 (18)

Its principal symbol is the Hamiltonian

H(x, t, ξ, τ) =
1
2
{(A(x)ξ, ξ) − |τ |2} (19)

whose integral curves γ(s) = (x(s), t(s), ξ(s), τ(s) are the solutions of the
differential system:

dx

ds
= ∂ξH = A(x)ξ,

dt

ds
= ∂τH = −τ (20)

dξ

ds
= −∂xH = −1

2
∇x〈A(x)ξ, ξ〉 dτ

ds
= 0 (21)

Since both H(x(s), t(s), ξ(s), τ(s)) and τ(s) (with the second equation of (21))
are invariants, the action of the flow can be reduced to the intersection of the
wave cone with the spherical bundle ie
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C = {(x, ξ, t, τ)\(A(x)ξ, ξ) − |τ |2 = 0, |τ | = 1} or (A(x)ξ, ξ) = |τ |2 = 1
(22)

and the mapping γ(0) �→ γ(s) defines a foliation of C .
Denote by π the projection of these curves on Rn

x ×Rt or ( with the same
notation) on Rn

x :
π(γ(s)) = (x(s), t(s)) (23)

and observe that the Hamiltonian 1
2 (A(x)ξ, ξ) is the Legendre transform of

the Lagrangian:

L(x, ẋ) =
1
2
(g(x)ẋ, ẋ) with g(x) = A−1(x) . (24)

As a consequence the projection x(s) = πγ(s) of the bicharacteristics are the
geodesics ie the curves which make stationary the distance, or the energy,
between two points for the riemannian metric defined by g(x) (with volume
element given by (4)) ie the quantities∫ T

0

√
〈g(x)ẋ, ẋ〉 dt and

∫ T

0

1
2
〈g(x)ẋ, ẋ〉 dt . (25)

2.1.2 Interaction with the Boundary

Most of the information is carried by rays which propagate inside the domain,
reflect on the boundary or are confined on this boundary. This set is called
the compressed broken hamiltonian flow and can be defined as follow.
Starts with broken rays bicharacteristic γ(s) ∈ Ω which for 0 ≤ s < s∗

satisfy the relation x(s) ∈ Ω and which for s = s∗ intersect the boundary
transversally:

〈ẋ(s∗),
→
n〉 = 〈A(s∗)ξ(s∗),

→
n)〉 > 0 (26)

with
→
n denoting the normalized ((A(x)

→
n,
→
n) = 1) outward normal to ∂Ω. The

reflected ray starts from the same point x at time t(s∗), with initial speed ẋout:

ẋout = ẋ(s∗) − 2〈ẋ(s∗) ·→n〉A(x)
→
n (27)

With the equation ẋ = A(x)ξ the reflection mapping:

(x(s∗), t(s∗), ẋ(s∗), ṫ(s∗)) �→ (x(s∗), t(s∗), ẋout(s∗), ṫ(s∗)) (28)

defined on the tangent space is equivalent to the mapping

(x(s∗), t(s∗), ξ(s∗), τ(s∗)) �→ (x(s∗), t(s∗), ξout(s∗), τ(s∗)) (29)

defined on the cotangent space with

ξout = ξ(s∗) − 2〈A(x(s∗))ξ(s∗) ·→n〉→n . (30)

By iteration this construction defines the broken flows s �→ γ(s) .
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Then one introduce on the spherical bundle Ω the equivalence relation R
defined, (for points (x, ξ, t, τ) ∈ Ω with x ∈ ∂Ω) by (30). This equivalence
relation turns any broken flow into a C0 map from R with value in Ω/R.
The compressed broken hamiltonian flow is defined by taking the C0 clo-

sure of broken rays. It is contained in the unions of broken rays, grazing
rays, and creeping rays and in non pathologic cases (contact of infinite order
cf. Hormander [11]) example 24.3.11 page 438 volume III) it coincides with
the union of such rays. In the sequel this is assumed under the hypothesis
of simple contacts. In fact the details of this construction are involved and
besides definitions requires technical proofs which are out of the scope of this
presentation.
With the relations

dt

ds
= −τ

dτ

ds
= 0 (31)

in some cases it is convenient and adapted to the intuition to parametrized
the ray (bicharacteristic) with the variable t

(x(s), t(s), ξ(s)τ(s)) = (x(t), t, ξ(t), τ) . (32)

Finally with the above construction one can define the geodesic distance
between two points (x, y) ∈ Ω ×Ω according to the formulas

d(x, y) = inf
∫ 1

0

|ẋ(s)|ds for x(s) ∈ C1(Ω), x(0) = x, x(1) = y (33)

and the distance between a subset Γ and the open set Ω by the formula:

d(Γ,Ω) = sup
y∈Ω

(
inf
x∈Γ

d(x, y)
)

(34)

3 Control and Observation

The model control problem goes as follow: With the standard theorems on
the mixt Cauchy problem:

∂2
t ug −Δug = 0 in Ω×]0, T [, ug(x, 0) = ∂tug(x, 0) = 0 (35)

ug(x, t) = g(x, t) sur ∂Ω×]0, T [, supp g ⊂ Γ×]0, T [ (36)

defines a mapping
g �→ C(g) = (ug(., T ), ∂tu(., T )) (37)

from L2(Γ×]0, T [) with value in L2(Ω) ×H−1(Ω).
Address the following questions:
1 Is the set Γ×]0, T [ large enough to ensure that the mapping g �→ C(g)

is of dense range in this case In this case the term approximate controllability
is used.
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2. Is the set Γ×]0, T [ large enough to ensure that the mapping g �→ C(g)
is onto in this case one would say that exact controllability holds. By linearity
the exact controllability is in the present case equivalent to the so called nul
controllability:

2′. Is the set Γ×]0, T [ large enough to ensure for any (u0(., 0) , u1(., 0)) ∈
L2(Ω) × H−1(Ω) the existence of a function g ∈ L2(Γ×]0, T [) which brings
to rest the solution after the time T ie such, that for the problem

∂2
t ug −Δug = 0 in Ω×]0, T [, ug(x.0) = u0(x) , ∂tug(x, 0) = u1(x) ,(38)

ug(x, t) = g(x, t) on ∂Ω×]0, T [, supp g ⊂ Γ×]0, T [ (39)

one has:
ug(x, T ) = ∂tug(x, T ) = 0 on Ω . (40)

By a simple duality argument (using the fact that the problem is linear
and time reversible) Lions has shown under the name of HUM method that
the problem 1 and 2 (concerning the size Γ×]0, T [ where equivalent to the
following observation and stable observation property.

Observation Observation from Γ×]0, T [ is possible if this set is large
enough to ensure the following property: For any solution of

∂2
t u−∇(A(x)∇u) = 0 in Ω×]0, T [, u(x, t) = 0 on ∂Ω×]0, T [ (41)

one has the implication:

∂→
n
u = 0 on Γ×]0, T [⇒ u ≡ 0 . (42)

Stable observation The observation is stable if there exits a constant
C < ∞ such that for any solution of (41) one has:

E(u) ≤ C

∫ T

0

∫
Γ

|∂nu|2dσdt . (43)

It is clear, and will become even more obvious with geometric consid-
erations that the statement (43) is much stronger than the statement (42).
Furthermore a simple argument [4] shows that if there exists a time T which
makes Γi×]0, T [ large enough to ensure, for the homogenous Dirichlet problem
the estimate

E(u) ≤ C

∫ T

0

∫
Γi

|∂nu|2dσdt (44)

then the decay in the stabilization formula (17) is uniform and more precisely
one has∫

Ω

{|∂tu(x, t)|2 + |∇xu(x, t)|2}dx ≤ Ce−2βt

∫
Ω

{|∂tu(x, 0)|2 + |∇xu(x, 0)|2}dx .

(45)
To motivate the precise statements which will be given in the next section

one can make the following
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Remark 1. It is known since Huyghens that the solution of the wave equation
propagate with finite speed therefore to observe any signal which propagates
in Ω one has to wait long enough to ensure that any signal generated in Ω
at time t = 0 will reach Γ before the time T . This implies, as a necessary
condition, for the observation, the relation (with the geodesic distance) :

T > 2d(Γ,Ω) = 2 sup
y∈Ω

(
inf
x∈Γ

d(x, y)
)
. (46)

To identify all the details of the phenomena with an arbitrary large preci-
sion one has to consider its high frequency components which propagate like
rays therefore one has to “catch” all the rays.
At variance if the signal is “hidden” due, for instance, to the geometry

of the domain then only the diffracted part or the front will be observed. In
this situation the information will not be meaningful for wave with highly
oscillatory components.
Finally if the set Γ×]0, T [ is large enough to ensure the observation, with

the Banach Steinhaus theorem one can show (cf (17)) the existence of a func-
tion fs(α, β) with the following properties: For all solution u of (41) one has:

∀s > 0||u||L2(ω×]0,T [) ≤ fs

×
(∫ T

0

∫
Γ

|∂nu|2dσdt, ||u||Hs(ω×]0,T [)

)
, lim
α→0

fs(α, β) = 0 . (47)

Remark 2. The relation (47) can be interpreted as the analysis of a feed back
process. The action is ∂→

n
u. It is computed in term of the observation ∂tu

through the impedance relation:

∂nou = − 1
Z(x)

∂tu

and (feedback) claims that in all cases the feed back has some efficiency if the
initial wave does not oscillate to much.

4 Observation Estimates

4.1 Unstable Observations Estimates

In fact it was observed by Holmgren in 1901 [10] that for analytic coefficients
the condition (46) is also sufficient for the observation. Such a result was
improved by John [13] (he obtained some type of estimates concerning the
conditional stability) and finally Lebeau [15] using the method of Leray [17]
obtained the following estimate.
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||u||2L2 ≤ CE(u)⎡⎢⎢⎣log+

⎛⎜⎜⎝ E(u)∫
Γ×]0,T [

|u(σ, t)|2dσdt

⎞⎟⎟⎠
⎤⎥⎥⎦

2 . (48)

Proofs rely on sharp a priori estimates for the solution of the Cauchy
Kowalewsy problem and duality methods.

Remark 3. 1) With the existence of gaussian beams concentrated, as this will
be evoked in the next section, up to an exponentially small error term (when
the matrix A(x) is analytic) near a ray which does not meet the region
Γ×]0, T [ the above result is in a certain sense optimal.
2) (48) can be view as a low frequency estimate because it has a physical

meaning only when the quantity

E(u)
||u||2L2

is not too large and in the absence of any explicit Fourier decomposition this
quantity is the most natural candidate to measure the frequency of the wave.

The analyticity or at least (cf [22]) the fact that the wave operator is
independent of t seems to play a crucial role. It was observed by Alhinac and
Baouendi [1] that one can construct in Rn × Rt a wave equation with C∞

zero order time dependent coefficients

∂2
t u−Δu + q(x, t)u = 0

which has at least one non zero solution wich is identically equal to zero in
the halfspace x1 < 0. In this case there is no unique continuation principle
and no relation of type (48). However for time independent coefficients the
unique continuation property holds and the problem is partly solved due to a
serie of contributions ([22] and [20]). Same estimates have been obtained [16]
for the problem of stabilization and giving for (17) the relation:

1
2

∫
Ω

{|∂tu(x, t)|2 + |∇xu(x, t)|2}dx ≤ C

log+ t
||(u(., 0), ∂tu(., 0)||D(As) . (49)

The main tools are the Carleman estimates and pseudo differential calculus
with parameter. In fact this type of results are the most convincing applica-
tions of Carleman estimates and pseudodifferential calculus with parameter
for the wave operator

P = ∂2
tt.−∇x · (A(x)∇x.) .

It involves computations of quantities of the form:
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−∞

∫
R3

(e−kφP (ekφ)v) , v)dxdt

where v denotes a function with compact support in space time. The constant
k will be taken large enough. In the final estimates k it appears with a factor
−l in the estimation of the derivative of order l of v and therefore it give the
same weight to low and high frequency. The function φ satisfy the relation:

|∂tφ|2 − (A(x)∇xφ,∇xφ) 	= 0 (50)

on the support of v it is strictly convex with respect to the propagation of the
“fronts” and therefore seems to emphasize the role of the fronts compared to
the role of the rays.

4.2 Propagation Along Rays and High Frequency Estimates

This section uses the high frequency asymptotic and therefore it is in full
agreement with intuition leading to necessary and almost equivalent sufficient
conditions. These conditions are very restrictive and this is in full agreement
with the fact that more localized are the actuators bigger is the chance of the
“spillover” or the excitation of higher order modes and this is in agreement
with the remark (2).
The basic theorem of propagation of singularities (with the definition of

Wave front set given by Hormander) is

Theorem 2. For any compressed broken ray γ there exists a solution u of the
corresponding wave equation

∂2
t u−

1√
detg(x)

∇x(A(x)
√

detg(x)∇xu) = 0, in Ω×Rt u(x, t) = 0 ∀x ∈ ∂Ω

(51)
with WF (u) = γ.

From this statement one deduces the following

Proposition 1. 1. Consider the wave equation in a bounded domain Ω×]0, T [
with Dirichlet boundary condition on ∂Ω×]0, T [

(∂2
t −Δx)u = 0 u = 0 on ∂Ω×]0, T [ (52)

assume that there is at least one compressed broken ray which does not meet
the closure (in ∂Ω × Rt) of the observation region then there is no constant
C such that for every solution holds the relation:

E(u) ≤ C

∫ T

0

∫
Γ

|∂nu|2dσdt (53)

and the exact controllability (from the same control region) cannot be achieved.
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2. Consider the wave equation with an impedance boundary condition on
Γi some part of the boundary of a bounded domain Ω .

(∂2
t −Δx)u = 0, ∂tu + Z(x)∂→

n
u = 0 on Γi, u = 0 in ∂Ω\Γi (54)

and denote by etA the associated semi group. Assume that Γi is not trap-
ping ie. For any time 0 < T < ∞ there exists a generalized bicharacteristic
(x(t), t, ξ(t), τ) such that for 0 ≤ t ≤ T

{(x(t), t)} ∩ Γi × [0, T ]} = ∅ (55)

then there exists no function f(t) such that:

||etAU ||energy norm ≤ f(t)||U ||energy norm and lim
t→0

f(t) = 0 . (56)

Remark 4.When the coefficients are constant or analytic, using the symplectic
properties of the hamiltonian flow, one can construct (cf. [19] ) solutions of
“frequency” ω , uω(x, t) which for ω → ∞ concentrate exponentially along the
ray γ(s)

|u(x, t) − u(x(s), s)| ≤ e−C(|x−x(s)|2+|t−s|2 . (57)

These solutions are called gaussian beams and their existence shows that the
rates given by (48) and (49) are optimal.

With the definition of a diffractive point (ie a point where the ray is tangent
to the boundary while remaining in Ω) cf [4] The proposition (1) can be
complemented by the following

Theorem 3. 1 Consider the wave equation in a bounded domain Ω×]0, T [
with Dirichlet boundary condition on ∂Ω×]0, T [

(∂2
t −Δx)u = 0 u = 0 on ∂Ω×]0, T [ (58)

and assume that all rays meet the observation region Γ×]0, T [ in a non dif-
fractive point, then there is a constant C such that for every solution holds
the relation:

E(u) ≤ C

∫ T

0

∫
Γ

|∂nu|2dσdt (59)

and the exact controllability (from the same control) region can be achieved.
2 Consider the wave equation

(∂2
t −Δx)u = 0, ∂tu + Z(x)∂→

n
u = 0 on Γi, u = 0 in ∂Ω\Γi (60)

with an impedance boundary condition on Γi some part of the boundary of
a bounded domain Ω and homogenous (Dirichlet or Neumann ) on the rest
of the boundary. Assume that there exists a time T such that all rays meet
the impedance region Γi×]0, T [ in a non diffractive point then there exist two
constants C and β > 0 such that one has

||etA||energy norm ≤ Ce−βt . (61)
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The original proof of these theorems used a microlocal version of the prop-
agation of regularity in Sobolev spaces as introduced by Melrose and Sjostrand
[18]. Since it is the propagation of energy which is concerned it turns out that
in some cases a much simpler proof with the introduction of defect measures
is available. This is well documented in the expository talk of Burq [6].

5 Time Reversal Methods and Ergodicity

The material described above above turn out to be particularly relevant for
the mathematical analysis of the so called time reversal method.
Basically proceed as follow. Observe a wave reflected by a media during

a finite time 0 < t < T and send back the signal after time symetry with
respect to T and may be some amplification. Use the invariance of the wave
equation (with respect to the change t → 2T − t ) to reconstruct (up to an
amplification factor and may be some error) the initial signal. In general this
does not produces exact controllability but it replaces complicated numerical
algorithms by real time action. Such devices are used in many applications
ranging from oil recovery, non destructive control and so on . . . to focalization
of ultrasonic beams on kidneys stones. Since the media are very often ergodic
or random a special attention has been given to this situation. It has been
found out that instead of deteriorating the process randomness (cf. [2] for the
most recent contribution in the field) or ergodicity [3] contribute to its success.
The effect of the ergodicity has been experimented (real experiments and
numerical simulations) by M. Fink and his group. The mathematical analysis
of such experiment rely on recent theorems on “Qantum chaos” which show
what can be achieved when the action is done on an arbitrary small domain
but for large time. This is the subject of the next lines.
Consider the in a bounded domain Ω the solution of the initial value

problem:
∂2

t ui −Δui = 0, in Ω u(x, t) ≡ 0 on ∂Ω (62)

with the initial condition:

ui(x, 0) = 0 and ∂tu(x, 0) = ψ(x) (63)

Observe for 0 < t < T as in the impedance problem the time derivative of
this incident wave the solution ∂tui of (62) and (63) on a subset σ ⊂ Ω (which
may be very small) introduces an L∞ function Ξ(x) with support contained
in σ and eventually introduces for T < t < 2T the solution of the problem:

∂2
t ur −Δur = Ξ(x)∂tui(x, 2T − t), in Ω u(x, t) = 0 on ∂Ω (64)

with initial conditions:

ur(x, T ) = ui(x, T ), ∂tur(x, T ) = ∂tui(x, T ) . (65)
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Therefore one has:

∂tur(x, 2T ) = cos
(
2T (−Δ)

1
2

)
ψ +

∫ 2T

T

cos
(
(2T − t) (−Δ)

1
2

)
Ξ cos

(
(2T − t)(−Δ)

1
2

)
ψdt . (66)

To use the ergodicity property T will be taken large enough. This also rein-
forces the influence of the reemitted signal. According to these observations
one writes:

ur(x, 2T ) = T

{
1
T

cos(2T (−Δ)
1
2 )ψ +

1
T

∫ 2T

T

cos
(
(2T − t)(−Δ)

1
2

)
Ξ cos

(
(2T − t)(−Δ)

1
2

)
ψdt

}
(67)

In any convenient sense and in particular for the energy norm (with initial
data of finite energy) one has

lim
T→∞

1
T

cos(2T (−Δ)
1
2 )ψ = 0 . (68)

Therefore

ur(x, 2T ) � T lim
T→∞

1
T

∫ 2T

T

cos((2T − t)(−Δ)
1
2 )Ξ cos((2T − t)(−Δ)

1
2 )ψdt

(69)
whenever this limit exists.
One has

1
T

∫ 2T

T

cos
(
(2T − t)(−Δ)

1
2

)
Ξ cos

(
(2T − t)(−Δ)

1
2

)
ψdt

=
1
T

(∫ T

0

cos(t(−Δ)
1
2

)
Ξ cos

(
t(−Δ)

1
2 )dt

)
ψ

=
1

4T

(∫ T

0

(eit(−Δ)
1
2 + e−it(−Δ)

1
2

)

Ξ

(
eit(−Δ)

1
2 + e−it(−Δ)

1
2 )dt

)
ψ . (70)

The last term of (70) can be written as the sum of two terms:

M(T ) =
1

4T

(∫ T

−T

(eit(−Δ)
1
2 Ξ

(
eit(−Δ)

1
2

)
dt

)
ψ

and

N(T ) =
1

4T

(∫ T

−T

(eit(−Δ)
1
2 Ξ

(
e−it(Δ)

1
2

)
dt

)
ψ .

The term M(T ) contains no resonnancy and therefore with the Weil formula
for the asymptotic behavior of the eigenfrequency one has the
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Proposition 2. The operator M(T ) converges weakly to zero with T → ∞.
More precisely for any pair of smooth functions with compact support (ψ, θ) ∈
(D(Ω))2 one has:

|(θ,M(T )ψ)| ≤ C(θ, ψ)
T

. (71)

Furthermore in dimension d = 2 the estimate (71) holds for the Hilbert
Schmidt norm of M(T )

||M(T )||HS ≤ C

T
. (72)

Therefore the large time asymptotic behavior of the “reversed” wave is given
by:

uR(x, 2T ) � TN(T ) � T

2

(
1

2T

∫ T

−T

(eit(−Δ)
1
2 Ξ

(
e−it(Δ)

1
2

)
dt

)
ψ . (73)

To take in account ergodic properties of the hamiltonian flow one proceeds
as follow:
The action of the the broken hamiltonian flow is extended as an operator on

the functions defined on the cotangent spherical bundle S∗(Ω̄) = {(x, ξ) x ∈
Ω, |ξ| = 1} with volume denoted:

|S∗(Ω̄)| =
∫∫

Ω×{|ξ|=1}
dxdξ .

The principal symbol of any zero order pseudo differential operator P is de-
noted by σP .

Definition 1. (1) The flow is said to be classically ergodic if for any contin-
uous function f ∈ C0(S∗(Ω̄)) one has (in the weak L∗ topology)

lim
t→∞V (t)f = f̄ =

1
|S∗(Ω̄)|

∫
Ω×{|ξ|=1}

f(x, ξ)dxdξ . (74)

(2) With the introduction of the projection Πl on the space spanned by the l
first eigenvectors of −Δ

Πl =
∑

1≤k≤l

φk ⊗ φ∗k (75)

an operator K ∈ L(L2(Ω)) is said to be spectrally regularizing (K ∈ SR)
if it satisfies the following estimate:

||ΠlKΠl||2HS = o(l), (76)

– (3) The flow is said to be quantum ergodic if, for any zero order pseudo
differential operator P and in the weak operator limit, one has
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lim
T→∞

1
2T

∫ T

−T

eit(−Δ)
1
2 Pe−it(−Δ)

1
2 dt = 〈P 〉I + K (77)

with K ∈ SR and

〈P 〉 =
1

|S∗(Ω̄)|
∫

Ω×{|ξ|=1}
σP (x, ξ)dxdξ = lim

l→∞

∑
1≤k≤l

1
l
(Pφk, φk) . (78)

It has been proven that classical ergodicity implies quantum ergodicity (cf.
[7, 21, 23] and ([24])
Therefore with the proposition 5.1 one has the

Theorem 4. For the solution constructed according to the formulas (62), (63)
and (64), (65) one has for T → ∞ and in the sense of distributions the
following asymptotic:

uR(x, 2T ) � T

2
(〈Ξ〉(ψ + Kψ

)
(79)

with K ∈ SR and
〈Ξ〉 = lim

l→∞

∑
1≤k≤l

1
l
(Ξφk, φk) . (80)

Remark 5. The notion of spectrally regularizing (K ∈ SR) is not in its present
form very explicit. However for any pseudo differential operator P of zero order
one has (cf. [25]) proposition 1.1 (ii) )

lim
l→∞

1
l
||ΠlPΠl||2HS = 〈P 〉 =

1
|S∗(Ω̄)|

∫
Ω×{|ξ|=1}

|σP (x, ξ)|2dxdξ (81)

therefore any pseudo differential operator P which belongs to SR has his
principal symbol equal to zero and has a regularizing effect. Similarly one
shows (cf [23]) page 921 that in general (at least when the spectra of Δ has
bounded multiplicity)K is compact. This is the reason why the above theorem
carries pertinent information when the initial data ψ is a distribution with a
unique singularity located at one point says A then the reversed solution is a
sum of a more regular term T

2 Kψ and of a leading term proportional to T
2 ψ :

T

2
〈Ξ〉ψ . (82)

As a conclusion the ergodicity property (ie the fact that for T large enough
almost any ray meets the control region ( support of Ξ) even if this support
is very small (just wait long enough)) allows to reconstruct (with an amplifi-
cation) a function that will have the same singularities as the initial data. If
the initial data is very localized (say a δ function at a point A ) then at the
time 2T the signal will be a T/2δ at the same point A plus a smoother term
which appears as a modulation. In this sense for large time the refocalization
is perfect and this is in agreement with experiment and numerical simulations.
[8] and [9].
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6 Conclusion

This contribution is devoted to the extension of the issues raised by control
theory for systems of ordinary differential equations to distributed systems
described by partial differential equations. It has been shown that a system-
atic approach involves a frequency analysis of the solution. One uses the fact
that solutions of linear hyperbolic problems propagate along rays. However
due to the Heisenberg uncertainty principle this statement is true only in an
asymptotically with the introduction of high frequency analysis (which in the
present time carries the name of microlocal analysis). In the absence of the
observation of all the high frequencies one can use the diffractive aspect of
the wave to obtain positive results for low frequency regime. One can also
balance the absence of total observation by long time observation when the
underlying hamiltonian flow is ergodic.
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Global Boundary Stabilization
of 2D Poiseuille Flow∗

Andras Balogh and Miroslav Krstic†

Department of MAE, University of California at San Diego, La Jolla
CA 92093-0411

1 Introduction

In this article we address the problem of boundary control of a viscous in-
compressible fluid flow in a 2D channel. Many advances have been made on
this topic by Bewley and coworkers [4], Speyer and coworkers [8, 20, 21], and
others employing linear optimal control techniques in the CFD setting. Much
progress has also been made on the topic of controllability of Navier–Stokes
equations, a prerequisite to stabilization and optimal control problems.
Our objective here is to globally stabilize the parabolic equilibrium profile

in channel flow. This objective is different than the efforts on optimal control
[2, 9, 10, 13, 15, 16, 18, 27] or controllability [6, 11, 12, 14, 17] of Navier–Stokes
equations. Optimal control of nonlinear equations such as Navier–Stokes is not
solvable in closed form, forcing the designer to either linearize or use computa-
tionally expensive finite–horizon model–predictive methods. Controllability–
based solutions, while a prerequisite to all other problems, are not robust to
changes in the initial data and model inaccuracies. The stabilization objective
indirectly addresses the problems of turbulence and drag reduction, which are
explicit in optimal control or controllability studies. Coron’s [7] result on sta-
bilization of Euler’s equations is the first result that directly addresses flow
stabilization.
The boundary feedback control we derive in this paper is fundamentally

different from those in [4, 8, 20, 21], which use wall normal blowing and
suction. Our analysis motivated by Lyapunov stabilization results in tangential
velocity actuation. Tangential actuation is technologically feasible. The work
on synthetic jets of Glezer [26] shows that a teamed up pair of synthetic
jets can achieve an angle of 85◦ from the normal direction with the same
momentum as wall normal actuation. The patent of Keefe [22] provides the

∗This work was supported by grants from the Air Force Office of Scientific Re-
search, the National Science Foundation and the Office of Naval Research.

†Author to whom correspondence should be addressed
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means for generating tangential velocity actuation using arrays of rotating
disks.
An implementational advantage in our result is that, while it uses only the

measurement of wall shear stress as in the previous efforts, it employs it in
a decentralized fashion. This means that the feedback law can be embedded
into the MEMS hardware (without need for wiring).
While it is possible and important to achieve higher order

(
H1 and H2

)
stability, due to space limitations we restrict the analysis to the L2 case in
the present paper. For more details the interested reader is referred to [1].
The only limitation in our result is that it is guaranteed only for sufficiently

low values of the Reynolds number. In simulations we demonstrate that the
control law has a stabilizing effect far beyond the value required in the theorem
(five or more orders of magnitude).
The paper is organized as follows. We formulate our problem in Sect. 2

and design boundary feedback laws in Sect. 3. Our main results are stated in
Sect. 4 and L2 stability is proved in Sect. 5 by employing Lyapunov techniques.
In Sect. 6 we give numerical demonstrations that strengthen our theoretical
results. Finally, in Sect. 7, we extend our numerical simulation to the case
when the control is restricted to only part of the channel wall.

2 Problem Statement

The channel flow can be described by the 2D Navier–Stokes equations{
Wt − νΔW + (W · ∇)W + ∇P = 0 , 0 < x < 1, 0 < y < �, t > 0 ,

divW = 0 , 0 < x < 1, 0 < y < �, t > 0 ,
(1)

whereW = W(x, y, t) = (U(x, y, t), V (x, y, t))T represents the velocity vector
of a particle at (x, y) and at time t, P = P (x, y, t) is the pressure at (x, y)
and at time t, ν > 0 is the kinematic viscosity and the positive constant l
represents the width of the channel. Our goal is to regulate the flow to the
parabolic equilibrium profile (see Fig. 1)

U (y) =
a

2ν
y (�− y) , (2)

V = 0 , (3)
P (x) = −ax + b , (4)

where a = P (0) − P (1) ≥ 0 and b = P (0) ≥ 0 are constants. This profile is
obtained as a fixed point of system (1).
To motivative our problem, let us consider the vorticity

ω (x, y, t) = Uy (x, y, t) − Vx (x, y, t) . (5)

With (2) and (3), we get the equilibrium vorticity as
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0 1

x, u

y, v

Fig. 1. 2D channel flow

ω (y) = U
′
(y) − V

′
=

a

2ν
(�− 2y) . (6)

Suppose the vorticity at the walls is kept at its equilibrium values

ω (x, 0, t) = ω (0) , ω (x, �, t) = ω (�) , (7)

and the wall–normal component of the velocity at the walls is zero:

V (x, 0, t) = 0 , V (x, �, t) = 0 . (8)

The objective of these no–feedback boundary conditions might be the reduc-
tion of near–wall vorticity fluctuations. These boundary conditions imply

Uy (x, 0, t) = ω (x, 0, t) + Vx (x, 0, t) =
a�

2ν
, (9)

Uy (x, �, t) = ω (x, �, t) + Vx (x, �, t) = − a�

2ν
. (10)

Under the boundary conditions (8)–(10), the Stokes equations

− νΔW + (W · ∇)W + ∇P = 0 , (11)
divW = 0 (12)

has a solution

U = U (y) + C , (13)
V = V , (14)
P = P (x) , (15)

with an arbitrary constant C. This shows that under the boundary control
(8)–(10) our objective of regulation to the equilibrium solution (2)–(3) can
not be achieved. In more precise words, this solution is not asymptotically
stable, and it can at best be marginally stable (with an eigenvalue at zero).
To achieve asymptotic stabilization, in the next section we propose a feedback
law which modifies the boundary condition (7).
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3 Boundary Feedback Laws

In order to prepare for regulating the flow to the parabolic equilibrium profile
(2)–(3), we set

u = U − U , (16)
v = V , (17)
p = P − P . (18)

Then equation (1) becomes⎧⎪⎪⎨⎪⎪⎩
ut − νΔu + uux + vuy + Uux + U

′
v + px = 0 , 0 < x < 1, 0 < y < �, t > 0 ,

vt − νΔv + uvx + vvy + Uvx + py = 0 , 0 < x < 1, 0 < y < �, t > 0 ,
ux + vy = 0 , 0 < x < 1, 0 < y < �, t > 0 ,

u (x, y, 0) = u0, v (x, y, 0) = v0 , 0 < x < 1, 0 < y < �,
(19)

To avoid dealing with an infinitely long channel, we assume that u, v , vx and
p are periodic in the x–direction, i.e.,

u (0, y, t) = u (1, y, t) , v (0, y, t) = v (1, y, t) , 0 < y < �, t > 0 , (20)
vx (0, y, t) = vx (1, y, t) , p (0, y, t) = p (1, y, t) , 0 < y < �, t > 0 . (21)

Our boundary control is applied via boundary conditions⎧⎪⎪⎨⎪⎪⎩
u (x, 0, t) = kuy (x, 0, t) , 0 < x < 1, t > 0 ,
u (x, �, t) = −kuy (x, �, t) , 0 < x < 1, t > 0 ,
v (x, 0, t) = 0 , 0 < x < 1, t > 0 ,
v (x, �, t) = 0 , 0 < x < 1, t > 0 ,

(22)

where k is a positive constant. The physical implementation of this boundary
condition is

U (x, 0, t) = k

[
Uy (x, 0, t) − a�

2ν

]
, (23)

U (x, �, t) = −k

[
Uy (x, �, t) +

a�

2ν

]
, (24)

V (x, 0, t) = 0 , (25)
V (x, �, t) = 0 . (26)

This means that we are actuating the flow velocity at the wall tangentially.
Only the sensing of the wall shear stress Uy (x, 0, t) and Uy (x, �, t) (at the
respective points of actuation) is needed. The action of this feedback is picto-
rially represented in Fig. 2. The condition (23) and (24) can be also written
as

U (x, 0, t) = k [ω (x, 0, t) − ω (0)] , (27)
U (x, �, t) = −k [ω (x, �, t) − ω (�)] . (28)
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Fig. 2. Tangential velocity actuation

In the next sections we shall see that this control law achieves global asymp-
totic stabilization, whereas, as we saw in Sect. 2, the control law (7) is not
asymptotically stabilizing.

4 The Result

Let Ω = (0, 1) × (0, �). In what follows, Hs (Ω) denotes the usual Sobolev
space (see [24]) for any s ∈ R. We shall be concerned with 2–dimensional
vector function spaces and use boldface letters to denote them. For example
we will use notations

Ṽ = {(u, v) ∈ H̃1 : ux + vy = 0 in Ω, v (x, 0) = v (x, �) = 0}, (29)

H̃ = the closure of Ṽ in L̃2 . (30)

From now on tilde sign refers to the periodicity in the x–direction. The norm
in the space Ṽ is defined by

‖w‖Ṽ = ((w,w))1/2
, (31)

where (( · , · )) denotes the inner product of Ṽ defined by

((w,Φ)) =
∫ �

0

∫ 1

0

Tr
{∇wT∇Φ

}
dxdy +

1
k

∫ 1

0

(u (x, 0) ξ (x, 0)

+ u (x, �) ξ (x, �)) dx , (32)

for all w = (u, v), Φ = (ξ, η) ∈ Ṽ.

Definition 1. A function w = (u, v) ∈ L2([0, T ]; Ṽ) is a weak solution of
system (19)–(22) if
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d

dt
(w,Φ) + ν ((w,Φ)) + ((w · ∇)w,Φ) +

(
Uwx,Φ

)
+
(
U
′
v , ξ

)
= 0 (33)

is satisfied for all Φ = (ξ, η) ∈ Ṽ and w(x, y, 0) = w0(x, y) for all (x, y) ∈ Ω.

Theorem 1. Suppose that

ν >

√
a�3

4
and 0 < k < �/2 , (34)

and denote
σ =

ν

�2
− a�

4ν
> 0 . (35)

Then there exists a positive constant c > 0 independent of w0 such that for
the system (19) with periodic conditions (20)–(21), boundary control (22)
and arbitrary initial data w0(x) ∈ H̃, there exists a unique weak solution
w ∈ L2([0,∞); Ṽ) ∩ C([0,∞); L̃2) that satisfies the global–exponential stabil-
ity estimate

‖w(t)‖ ≤ ‖w0‖e−σt for all t ≥ 0 . (36)

Solutions depend continuously on the initial data in the L2–norm and the
existence, uniqueness and regularity statements hold for any ν > 0 and k > 0
over finite time intervals.

Remark 1. Similar statements hold for solutions in higher order (L2([0,∞);
H̃2 ∩ Ṽ) ∩ L∞([0,∞); Ṽ) and C1([0,∞); L̃2) ∩ C([0,∞); H̃2 ∩ Ṽ)) spaces. In
particular, it is possible to prove that

(1) The control inputs u(x, 0, t) and u(x, �, t) are bounded and go to zero as
t → ∞.

(2) The solution w(x, y, t) is continuous in all three arguments. This obser-
vation has an important practical consequence: the tangential velocity
actuation at nearby points on the wall will be in the same direction.

Remark 2. If the viscosity ν ≤
√

a�3

2 , the problem of boundary control remains
open. The methods presented in this paper can not be applied to this case
and a radically different method needs to be developed.

5 Proof of Theorem

The proof of Theorem 1 and the statements mentioned in Remark 1 goes
along the lines of the classical theory of Navier–Stokes equations [23, 28] with
some modifications to accommodate the nonhomogeneous boundary condi-
tions. Lyapunov techniques and Galerkin’s method are used and several tech-
nical lemmas are employed. While we refer to [1] for details, here we prove
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the L2 stability estimate (36). This is the first step in the whole proof and it
also demonstrates the use of the energy method.
Let w = (u, v). We define the energy E (w) of (19)–(22) as

E (w) = ‖w‖2 =
∫ �

0

∫ 1

0

(
u2 + v2

)
dxdy . (37)

Multiplying the first equation of (19) by u and the second equation of (19)
by v and integrating over Ω by parts, we obtain

Ė (w) = −2ν
∫ �

0

∫ 1

0

(
u2

x + u2
y + v2

x + v2
y

)
dxdy − 2

∫ �

0

∫ 1

0

U
′
uv dxdy

−
∫ �

0

u3
∣∣1
x=0

dy −
∫ 1

0

u2v
∣∣�
y=0

dx−
∫ �

0

Uu2
∣∣1
x=0

dy

−
∫ �

0

uv2
∣∣1
x=0

dy −
∫ 1

0

v3
∣∣�
y=0

dx−
∫ �

0

Uv2
∣∣1
x=0

dy

−2
∫ �

0

pu|1x=0 dy −
∫ 1

0

pv |�y=0 dx + 2ν
∫ �

0

uxu|1x=0 dy

+ 2ν
∫ 1

0

uyu|�y=0 dx + 2ν
∫ �

0

vxv |1x=0 dy + 2
∫ 1

0

vyv |�y=0 dx

= −2ν
∫ �

0

∫ 1

0

(
u2

x + u2
y + v2

x + v2
y

)
dxdy − 2

∫ �

0

∫ 1

0

U
′
uv dxdy

+ 2ν
∫ 1

0

uyu|�y=0 dx . (38)

Here we have used the relations

ux (0, y, t) = ux (1, y, t) , uy (0, y, t) = uy (1, y, t) ,
and vy (0, y, t) = vy (1, y, t) , (39)

which follow from the periodic conditions (20)–(21) and the divergence free
condition. Applying inequality∫ �

0

∫ 1

0

(
u2 + v2

)
dxdy ≤ 2�

∫ 1

0

u2 (x, 0) dx + �2
∫ �

0

∫ 1

0

(
u2

y + v2
y

)
dxdy ,

(40)
which can be found in [1], it follows that
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Ė (w) ≤ −2ν
�2

E (w) +
4ν
�

∫ 1

0

u2 (x, 0, t) dx +
�a

2ν
E (w)

−2ν
k

∫ 1

0

(
u2 (x, �, t) + u2 (x, 0, t)

)
dx

= −2ν
�2

E (w) +
�a

2ν
E (w)

−
∫ 1

0

(
2ν
(

1
k
− 2

�

)
u2 (x, 0, t) +

2ν
k
u2 (x, �, t)

)
dx

≤ −
(

2ν
�2

− a�

2ν

)
E (w) . (41)

This implies the global–exponential stability in L2-norm, i.e. (36).

Remark 3. The boundary integral∫ 1

0

(
2ν
(

2
�
− 1

k

)
u2 (x, 0, t) − 2ν

1
k
u2 (x, �, t)

)
dx (42)

in (41) is negative even for large Reynolds numbers (small kinematic viscosity)
if k is sufficiently small. Hence, it improves the stability properties in general.
The trace theorem however does not allow us to compare this term and the
total energy and to prove the stability results for large Reynolds numbers.
This shows the need for numerical simulation.

6 Numerical Simulation

The simulation example in this section is performed in a channel of length 4π
and height 2 for Reynolds number Re = 15000 (a = 2/15000, ν = 1/15000),
which is five orders of magnitude greater than required in Theorem 1, and
is three times the critical value (5772, corresponding to loss of linear stabil-
ity) for 2D channel flow. The validity of the stabilization result beyond the
assumptions of Theorem 1 is not completely surprising since our Lyapunov
analysis is based on conservative energy estimates.The control gain used is
k = 1.
A hybrid Fourier pseudospectral–finite difference discretization and the

fractional step technique based on a hybrid Runge–Kutta/Crank–Nicolson
time discretization was used to generate the results [3, 1, 5]. The number of
grid points used in our computations was 128 × 120 and the (adaptive) time
step was in the range of 0.05 − 0.07. The grid points had hyperbolic tangent
(yj = 1 + tanh

(
s
(
2 j

NY − 1
))

/ tanh (s) j = 0, . . . , NY ) distribution with
stretching factor s = 1.75 in the vertical direction in order to achieve high
resolution in the critical boundary layer. In order to obtain the flow at the
walls in the controlled case the quadratic Three–Point Endpoint Formula was
used to approximate the derivatives at the boundary (Uy (x, 0, t) , Uy (x, �, t)).
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Fig. 3. Energy Comparison

This formula is applied in a semi-implicit way in order to avoid numerical
instabilities. The numerical results show very good agreement with results
obtained from a finite volume code used at early stages of simulations. As
initial data we consider a statistically steady state flow field obtained from a
random perturbation of the parabolic profile over a large time period using
the uncontrolled system. Figure 3 shows that our controller achieves stabi-
lization. This is expressed in terms of the L2–norm of the error between the
steady state and the actual velocity field, the so called perturbation energy,
which corresponds to system (19)–(22) with k = 0 (zero Dirichlet boundary
conditions on the walls) in the uncontrolled case. The initially fast perturba-
tion energy decay somewhat slows down for larger time. What we see here is
an interesting example of interaction between linear and nonlinear behavior in
a dynamical system. Initially, when the velocity perturbations are large, and
the flow is highly nonlinear (exhibiting Tollmien–Schlichting waves with re-
circulation, see the uncontrolled flow in Figs. 4 and 5). The strong convective
(quadratic) nonlinearity dominates over the linear dynamics and the energy
decay is fast. Later, at about t = 500, the recirculation disappears, the con-
trolled flow becomes close to laminar, and linear behavior dominates, along
with its exponential energy decay (with small decay rate).
In the vorticity map, depicted in Fig. 4 it is striking how uniform the vor-

ticity field becomes for the controlled case, while we observe quasi–periodic
bursting (cf. [19]) in the uncontrolled case. We obtained similar vorticity maps
of the uncontrolled flow for other (lower) Reynolds numbers, that show agree-
ment qualitatively with the vorticity maps obtained by Jiménez [19]. His paper
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Uncontrolled

controlled

Fig. 4. Vorticity Maps at t = 700

Uncontrolled

Controlled

Fig. 5. Recirculation in the flow at t = 120, in a rectangle of dimension 1.37× 0.31
zoomed out of a channel of dimension 4π×2. The shaded region (upper right corner)
is magnified in Fig. 6

explains the generation of vortex blobs at the wall along with their ejection
into the channel and their final dissipation by viscosity in the uncontrolled
case.
The uniformity of the wall shear stress (Uy|wall) in the controlled flow can

be also observed in Fig. 6. Our boundary feedback control (tangential actua-
tion) adjusts the flow field near the upper boundary such that the controlled
wall shear stress almost matches that of the steady state profile. The region
is at the edge of a small recirculation bubble (Fig. 5) of the uncontrolled flow,
hence there are some flow vectors pointing in the upstream direction while
others are oriented downstream. The time is relatively short (t = 120) after
the introduction of the control and the region is small. As a result it is still
possible to see actuation both downstream and upstream. Nevertheless the
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Uncontrolled

Controlled

Fig. 6. Velocity field in a rectangle of dimension 0.393 × 0.012 zoomed out of a
channel of dimension 4π × 2, at time t = 120. The control (thick arrows) acts both
downstream and upstream. The control maintains the value of shear near the desired
(laminar) steady–state value

controlled velocity varies continuously. Figure 5 shows that the effect of con-
trol is to smear the vortical structures out in the streamwise direction. It is
well known that in wall bounded turbulence instabilities are generated at the
wall. In two dimensional flows these instabilities are also confined to the walls.
As a result, our control effectively stabilizes the flow.
We obtain approximately 71% drag reduction (see Fig. 7) as a byproduct

of our special control law. The drag in the controlled case “undershoots” bellow
the level corresponding to the laminar flow and eventually agrees with it up
to two decimal places. It is striking that even though drag reduction was
not an explicit control objective (as in most of the works in this field), the
stabilization objective results in a controller that reacts to the wall shear stress
error, and leads to an almost instantaneous reduction of drag to the laminar
level.

7 Simulations with Only Parts of the Wall Controlled

While the use of boundary control is practically more feasible than distrib-
uted control, it is even more realistic to use control applied only on part of the
boundary wall. In the present section we compare several different configura-
tions of the channel flow with boundary control restricted to different parts of
the wall (see Fig. 8). The subintervals (patches) are of equal length and their
number on each wall is one, two, four or eight. In addition we consider the



168 A. Balogh and M. Krstic

0 500 1000 1500 2000
0

1

2

3

4

5

6

7

8

t−axis

dr
ag

uncontrolled 

controlled 

Fig. 7. Instantaneous drag
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(a) Half of wall is controlled. (b) Third of wall is controlled.
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(c) Fourth of wall is controlled.

Fig. 8. Configuration of control patches
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Fig. 9. Comparison of perturbation energies (I)

case when control is applied only on one wall. The total length of the patches
is one fourth, one third or one half of the total wall length. In all cases the
control gain k introduced in (23) and (24) has been set to the value one. For
these cases we present perturbation energy comparison, including the fully
controlled and the uncontrolled case. Our general observations based on Figs.
9 and 10 are the following.
The flow can be laminarized even when the size of the controlled region is

small relative to the uncontrolled region. The smallest patch size we achieved
stability with was the 1/4 case (Fig. 9, part (c)).
We achieve better performance with control concentrated in one area of

the two walls than with many small patches distributed evenly along the walls
(Fig. 9). With 16 patches stability was not achieved in the 1/3 case (Fig. 9,
part (b)). The corresponding curve levels around the value 0.33 right after
t = 4000. In the 1/4 case (Fig. 9, part (c)) already 8 patches degraded the
control to a level where laminarization was not possible.
In the 1/2 and 1/3 cases concentrating all the control on one wall does

not result in significantly different control performance than the one–paired
configuration (Fig. 9, parts (a)–(b)). In the 1/4 case control restricted to one
wall does not fully stabilize the parabolic profile, while one and two pairs of
control patches do stabilize.
In a given patch configuration larger control surface achieves stability

faster. The controlled and uncontrolled parts of the wall are competing against
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Fig. 10. Comparisons of perturbation energies (II)

each other. The controlled part has to be large enough so that its effect has
time to destroy the wall bounded turbulent structures, and the uncontrolled
part has to be small enough so that instabilities do not grow over that region
more than they decay over the controlled region (Fig. 10).
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Abstract. For 2D Navier–Stokes equations defined in a bounded domain Ω we
study stabilization of solution near a given steady-state flow v̂(x) by means of feed-
back control defined on a part Γ of boundary ∂Ω . New mathematical formalization
of feedback notion is proposed. With its help for a prescribed number σ > 0 and
for an initial condition v0(x) placed in a small neighbourhood of v̂(x) a control
u(t, x′), x ∈ Γ , is constructed such that solution v(t, x) of obtained boundary value
problem for 2D Navier–Stokes equations satisfies the inequality:

‖v(t, · ) − v̂‖H1 � ce−σt for t � 0 .

1 Introduction

In this paper we study stablization problem for two-dimensional (2D) Navier–
Stokes equations defined in a bounded domain Ω ⊂ R

2 which is controlled
by Dirichlet boundary condition for velocity vector field. Let (v̂(x),∇p̂(x)),
x ∈ Ω be a steady-state solution for Navier–Stokes equations. Let suppose
that v̂ is an unstable singular point for the dynamic system generated by
evolutionary Navier-Stokes system supplied with zero condition v|∂Ω = 0 on
the boundary ∂Ω of Ω.
The stabilization problem is as follows: Given σ > 0 and initial condition

v0(x) for evolutionary Navier–Stokes system placed in a small neighbourhood
of v̂ in H1, find Dirichlet boundary condition (control) u(t, x′) defined on
R+ × ∂Ω such that the solution v(t, x) of obtained boundary value problem
satisfies inequality

‖v(t, · ) − v̂( · )‖H1(Ω) � ce−σt as t → ∞ . (1)

Actually, the stabilization result in such formulation follows immediately
from the exact controllability result of [FE],[F1] which is formulated in Sect. 1.
But below we impose on desired control very important additional property:
u has to be a feedback control.
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Problem of stabilization by boundary feedback control was studied earlier
mostly for hyperbolic equations and related to them systems (see, for instance,
[Li], [Lag], [C]). Some results, connected with Burgers equation was obtained
also ([BK]). (Of course, we do not pretend on completeness of references.)
In [F2] new mathematical formalization of feedback property was pro-

posed and stabilization problem for quasilinear parabolic equation by feedback
boundary control was solved. Here we obtain solution for problem of stabiliza-
tion by boundary feedback control for two-dimensional Navier–Stokes system
when a control is concentrated on a part of boundary. Complete proof of this
result will be exposed in [F3]

2 Exact Controllability from the Boundary
of the Navier–Stokes System

Let Ω ⊂ Rd, d = 2, 3, be a bounded domain with a boundary ∂Ω of the class
C∞, T > 0, QT = (0, T ) × Ω,ΣT = (0, T ) × ∂Ω. We consider in QT the
mixed boundary value problem for the Navier–Stokes system:

∂tv(t, x) −Δv + (v,∇)v + ∇p = f(t, x), div v(t, x) = 0 , (2)
v(t, x) |t=0 = v0(x) , (3)

v |ΣT
= u , (4)

where ∂t = ∂
∂t , x = (x1, . . . , xd) ∈ Ω, v(t, x) = (v1(t, x), . . . , vd(t, x)) is

the velocity vector field of a fluid flow, ∇p(t, x) is the pressure gradient of a
liquid, f(t, x) = (f1(t, x), . . . fd(t, x)) is a given density of exterior forces, Δ
is the Laplace operator, (v,∇)v =

∑
i

vi∂iv, ∂i = ∂
∂xi

, v0 is an initial vector

field. The vector field u defined on the lateral surface ΣT is not given: it is a
control.
The exact controllability problem from the boundary for the Navier–Stokes

system is as follows: given a solution (v̂(t, x), p̂(t, x)) of (2):

∂tv̂(t, x) −Δv̂ + (v̂,∇)v̂ + ∇p̂ = f(t, x), div v̂ = 0 , (5)

find a control u(t, x) defined on ΣT such that the solution v(t, x) of problem
(2)–(4) coincides at instant t = T with v̂(T, x):

v(t, x)|t=T ≡ v̂(T, x) . (6)

We introduce the functions spaces. As usually Hk(Ω) where k is a natural
number is the Sobolev space of scalar functions, defined and square integrable
on Ω together with all its derivatives up to order k and (Hk(Ω))d is the
analogous Sobolev space of vector fields. We set

V k(Ω) =
{
v(x) = (v1, . . . vd) ∈ (Hk(Ω))d : div v = 0

}
, (7)



Exact Controllability and Feedback Stabilization from a Boundary 175

H1,2(k)(Q) =
{
v ∈ L2(0, T ;H2+k(Ω)) : ∂tv ∈ L2(0, T ;Hk(Ω))

}
, (8)

V 1,2(k)(Q) =
{
v ∈ (H1,2(k)(Q))d : div v = 0

}
, (9)

H1,2(Q) = H1,2(0)(Q), V 1,2(Q) = V 1,2(0)(Q) .

Result on exact controllability is as follows:

Theorem 2.1. Let f ∈ L2(0, T ;V 2(Ω)), v0 ∈ V 3(Ω) and a solution (v̂, p̂) ∈
V 1,2(2)(Q)×L2(0, T ;H3(Ω)) of (5) be given. We suppose that over each con-
nected componenet ∂Ωi of the boundary ∂Ω = ∪M

i=1∂Ωi the equalities hold:∫
∂Ωi

v̂(t, x′) · ν(x′)ds = 0, a.a t ∈ [0, t],
∫

∂Ωi

v0(x′) · ν(x′)ds = 0 (10)

where ν is the vector field of outward normals to ∂Ω. Then there exists a solu-
tion (v, p, u) ∈ V 1,2(Q)×L2(0, T ;H1(Ω))× (L2(0, T ;H3/2(∂Ω)))d of problem
(2)–(4), (6).
Stabilization problem can be regarded as a special case of exact controlla-

bility problem presented above. Indeed, suppose that the right side f from (2)
does not depend on t and a given solution from formulation of exact control-
lability problem is steady-state, i.e. a pair (v̂(x), p̂(x)) satisfies the equations:

−Δv̂ + (v̂,∇)v̂ + ∇p̂ = f(x), div v̂ = 0 . (11)

Then exact controllability problem is called stabilization problem and we get
the followig evident corollary of Theorem 2.1:

Theorem 2.2. Let f ∈ V 2(Ω), v0 ∈ V 3(Ω) and a solution (v̂, p̂) ∈ V 4(Ω) ×
H3(Ω) of (11) be given. Suppose that equalities (10) hold. Then there exists
a solution

(v, p, u) ∈ V 1,2(Q) × L2(0, T ;H1(Ω)) × (L2(0, T ;H3/2(∂Ω)))d

of problem (2)–(4), satisfying

v(T, x) = v̂(x) . (12)

We do not prove here Theorems 2.1, 2.2: their complete proof is given
in [FE]. Nevertheless we want to note that solution of exact controllability
problem is reduced to solution of ill-posed problem (2), (3), (6) with unknown
functions (v(t, x),∇p(t, x)). After solution of this il-posed problem we get
control u with help of (5). Solution of stabilization problem in formulation
given above is reduced to ill-posed problem (2), (3), (12) by just the same
way.
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Thus, Theorems 2.1, 2.2 are existence theorems for ill-posed problems. The
method for construction of control u in these theorems is such that in order
to construct the control u(t, x′) even for t ∈ (0, t0) with t0 � T we use infor-
mation on problem (2), (3), (6) and on its solution v(t, x) on the whole time
interval (0, T ). Therefore if at certain t0 ∈ (0, T ) some unpredictable fluctua-
tion of solution v(t, x) would arise, control u will not react on this fluctuation
and in virtue of ill-posedness of (2), (3), (6), solution of this problem will be
quickly completely destroyed by this fluctuation. Unpredictable fluctuations
definitely arise in numerical simulations because all numbers in computers are
set approximately. This shows how important to be able to construct a control
that can react on unpredictable fluctuations of solution suppressing them, i.e.
to construct feedback control.
Below we study the problem of stabilization by boundary feedback control

for 2D Navier–Stokes equations. Imposing feedback property on boundary
control we simultaneously weaken condition (12) and change it on exponential
decay (1.1) with prescribed σ > 0.

3 Ozeen Equations

We begin investigation of stabilization problem from the case of linearized
Navier–Stokes equations, i.e. from the Ozeen equations.

3.1 Formulation of the Problem

Let Ω ⊂ R
2, ∂Ω ∈ C∞, Q = R+ ×Ω. We consider the Ozeen equations:

∂tv(t, x) −Δv + (a(x),∇)v + (v,∇)a + ∇p(t, x) = 0 , (13)

div v(t, x) = 0 (14)

with initial condition
v(t, x)|t=0 = v0(x) . (15)

Here (t, x) = (t, x1, x2) ∈ Q, v(t, x) = (v1, v2), a(x) = (a1(x), a2(x)) is a
given solenoidal vector field (div a = 0).
We suppose that the boundary ∂Ω of Ω is decomposed on two parts:

∂Ω = Γ ∪ Γ 0, Γ 	= ∅ (16)

where Γ, Γ0 are open sets (in topology of ∂Ω). Here, as usual, the line above
means the closer of a set. We define Σ = R+ × Γ,Σ0 = R+ × Γ0, and we set:

v|Σ0 = 0, v|Σ = u (17)

where u is a control, concentrated on Σ.
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Let a magnitude σ > 0 be given. The problem of stabilization with the
rate σ of a solution to problem (13)–(15), (17) is to construct a control u on
Σ such that the solution v(t, x) of boundary value problem (13)–(15), (17)
satisfies:

‖v(t, · )‖2
L2(Ω) � ce−σt for t � 0 (18)

where c > 0 depends on v0, σ and Γ0. Moreover, we require that this control
u satisfies the feedback property in the meaning indicatad below.
Let us give the exact formulation of this feedback property. Let ω ⊂ R

2

be a bounded domain such that

Ω ∩ ω = ∅, Ω ∩ ω = Γ . (19)

We set
G = Int(Ω ∪ ω) (20)

(the denotion IntA means, as always, the interior of the set A). We suppose
that ∂G ∈ Cα and in all points except Γ \ Γ ≡ ∂Γ it possesses the C∞

smoothness. The exact conditions on α will be imposed below in an appropri-
ate place.
We extend problem (13)–(15) from Ω up to G. Let us assume that

a(x) ∈ V 2(G) ∩ (H1
0 (G)

)2
. (21)

That is why the extension of (13)–(15) from Ω to G can be written as follows:

∂tw(t, x) −Δw + (a(x),∇)w + (w,∇)a + ∇p(t, x) = 0, divw = 0 , (22)

w(t, x)|t=0 = w0(x), w|S = 0 (23)

where S = R+ ×∂Ω (we impose on w the zero Dirichlet boundary condition).
Note that actually w0 from (23) will be some special extension of v0(x) from
(15).
For vector fields defined on G we denote by γΩ the operator of restriction

on Ω and by γΓ we denote the operator of restriction on Γ :

γΩ : V k(G) −→ V k(Ω), γΓ : V k(G) −→ V k−1/2(Γ ), k � 0 . (24)

Evidently, operators (24) are bounded.

Definition 3.1. A control u(t, x) in (13)–(15), (17) is called feedback if

v(t, · ) = γΩw(t, · ), u(t, · ) = γΓw(t, · ) ∀t � 0 (25)

where (v(t, · ), u(t, · )) is the solution of stabilization problem (13)–(15), (17)
and w(t, · ) is the solution of boundary value problem (22), (23).
Below we prove that for given σ > 0, v0 the problem (13)–(15), (17) can

be stabilized with help of feedback control in the meaning of Definition 3.1.
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3.2 Preliminaries

Let G be domain (20) and V 0
0 (G) = {v(x) ∈ V 0(G) : v · ν|∂Ω = 0} where

V 0(G) is space (2.7) with k = 0, ν(x) is the vector-field of outer normals to
∂G. Denote by π : (L2(G))2 −→ V 0

0 (G) the operator of ortogonal projection.
We consider the Ozeen steady state operator

Av ≡ −πΔv + π[(a(x),∇)v + (v,∇)a] : V 0
0 (G) −→ V 0

0 (G) (26)

where a(x) is vector-field (21). This operator is closed and has the domain
D(A) = V 2(G) ∩ (H1

0 (G))2 which is dense in V 0
0 (G).

Asumming that space in (26), is complex we denote by ρ(A) the resolvent
set of operator A, i.e. the set of λ ∈ C such that the resolvent operator
R(λ,A) ≡ (λI−A)−1 : V 0

0 (G) −→ V 0
0 (G) is defined and continuous. Here I is

identity operator. Denote by Σ(A) ≡ C
1 \ ρ(A) the spectrum of operator A.

As well-known, for λ ∈ ρ(A) resolvent R(λ,A) is a compact operator, and
the spectrum Σ(A) consists of a discret set of points.
We decompose the resolvent R(λ,−A) in a neighbourhood of −λj ∈

Σ(−A):

R(λ,−A) =
∞∑

k=−m

(λ + λj)kRk, Rk =
∫

|λ+λj |=ε

R(λ,−A)
2πi(λ + λj)k+1

dλ . (27)

Note that m < ∞.
Let A∗ be the operator formally adjoint to Ozeen operator (26). Evidently,

A∗ is a closed operator with domain D(A∗) = V 2(G) ∩ (H1
0 (G))2. Moreover,

operator A∗ is sectorial with a compact resolvent and

ρ(A∗) = ρ(A), R(λ,A)∗ = R(λ̄, A∗) ∀ λ ∈ ρ(A) (28)

(Here the line above means complex conjugation.) Below we always assume
that

vector field a(x) from (26), (21) is real valued . (29)

That is why we have ρ(A) = ρ(A) = ρ(A∗) = ρ(A∗).
Let −λj ∈ Σ(−A) be an eingenvalue of −A, and e 	= 0, e ∈ ker(λ0I + A)

be an eingenvector. Vector ek is called joined vector of order k to e if ek

satisfies:

(λ0I + A)e = 0, e + (λ0I + A)e1 = 0, . . . , ek−1 + (λ0I + A)ek = 0 . (30)

We say that e, e1, e2, . . . form a chain of joined vectors. The maximal order
m of vectors, joined to e is finite and the number m + 1 is called multiplicity
of the eigenvector e.

Definition 3.2. The set of eigenvectors and joined vectors

e(k)(−λj), e
(k)
1 (−λj), . . . , e(k)

mk
(−λj) (k = 1, 2, . . . , N(−λj)) (31)

corresponding to an eigenvalue −λj is called canonical system if:
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i) Vectors e(k)(−λj), k = 1, 2, . . . , N(−λj) form a basis in the space of eigen-
vectors corresponding to the eigenvalue −λj.

ii) e(1)(−λj) is an eigenvector with maximal possible multiplicity.
iii) e(k)(−λj) is an eigenvector which can not be expressed by a linear combi-

nation of e(1)(−λj), . . . , e(k−1)(−λj) and multiplicity of e(k)(−λj) achives
a possible maximum.

iv) Vectors (31) with fixed k form a complete chain of joined elements.

Besides canonical system (31) which corresponds to an eigenvalue −λj of
operator −A we consider a canonical system

ε(k)(−λj), ε
(k)
1 (−λj), . . . , ε(k)

mk
(−λj) (k = 1, 2, . . . , N(−λj)) (32)

that corresponds to the eigenvalue −λj of the ajoint operator −A∗. Definition
of canonical system (32) is absolutely analogous to Definition 3.2 of canonical
system (31). We define canonical system (32) by E∗(−λj).

Theorem 3.1 Let Rk are operators defined in (27). Then

R−kx = 0, ∀k = 1, 2, . . . ,m (33)

if and only if

〈x, ε(k)
l (−λj)〉 = 0 ∀ε(k)

l (−λj) ∈ E∗(−λj) . (34)

This assertion follows immediately from one result of Keldysh ([K]) on
structure of the main part of Laurent serie for R(λ,−A). The proof of Theo-
rem 3.1 see in [F3].
We write boundary value problem (22), (23) for Ozeen equations written

in the form
dw(t)
dt

+ Aw(t) = 0, w|t=0 = w0 (35)

where A is operator (26). Then for each w0 ∈ V 0
0 (G) the solution w(t, · ) of

(35) is defined by w(t, · ) = e−Atw0 and

e−At = (2πi)−1

∫
γ

(λI + A)−1eλtdλ , (36)

where γ is a contur belonging to ρ(−A) such that argλ = ±θ for λ ∈ γ, |λ| � N
for certain θ ∈ (π/2, π) and for sufficiently large N . Moreover, γ surrounds
Σ(−A) from the right. Such contur γ exists, of course, because A is a sectorial
operator.
Let σ > 0 satisfy:

Σ(−A) ∩ {λ ∈ C : Reλ = −σ} = ∅ . (37)
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The case when there are certain points of Σ(−A) placed righter than the line
{Reλ = −σ} will be interesting for us. By γσ we denote the continuous contur
that is placed in {λ ∈ C : Reλ � −σ} and constructed from an interval of
the line {Reλ = −σ} and from two branches of contour γ that transform to
{argλ = θ} and {argλ = −θ}, θ ∈ (π/2, π) for sufficiently large |λ|.
We reduce integration over γ in (36) to integration over γσ and integration

around poles −λj from (27) for λj satisfying Reλj < σ After calculation
corresponding residues we transform (36) to the equality:

e−At =
∫

γσ0

(λE + A)−1 e
λtdλ

2πi
+

∑
Reλj<σ

e−λjt

m(−λj)∑
n=1

tn−1R−n(−λj)
(n− 1)!

. (38)

We denote V 1
0 (G) = {v ∈ V 1(G) : v|∂G = 0}.

Theorem 3.2. Suppose that A is operator (26) and σ > 0 satisfies (37). Then
for each w0 ∈ V 1

0 (G) that satisfies

〈w0, ε
(k)
l (−λ̄j) >= 0, l = 0, 1, . . . ,mk, k = 1, 2, . . . , N(−λj) , (39)

for any λj with Re(λj) < σ the following inequality holds: 1

‖eAtw0‖V 1
0 (G) � ce−σt‖w0‖V 1

0 (G) for t � 0 . (40)

Proof. By Theorem 3.1 if w0 satisfies (39) then Rn(−λj)w0 = 0 for every
operators R−n(−λj) from (38). One can prove easily that

‖(λI + A)−1v‖V 1
0 (G) � c‖v‖V 1

0 (G) .

with c > 0 which does not depend on v ∈ V 1
0 (G), λ ∈ γσ. Therefore (38)

implies (40).
Impose on canonical systems (32) the following condition

ε(k)(−λj) = ε̄(k)(−λ̄j); ε
(k)
l (−λ̄j) = ε̄k

l (−λj) (41)

Condition (41) can be realized by (29).
In virtue of (41) canonical system corresponding real −λj consists of real

valued vector fields. If Imλj 	= 0, instead of vector fields ε(k)(−λ̄j), ε̄
(k)
l (−λj),

l = 0, 1, . . . , we consider real valued vector fields

Reε(k)
l (−λ̄j), Imε

(k)
l (−λ̄j), l = 1, . . . , k = 1, 2 . . . . (42)

1Here by definition ε
(k)
0 (−λj) = ε(k)(−λj))
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We renumber all functions (42) with Reλj < σ (including fields with Imλj =
0) as follows:

ε1(x), . . . , εK(x) . (43)

Corollary 3.1. Assume, that A is operator (26) and σ > 0 satisfies (37).
Then for each w0 ∈ V 1

0 (G) satisfying∫
G

(w0(x), εj(x))∂x = 0, j = 1, ..,K (44)

with εj from (43), inequality (40) is true.

4 Stabilization of the Ozeen Equation

4.1 Theorem on Extension

The key step in stabilization method that we propose is construction of special
extension for initial vector field v0(x) from (3.15) defined on Ω to a vector
field defined on G which we take as initial value w0(x) in (3.23). First of
all we make more precise the conditions imposed on Ω and G. Recall that by
(3.20), (3.16)

G = Int(Ω̄ ∪ ω̄), ∂Ω = Γ ∪ Γ0 ∪ ∂Γ, ∂G ∩ ∂Ω = Γ0 ∪ ∂Γ (45)

where Ω and ω are open subsets of R
2, Ω ∩ ω = ∅, ∂Ω is a closed C∞-

curve, and Γ, Γ0 are open subsets of ∂Ω, Γ 	= ∅, ∂Γ is a finite number of
points, or ∂Γ = ∅. We suppose that ∂Ω =

⋃N
j=1 ∂Ωj where ∂Ωj are connected

components of ∂Ω. We impose

Condition 4.1. For each j = 1, . . . , N the set ∂Ωj∩Γ0 is connected or empty.

Condition 4.2. Let ∂Ω ∈ C∞, ∂G \ ∂Γ ∈ C∞ and for each point P ∈ ∂Γ
there exist local coordinates (x, y) such that P is origin; P = (0, 0), {(x, 0), x ∈
(0, ε)} ⊂ Γ , {(x, 0), x ∈ (−ε, 0)} ⊂ Γ0 where ε > 0 is small enough and

∂G ⊃ {(x, y) = (x, xα), x ∈ (0, ε)} ∪ {(x, 0), x ∈ (−ε, 0)}, α � 2 . (46)

Since Ω is a given domain where stabilized Ozeen system is determined,
and we choose ourselves the domain ω, Condition 4.2 is not restrictive.
We introduce the following space

V 1(Ω,Γ0) = {u(x) ∈ V 1(Ω) : u|∂Γ0 = 0, ∃ v ∈ V 1
0 (G) that u = γΩv} (47)

where γΩ is the operator of restriction on Ω for functions from V 1
0 (G).

We formulate now the extension theorem. In the space of real valued vector
fields V 1

0 (G) we introduce the subspace
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X1
σ(G) = {v(x) ∈ V 1

0 (G) :
∫
G

v(x) · εj(x) dx = 0, j = 1, . . . ,K} (48)

where εj(x) are functions (3.43).

Theorem 4.1. There exists a linear bounded extension operator

E1
σ : V 1(Ω,Γ0) → X1

K(G) (49)

(i.e. Eσ(v)(x) ≡ v(x) for x ∈ Ω).
Proof of this Theorem see in [F3].
We show the conditions on v ∈ V 1(G) which garantee inclusion v ∈

V 1(Ω,Γ0)

Theorem 4.2. Let domains Ω and G satisfy (45), Conditions 4.1, 4.2 and
∂Γ 	= ∅. Suppose that v(x) ∈ V 1(Ω) satisfies the conditions: v|Γ0 = 0 and

v(x) ∈ (Hm(Ω ∩ O(∂Γ ))
)2 with m >

3α− 1
2

, α � 2 , (50)

where O(∂Γ ) is a neighbourhood of ∂Γ and α is a magnitude from (46). Then
v(x) ∈ V 1(Ω,Γ0), i.e. it can be extended up to a vector field Lv ∈ V 1

0 (G).
Proof see in [F3].

4.2 Result on Stabilization

We establish now the main theorem of this section on stabilizability by feed-
back boundary control of 2D Ozeen equations.

Theorem 4.3. Let domains Ω and G satisfy (45), and Conditions 4.1, 4.2.
Then for each initial condition v0(x) ∈ V 1(Ω,Γ0) and for each σ > 0 there
exists a feedback control u defined on Σ such that the solution v(t, x) of (3.13)–
(3.15), (3.17) satisfies the inequality

‖v(t, · )‖(H1(Ω))2 � ce−σt as t → ∞ . (51)

Proof of this Theorem is based on Theorem 4.1 (see [F3]).

4.3 Feedback Property

We outline how the method of stabization proposed above can be used for con-
struction of a control which reacts on unpredictable fluctuations of a system.
The point is that if the solution (v(t, x), u(t, x)) of problem (3.13)–(3.15),(3.17)
satisfies equalities (3.25) and if at time moment t̃0 the system (3.13)–(3.15) is
subjected by certain fluctuation, then v(t, x) at t = t̃0 is pushed out γΩX1

σ(G)
and that is why it will not tend to zero with prescribed rate. Therefore we
check when
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‖v(t, · ) − γΩw(t, · )‖V 1
0 (Ω) � ce−σt/2 (52)

(here w(t, x) is the solution of (3.35) with w0(x) = E1
σv0(x)) and at this

moment, say t1, we regard v(t1, x) as initial condition, and for t > t1 we
construct the solution (v, u) of (3.13)–(3.15),(3.17) by formulas (3.25) where
w(t, x) is the solution of (3.231) with initial condition

w|t=t1 = E1
σv(t1, · )

This construction can be written breafly as umpulse control for (3.35), con-
centrated in the artificial part ω = G \Ω of domain:

∂tw(t, x) + Aw = δ(t− t1)(E1
Kv(t1, x) − w̃(t1, x))

where w̃(t1, x) = w(t1, x), for x ∈ ω and w̃(t1, x) = v(t1, x), for x ∈ Ω After
next unpredictable pushing out γΩX1

K(G) of the solution v(t, x) we do the
same.

5 Stabilization of 2D Navier–Stokes Equations

5.1 Formulation of the Stabilization Problem

We consider the 2D Navier–Stokes equations

∂tv(t, x) −Δv(t, x) + (v,∇)v + ∇p(t, x) = f(x), div v = 0 (53)

v(t, x)|t=0 = v0(x), v|Σ0 = 0, v|Σ = u , (54)

where u = (u1, u2) is a control defined on Σ. We suppose also that a steady-
state solution (v̂(x),∇p̂(x)) of Navier–Stokes system with the same right-hand
side f(x) as in (53) is given:

Δv̂(x) + (v̂,∇)v̂ + ∇p̂ = f(x), div v̂(x) = 0, v̂|Γ0 = 0 . (55)

Let σ > 0 be given. The problem of stabilization with the rate σ is to look
for a solution (v,∇p, u) of problem (53), (54) which satisfies the inequality

‖v(t, · ) − v̂( · )‖(H1(Ω))2 � ce−σt as t → ∞ . (56)

The important additional condition which we impose is that u is a feedback
control. We give now exact formulation of feedback control although it is
analogous to Definition 3.1.
We extend Ω to a domain G throught Γ (see (4.45) such that Condition 4.2

holds. After that we extend problem (53), (54) to analogous problem defined
on Θ = R+ ×G with zero boundary condition on S = R+ × ∂G:
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∂tw(t, x) −Δw + (w,∇)w + ∇q(t, x) = g(x), divw(t, x) = 0 , (57)

w(t, x)|t=0 = w0(x), w|S = 0 . (58)

Moreover, we assume that solution (v̂,∇p̂) of (55) is extended on G to a pair
(a(x),∇q̂(x)), x ∈ G such that

−Δa(x) + (a,∇)a + ∇q̂(x) = g(x), div a(x) = 0, a|∂G = 0 (59)

where right side g(x) is the same as in (57).

Definition 5.1 A control u(t, x) in stabilization problem (53), (54), (56) is
called feedback if the solution (v(t, x), u(t, x)) of (53), (54) is defined by the
equality:

(v(t, x), u(t, x)) = (γΩw(t, · ), γΓw(t, · )) (60)

where w(t, x) satisfies to (57), (58), and γΩ, γΓ are restriction operators
(3.24).

5.2 Invariant Manifolds

Let g(x) from (57) satisfies: g(x) ∈ (L2(G))2. Then, as well-known, (57) are
equivalent to the following equation with respect to one unknown function
w(t, x):

∂tw(t, x) − πΔw + π(w,∇)w = πg(x) (61)

where π is orthoprojector on V 0
0 (G). We assume in addition that solution w

of (61) (as well as soulution w of (57) belongs to the space

V 1,2
0 (ΘT ) ≡ L2(0, T ;V 2(G) ∩ (H1

0 (G))2) ∩H1(0, T ;V 0
0 (G)) (62)

for each T > 0, where ΘT = (0, T )×G. It is proved that for each T > 0, g(x) ∈
(L0

2(G))2, w0(x) ∈ V 1
0 (G) there exists unique solution w(t, x) ∈ V 1,2

0 (QT ) of
problem (61), (58). Solution w(t, x) of (61), (58) taken at time moment t we
denote as S(t, w0)(x) : w(t, x) = S(t, w0)(x).
Since embedding V 1,2

0 (QT ) ⊂ C(0, T ;V 1
0 (G)) is continuous, the family

of operators S(t, w0) is continuous semigroup defined on the space V 1
0 (G) :

S(t + τ, w0) = S(t, S(τ, w0)).
Note that we can rewrite (59) in the form analogous to (61):

−πΔa(x) + π(a,∇)a = πg, a(x) ∈ V 2(G) ∩ V 1
0 (G) . (63)

Since a(x) is steady-state solution of (61), S(t, a) = a for each t � 0. We can
decompose semigroup S(t, w0) in a neighbourhood of a in the form

S(t, w0 + a) = a + Ltw0 + B(t, w0) (64)

where Ltw0 = S′w(t, a)w0 is derivative of S(t, w0) with respect to w0 at
point a, and B(t, w0) is nonlinear operator with respect to w0. Differentia-
bility of S(t, w0) is proved, for instance in [BV, Chap. 7. Sect. 5]. Therefore
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B(t, 0) = 0, B′w(t, 0) = 0 . (65)

Moreover in [BV, Chap. 7. Sect. 5] is proved that B(t, w) belongs to class Cα

with α = 1/2 with respect to w.
We study now semigroup Ltw0 = S′w(t, a)w0 of linear operators. First of

all note that w(t, x) = Ltw0 is the soulution of problem (3.22)–(3.23) in which
the coefficient a is the soulution of (63). Therefore Ltw0 = e−Atw0 where A
is Ozeen operator (3.26).
Below we suppose that r0 ∈ (0, 1) satisfies the property:

{ζ ∈ C : |ζ| = r0} ∩Σ(e−At0) = ∅ (66)

where, recall, Σ(e−At) is the spectrum of operator Ltw0 = e−Atw0.
It is clear, that ζj ∈ Σ(e−At0) if and only if ζj = e−λjt0 and −λj ∈

Σ(−A). That is why condition (66) is equivalent to condition (3.37) where
σ = − ln r0/t0. Besides, if |ζj | > r0 then −Reλj > −σ.

Theorem 5.1. Family of operators e−At : V 1
0 (G) → V 1

0 (G) where A is oper-
ator (3.26) is well defined for each t � 0. Let

σ+ = {ζ1, . . . , ζN : ζj ∈ Σ(e−At0), |ζj | > r0, j = 1, . . . , N} (67)

where r0 ∈ (0, 1) and satisfies (66). Let X+ ⊂ V 1
0 (G) be the invariant subspace

for e−At0 corresponding to σ+, Π+ : V 1
0 (G) → X+ be the projector on X+

(i.e., Π+V 1
0 (G) = X+, Π2

+ = Π) and X− = (I−Π+)V 1
0 (G) be complementary

invariant subspace. Let L+
t0 = e−At0 |X+ : X+ → X+, L−t0 = e−At0 |X− : X− →

X−. Then operator L+
t0 has inverse operator (L+

t0)
−1. For some t0 there exist

constants r̂, ε+, ε− ∈ (0, 1) such that

‖L−t0‖ � r̂(1 − ε−), ‖(L+
t0)
−1‖ � r̂−1(1 − ε+) . (68)

Generally speaking eigenvalues of operators A and e−At are complex-
valued. That is why all spaces in Theorem 5.1 are complex. But to apply
obtained results to (nonlinear) Navier–Stokes equation we need to have ana-
logous results for the real spaces of the same type. Actually, for this we have
to define the projector of Π+ in real spaces.

Lemma 5.1. Restriction of operator Π+ on the real space V 1
0 (G) can be

written in the form

(Π+)(x) =
K∑

j=1

ej(x)
∫
G

v(x)εj(x) dx (69)

where {εj} is the set of functions (3.43) which are suitably renumbered and
renornalized functions (3.42) and {ej} is set of Real and Imaginary parts of
functions (3.31) analogously renumbered and renornalized.
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Using (69) we can easily restrict spaces X+ and X− as well as operators
L+

t0 , L
−
t0 defined in formulation of Theorem 5.1 on the real subspaces of V

1
0 (G).

We denote this new real spaces and operators also by X+, X−, L+
t0 , L

−
t0 . This

will not lead to misunderstanding because below we do not use their complex
analogs.
In a neighbourhood of steady-state solution a of (63) we establish existence

of a manifold M− which is invariant with respect to semigroup S(t, w) (i.e.,
S(t, w) ∈ M− ∀w ∈ M− ∀t > 0). This manifold can be represented as the
graph:

M− = {u ∈ V 1
0 (G) : u = a + u− + g(u−) , u ∈ X− ∩ O} (70)

where O is a neighbourhood of origin in V 1
0 (G), g : X− ∩ O → X+ is an

operator-function of class C3/2 and

g(0) = 0, g′(0) = 0 . (71)

Note that this condition means that manifold (70) is tangent to X− at point a.

Theorem 5.2. Let a satisfy (63), σ > 0 satisfy (3.37), O = Oε = {v ∈
V 1

0 (G) : ‖v‖V 1
0 (G) < ε} and ε is sufficiently small. Then there exists unique

operator-function g : X−∩O → X+ of class C3/2 satisfying (71) such that the
manifold M− defined in (70) is invariant with respect to semigroup S(t, w0)
connected with (61)2. There exists a constant c > 0 such that

‖S(t, w0) − a‖V 1
0 (G) � c‖w0 − a‖V 1

0 (G)e
−σt as t � 0 (72)

for each w0 ∈ M−.
This theorem follows form results of [BV, Chap. 5, Sect. 2; Chap. 7, Sect. 5]

and from Theorem 5.1.

5.3 Final Results

Here we construct extension operator for Navier–Stokes equations. This ope-
rator is nonlinear analog of extension operator (4.49) constructed for Ozeen
equatios.

Theorem 5.3. Suppose that a(x) is a steady-state solution of (63), v̂(x) =
γΩa, and M− is the invariant manifold constructed in a neighbourhood a+O
of a in V 1

0 (G) in Theorem 5.2. Let

Bε1 = {v0 ∈ V 1(Ω,Γ0) : ‖v0 − v̂‖V 1(Ω,Γ0) < ε1} .

Then for sufficiently small ε1 one can construct a continuous operator

Ext : v̂ + Bε1 → M− , (73)
2I.e. S(t, w0) is the resolving semigroup of equation (61).
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which is operator of extension for vector fields from Ω to G:

(Extv)(x) ≡ v(x), x ∈ Ω . (74)

The proof of this theorem see in [F3].
We set

V 2(Ω,Γ0)

= {v(x) ∈ V 2(Ω) : v|Γ0 = 0, ∃w ∈ V 2(G) ∩ V 1
0 (G), v(x) = γΩw} (75)

Proposition 5.1. Let f ∈ (L2(Ω))2 and (v̂(x),∇p̂(x)) ∈ V 2(Ω,Γ )×(L2(Ω))2

satisfies equations (55). Then there exist an extension g(x) ∈ (L2(G))2 of f(x)
from Ω to G and an extension (a(x),∇q(x)) ∈ (V 2(G) ∩ V 1

0 (G)) × (L2(G))2

of (v̂(x),∇p̂(x)) from Ω to G such that the pair (a(x),∇q(x)) is a solution
of (59).
We now are in position to formulate the main result of this paper.

Theorem 5.4. Let Ω ⊂ R
2 be a bounded domain with C∞-boundary ∂Ω

and ∂Ω = Γ0 ∪ Γ ∪ ∂Γ , where Γ, Γ0 are open curves, Γ 	= ∅, ∂Γ is a finite
number of points or ∂Γ = ∅. Suppose that a domain G ⊂ R

2 is chosen such
that assumption (4.45) and Conditions 4.1, 4.2 with α � 3 are fulfilled. Let
f(x) ∈ (L2(Ω))2 and (∇v̂(x),∇p̂(x)) ∈ V 2(Ω,Γ0) × (L2(Ω))2 satisfy (55).
Then for an arbitrary σ > 0 there exists sufficiently small ε > 0 such that
for each v0 ∈ V 1(Ω,Γ0) satisfying ‖v̂ − v0‖V 1

0 (Ω) < ε1 there exists a feedback
boundary control u(t, x), (t, x) ∈ Σ ≡ R+ × Γ which stabilized Navier–Stokes
boundary value problem (53)–(54) with the rate (56), i.e. the soulution v of
(53)–(54) satisfies (56).
The proof of this theorem is based on Theorems 5.2, 5.3 (see [F2], [F3]).
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Vortex-based Control Algorithms

Dmitri Vainchtein and Igor Mezić

Department of Mechanical Engineering, University of California Santa Barbara,
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Abstract. In high Reynolds number flows, interactions between coherent vortical
structures are key to understanding dynamics. In this paper we review methods of
control that rely on this observation. Control of vortex dynamics is pursued using
a variety of reduced-order representations of the dynamics, such as point vortices,
vortex blobs and vortex patches. Control algorithms designed based on such rep-
resentations are applied in many contexts of which we review a few of the most
common ones, such as wake vorticity control and recirculation zone vortex control.
We also review some of our own work in the area of vortex control concentrated on
two-vortex merging interactions. The methods used are those of averaging in the case
of limited control authority and the nonlinear control method of flat coordinates.

1 Introduction

In realistic flows, the presence of multiple global (possibly unstable) modes
necessitates the use of multiple control sensors at many locations for the identi-
fication, monitoring and (if needed) suppression of all possible unstable modes.
The spatio-temporal response of a full hydrodynamical structure is nonlinear.
Consequently, knowledge of flow variables (for example velocity or pressure)
at many points throughout the flow region is needed within the feedback con-
trol algorithm. Therefore, the resulting control algorithm may (and probably
will) be complicated and computationally slow, although the advantage of
obtaining very accurate solutions may outweigh those disadvantages. For ex-
amples of such an approach (implemented to the problem of the vortex/wall
interaction) see e.g. [35, 36]. In certain cases, however, a complex distributed
behavior can be addressed locally, as a complex spatiotemporal behavior is
governed by (relatively) few modes. Some theoretical results on possibility of
localized control of dynamical systems possessing spatiotemporal chaos was
presented in [7]. In that case, a low dimensional description of the flow fea-
tures and their response to external forcing is possible and feedback control
algorithms can be made simpler and computationally faster (see e.g. [23, 34]).
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In most of the problems, for analytical or numeric solution to be achieved,
certain simplifications must be made. There are two strategies for such sim-
plifications. Namely, one can simplify the equations or simplify the model
(for example, by reducing the global dynamics to the interaction of coherent
structures). In the following we concentrate on the model-based approaches.
Concentrated vortices are a natural candidate to be used for model-based
description.
In this paper, we first present a short review of efforts in control of vortex

dynamics and then present summary of our own efforts in this area, intro-
ducing methods for control of vortex elements based on averaging and the
concept of flat coordinates.

2 Review of the Vortex Control Research

In the present section we discuss the following topics of the control of vortex
dynamics:

(i) Control of a set of interacting N (typically for small N) vortices (point
vortices or vortex blobs)

(ii) Trapping of vortices near a body.
(iii) Vorticity control for robotic fish swimming.
(iv) Control of mixing.
(v) Control of the wake behind a bluff body.

With the above list we did not try to cover the entire scope of the vor-
tex control problems. Instead, we our aim was to illustrate the spectrum of
applicability of the vortex based control algorithms, from simple configura-
tions of a few point vortices to the complex structure of the wakes. Work on
control of vortex dynamics can be grouped into two categories. In one case
(topics 1,2 above) the objective is to make vortices move along a prescribed
path (for example, stabilize an unstable equilibrium), in the other the main
objective is mixing, prevention of vortex shedding or enhancement of vortex
merger (topics 3,4 and 5) in which the exact trajectory of vortex elements is
the consequence of that objective.

2.1 Simple Vortical Configurations

An important (and probably the simplest) setting of the vortex dynamics
involves a few (point) vortices in a relatively simple domain. In this case
methods of dynamical systems theory are readily applicable and can be used
to manipulate the vortices into any prescribed path. In such problems, the
knowledge of the model equations is assumed and the number of intrinsic
parameters is typically small. Consequently, much of the work can be done
analytically.
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Additional simplification comes from the Hamiltonian structure of the
problem of 2-D point vortices (see e.g. [8, 13, 70]), or, more generally for
compact vortex clusters, where the state of a cluster can be described by just
a few variables). This property becomes especially important for systems with
few vortices where Hamiltonian structure yields additional integrals of motion
and can be used to describe the structure of the phase space (for general dis-
cussion of control of Hamiltonian systems, see e.g. [71]).
Research on control of a set of point vortices was pioneered by Pentek and

co-workers, [77], who applied a standard Ott-Grebogy-Yorke (OGY) technique
to actively stabilize unstable periodic orbits of point vortices inside a circular
cylinder wall (with actuators being a set of sinks at the wall). Friedland and
Shagalov [30, 31] discussed theoretically and numerically producing and con-
trolling so-called V -shape vortices using external strain fields. Friedland, [29],
discussed theoretically and numerically resonance control of Kirchhoff vortices
(2-D elliptical vortex patches) using an autoresonance between co-rotation of
the vortices and time dependent strain field. A similar configuration was con-
sidered numerically in [19] where a possibility of vortex merging was included.

2.2 Vortex/Solid Body Interaction

Major problems of interest for control of vortex interaction are the vortex/wall
interaction and wakes behind bodies. Airfoils provide one of the most impor-
tant and well-known examples of such interactions. It was shown that a vortex
trapped at the airfoil improves the lift and reduces drag (see e.g. [55]). Most
of configurations of vortices near the wall in the presence of the external flow
were found to be unstable. Left to their own devices, vortices tend either to
be swept away by the external flow and/or start shedding secondary vortices.
Either process may be undesirable. Therefore, a variety of mechanical and/or
control techniques were used to enforce trapping of vortices. The research
on control of the vortex/wall interaction and vortex shedding utilises a wide
range of methods from point vortices to vortex blob methods to the direct
analysis of Navier-Stokes equations. A common property of the all the papers
cited below is that the major objective is to create and/or capture a vortex
and keep it relatively intact.
A basic configuration used to study the vortex/body interaction is the one

consisting of a point vortex and a cylinder (various geometries can be reduced
to the cylinder using a conformal mapping). Chernyshenko, [21], provided an
analytical algorithm that uses sources on the surface of a cylinder to keep a
point vortex near it. Pentek and co-workers, [53, 76], used a modified OGY
chaos control scheme, based on a low-dimensional Hamiltonian model of the
flow, to capture and stabilize a concentrated vortex in the vicinity of a cylin-
der. The actuation is done by uniformly rotating the cylinder and changing the
background flow velocity far from the cylinder. The suggested control mecha-
nism, when extended to non-point vortices, achieves two goals: to control the
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dynamics of the vortex and to suppress the vortex shedding. In [76], the OGY
method was used for control of a chaotic vortex/body interaction.
In addition to modifying the flow around the body, one can modify the

body itself to improve the trapping. Iollo and Zanetti [50, 51] discussed con-
trolling the motion of a point vortex trapped in an artificial cavity at the
upper side of an airfoil subject to the potential external flow. The main ob-
jective is to return the vortex to the equilibrium position if the vortex is
displaced by external perturbations and thus improve the airfoil lift. The ac-
tuators are sources/sinks at the wall and the suction/blowing law is obtained
by the adjoint optimization method.
Analytical approach implementing models more complex than point vor-

tices started with the papers of Cortelezzi and co-workers, [23, 24, 25], who
considered the problem of maintaining a vortex near a corner of a wall. Most
of the work in this area is concentrated on preventing vortex shedding. A stan-
dard actuation is one or more sink/sources at the wall. In [24], the authors
discussed a hierarchy of models of increasing complexity: from a low-order
point vortex model to a high-order vortex blob model. A nonlinear controller
capable of manipulating the wake by means of a suction point located on
the downstream wall of the plate is given in closed form for the point vortex
model. It was shown that a controller devised based on a simpler (e.g. point
vortex model) is doing a good job for more advanced (e.g. vortex blob) model.
This approach became an important tool in vortex-based research. Iollo and
Zanetti, [97], applied it to devise analytically a passive control, based on the
wall suction acting at the leading edge, to stabilize the vortex shedding from a
flat plate at incidence. They used the algorithm in a vortex blob simulation to
check the stabilization of the unsteady wake past the plate. Anderson et al.,
[5], used the vortex-blob method to construct numerically a PI controller used
to prevent the shedding.
A review of certain control mechanisms for a full system of the interaction

between a body and incidenting vortex was presented in [80]. The case of
unsteady compressible vortical fluids was discussed in [22] where a general
framework of adjoint approach to optimal control such systems was introduced
and applied to vortex/wall interaction.

2.3 Control of the Wake Behind a Bluff Body

Among all the configurations possessing the concentrated vorticity, the wake
behind a body is probably the most well known. It is well understood that
changing the vortical structure of the wake can be both an objective of the
control algorithm and/or a useful method for achieving other objectives, like
modifying the pressure distribution. Different approaches for the control of
a flow around a body (e.g. a cylinder) have been successfully employed in
the last two decades. Modi, [69], conducted experiments on the role of ro-
tating cylinder(s) on the wake structure near airfoil. Tang and Aubry, [84],
studied numerical suppressing of the vortex shedding by inserting two small
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vortex perturbations in the flow; Gillies, [34], used POD to obtain a lower-
order model that he solved partially analytically, partially numerically using a
neural networks method. Kwon and Choi, [57], (numerically) and Ozono, [74]
(experimentally) studied the impact of splitter plates attached to the cylinder.
Feedback control was studied numerically by Park and co-workers, [75], who
used a pair of blowing/suction slots located on the surface of the cylinder; by
Tao and co-workers, [85], who oscillated a cylinder. Warui and Fujisawa, [92],
devised experimentally a feedback control using the oscillations of the cylin-
der as an actuator. Sakamoto and Haniu, [81], introduced a smaller cylinder
near the main cylinder. Li and Aubry, [59], constructed a feedback controller
based on a four-dimensional potential flow model of point vortices to stabilize
the lift of a cylinder and control vortex shedding using perturbation and as-
ymptotic methods. Huang, [47], suppressed vortex shedding by the feedback
sound. Anderson and co-workers (see e.g, [6]) performed experiments on the
vorticity control by oscillating foil. Mahir and Rockwell [62, 63] studied ex-
perimentally manipulation of the wake behind two vibrating cylinders. Wang
and co-workers, [91], discussed controlling the wake structure by manipulating
the separation point thus modifying the Lagrangian coherent structures.
The complexity of wake structure leads to the multiplicity of the optimal

control approaches. A typical low order model-based method involves two
stages: first the equations of the fluid flow are approximated using reduced
order models and then an optimal control algorithm is sought for the reduced
order model. The difference among various approaches consists in the choice
of the basis functions used to obtain the reduced models and the cost func-
tions that are minimized. In the reduced basis approach one uses as basis
functions the terms which arise in series expansion of the solution with re-
spect to a certain parameter (see e.g. Ito and Ravindran, [52]). The proper
orthogonal decomposition (POD) approach was applied by Graham et al.,
[37, 38], and by Afanasiev and Hinze, [4]. Distributed controls were used by
Abergel and Temam, [2], Gunzburger and co-workers, [40], Hou and Ravin-
dran, [45, 46]; blowing and suction on the surface of the cylinder was studied
by Berggren, [14], Bewley and co-workers, [15], Ghattas and Bark, [33], Li and
co-workers, [60]; velocity tracking (boundary velocity controls) was employed
by Gunzburger and Manservisi, [42], Gunzburger and co-workers, [41], Hou
and Ravindran, [45, 46]. Homescu and co-workers, [44], and Li and co-workers,
[60], constructed numerically optimal control based on adjoint method with
the actuation being in the form of cylinder rotation and blowing/suction,
respectively.
Just as the different methods were used for the actuation of the wake,

various flow characteristics were used as the cost functionals. Abergel and
Temam, [2], minimized the turbulence for a flow respectively driven by volume
forces, a gradient of temperature and a gradient of pressure (the turbulence
being measured by a L2 norm of the vorticity or, respectively, by studying
the stress at the boundary); Berggren, [14], minimized the vorticity field.
Bewley and co-workers, [15], reduced the turbulent kinetic energy and drag;
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Protas, [79], minimized the sum of the work needed to resist the drag force
and the work needed to control the flow; Ghattas and Bark, [33], used as an
objective function the rate at which energy is dissipated in the fluid. Li and
co-workers, [60], used the adjoint approach to obtain the numerical solution
to the problem of controlling vortex shedding behind a rotating cylinder for
several cost functions. Protas [78] uses the Foppl point vortex system as a
reduced-order model for stabilization of the steady symmetric solution in an
unstable laminar wake using the LQG (Linear Quadratic Gaussian) approach.

2.4 Vortex Dynamics in Shear and Mixing Layers

In many applications, the main objective is to maximize the transport and
mixing of fluid and/or external particles between the different parts of the flow.
Typically, the stronger the interaction between the coherent structures of the
flow, the more intense the mixing is. However, even if the interaction is strong,
the insufficiency (or suboptimality) of the rate of mixing in many applications
necessitates the consideration of control algorithms. Here we briefly review
research on control of of mixing in mixing layers (e.g. shear layers), where
dynamics includes interaction of multiple vortices (in the simplest case, vortex
pairs) and the interaction between the recirculation zone (typically consisting
of a single vortex) and the outer flow.
It is widely accepted that large quasi-deterministic, vortical, spanwise

structures are the essential ‘building blocks’ of the mixing layer and are re-
sponsible for virtually all of the momentum transfer across its extent. In a
sense, the objective of control of mixing is opposite to other problems of vor-
tex control: instead of stabilization of vortex configurations, the purpose is to
destabilize them. Control of the mixing layer started with the work of Hoa
and Huang [43], where the spreading rate of the layer was controlled using
the subharmonic (relative to the most-amplified frequency) actuation of the
merging. In the later papers, the most attention was paid to the selection of
frequencies of actuation. Multiple-frequencies approach was suggested by In-
oue, [48], who used two (and later in [49] three) distinct frequencies. De Zhou
and Wygnanski, [27], studied the multiple-frequencies actuation experimental-
ly. Acharya and co-workers, [3] illustrated that the subharmonic forcing with
different frequencies affects the vortex formation and can regularize the shear
layer. See [28] and [39] for a review, the latter especially covering experimental
methods.
The research on control of mixing between the recirculation zone and the

outer flow was initiated with the articles of Noack and co-workers, [72, 73].
The main technique was to modify the motion of the vortex to enhance the
exchange between the recirculation zone and the outer flow. The criterium
for the efficiency of the mixing was based on the so-called lobe dynamics -
that measure the volume of fluid taken into (or out) of the recirculation zone.
The optimal vortex motion, was then stabilized by using an observer and a
feedback law. An alternative measure – the approach suggested in [26] - is to
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consider the Kolmogorov-Sinai Entropy. The feedback-control approach for a
variety of control of mixing objectives can be found in [1, 12].

2.5 Vortex Control for Improved Swimming Efficiency

In the previous settings we assumed that the vortices were created by the orig-
inal system itself, either be it away from the observable region, or inside it.
However, it is the very creation of the vortices that makes certain devices work.
Research in locomotion gave birth to a relatively recent application of vortic-
ity control, robotics. Efficiency of fish swimming lead to interest in adapting
the fish swimming techniques to swimming robots. Wolfgang and co-workers,
[93], numerically illustrated the generation and manipulation of vorticity in a
swimming and turning live fish. Zhu and others, [98], studied numerically flow
structure and vorticity control in fish-like swimming, in particular vorticity
controlled thrust and propulsive efficiency. See also [36, 86, 87] for reviews of
recent developments in vorticity control in fish-like swimming.

2.6 Topics Left Out of the Scope

At the end of the current section we would like to mention topics that involve
the control of vortical structures near an airfoil, that were left out of the scope
of the paper. The reasoning for the omission is that in our view they are not on
the immediate line of thought that leads to the control of vortex merging and
also the presence of very recent reviews. A throughout reviews of control of
airplane trailing vortices, including vortex breakup is presented in [67, 68, 83].
A review of aircraft wake vortices is presented in [32]. And finally a review of
control of vorticity aimed at reduction of aircraft drag is contained in [18].
Besides the topics mentioned above, we did not discuss control of turbu-

lence, control of global vortical structures (e.g. Taylor Vortex Flow) and the
problems where the changing of vortex structure comes as a byproduct of
achieving another goal.

3 Towards Control of Vortex Merging

In the previous section we discussed the domain of applicability of the vortex
control methods. We saw that the control of vortex interaction may be a
key to manipulating the whole flow structure. Among the processes of vortex
interaction, the impact of vortex merging is, probably, the largest. In the
present section we discuss controlling interaction of two vortices in order to
facilitate or prevent merging. It is known (see e.g. [20]) that if the vortex
separation is larger than some critical value, vortices do not merge for a long
time that depends on the rate of viscous dissipation. On the other hand, if
vortices are close they merge fast, usually before they complete a full turn
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around each other. Therefore, manipulating of the separation is crucial for
controlling the merging.
We separate two different cases: when vortices are far apart (in other words,

characteristic size of vortex core is much smaller then the characteristic vortex
separation) and when vortices are relatively close. In the former case, that we
discuss in the next subsection, we use the point vortex approximation. The
latter case, when the shape of vorticity distribution is important and vortex
merging is possible, we discuss in Sect. 5.

4 Control of a Pair of Point Vortices

In the leading approximation two co-rotating point vortices are in a stable
periodic motion. Hence, one can use weak (adiabatic) control, a particular case
of singular perturbations control [56]. We review the problem of controlling
the state of a pair using a strain field or a field of a single souce/sink. In
both cases, when considering the case of weak control we use the method of
averaging over the fast rotation of vortices around the center of vorticity. For
the case of the strain field actuation whose integral over a cycle of vortex
rotation is bounded the optimal solutions in integral setting are impulsive –
they consist of Dirac delta functions applied at optimal phases (when a system
is the most “receptive” to given control inputs) during the cycle of vortex
rotation. While these results are obtained by “direct” optimization, For the
case of the source-sink field we pose the optimal control problem through the
use of the Pontryagin maximum principle on the averaged system. A solution
is a set of Dirac delta pulses at optimal phases of the vortex rotation cycle
leading to a natural connection between the averaging method and impulsive
control [82, 94]. The qualitative aspects of the results presented here are not
restricted to the particular form of control flows, but stand for a wide class
of actuations. For example, the fact that the source flow profile induced by
an actuator in a source/sink experiment might resemble a jet more then a
uniform source should not change the conclusion that the optimal control in
our specific setting is achieved by a set of pulses synchronized with the internal
dynamics of the vortex pair. Detailed analysis, elements of which are shown
here, is contained in [90].

4.1 Averaging for a Co-Rotating Vortex Pair

The state of a pair of point vortices positioned at x1,x2 can be described
by four variables: the position of the joint vorticity centroid, xc, the vortex
separation, 2r and the relative phase of vortex rotation, ϕ. In terms of x1 and
x2, the coordinates of xc = (xc, yc) = (1/Γ ) (Γ1x1 + Γ2x2), where Γj is the
circulation of the j-th vortex and Γ = Γ1 + Γ2. We restrict our discussion
to the case of the same sign vortices (a co-rotating vortex pair). The equa-
tions of motion for a co-rotating vortex pair in the absence of any external
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perturbation are:
.
xc = 0,

.
r = 0 , (1)
.
ϕ = Ω (r) .

Each vortex moves along a circle of radius rj centered at xc with the same
angular frequency Ω(r) = Γ/8πr2. xc and r are the integrals of motion of the
unperturbed system.
Now we assume that an external perturbation (control) in the form of a

single-input potential velocity field u(x, t) = εα (t)v(x) of small magnitude
εα(t) � 1 is imposed on the vortex pair. The evolution equations for the
perturbed system are

.
xc = εα(t)

1
Γ

2∑
j=1

Γjvj ,

.
r = εα(t)

2∑
j=1

1
rj

(vj , rj) , (2)

.
ϕ = Ω (r) + εα(t)

2∑
j=1

1
r2
j

|vj × rj | ,

where vj is the value of v at the position of the j-th vortex. This is a 4-
dimensional nonlinear system for which it is hard to obtain direct controlla-
bility results. The rate of change of ϕ is much larger (by a factor of order 1/ε)
than the rate of change of other variables. Assuming that α = α(ϕ), we can
average the perturbation over a fast period and consider the averaged system
instead of the exact one. This is in spirit of constructive controllability results
using averaging over fast-varying, time-dependence sinusoidal inputs (see e.g.
[58, 17]). The difference in our case is that the fast dynamics is provided by
the system itself through the angle ϕ. In addition, the control needs to be
specified only for the slow-evolving variables xc and r since the desired angle
can be reached due to the nominal dynamics of the system (cf. [88]). This is a
typical situation for Hamiltonian systems with integrable nominal dynamics
[9, 65, 66], where splitting into slow and fast (action and angle) coordinates
is possible. The averaged system is

.
xc = ε

1
Γ

1
2π

∫ 2π

0

α(ϕ)
2∑

j=1

Γjvj dϕ,
.
r = ε

1
2π

∫ 2π

0

α(ϕ)
2∑

j=1

1
rj

(vj , rj) dϕ.

(3)
The solutions of averaged system (3) describe the behavior of xc and r of
exact system (2) to an accuracy of order ε over time intervals of order 1/ε
[10, 16] provided Ω(r) is not zero, in the case of sufficiently smooth right-hand
sides.
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In the following sections we discuss solution to problems of controlling the
position of a vortex pair using simple potential velocity fields v: strain field
and source/sink field. Our analysis relies heavily on averaged equations (3)
and is prompted but by smallness of the control input magnitude εα with
respect to angular frequency of rotation Ω.

4.2 Two Vortices Controlled by a Strain Field

The first problem we discuss is controlling the state of a vortex pair using
a single strain field described by a potential Ψ = εα (ϕ(t))xy and the corre-
sponding velocity field u:

ux = εα (ϕ(t))x, uy = −εα (ϕ(t)) y. (4)

It will prove useful to represent the control α as

α = 〈α〉 + αf (ϕ) . (5)

where 〈α〉 = (
∫ 2π

0
α dϕ)/2π. Substituting (4) into (2) and averaging over a

fast period we arrive at:

.
xc = εxc

1
2π

∫ 2π

0

α dϕ = εxc 〈α〉 ,
.
yc = −εyc

1
2π

∫ 2π

0

α dϕ = −εyc 〈α〉 , (6)

.
r = εr

1
2π

∫ 2π

0

α cos(2ϕ) dϕ = εr
1
2π

∫ 2π

0

αf (ϕ) cos(2ϕ) dϕ.

Note, that the evolution equations for xc and r are separated in a sense that
.
xc depends on the average part of α only, while

.
r depends on the oscillatory

part of α. The separability is not a property peculiar to strain field controlled
dynamics of a vortex paper. The same property holds in a generic N actions
+ 1 angle system.
We now want to study controllability of (6): is it possible to change both

xc and r from some arbitrary initial to arbitrary final position by using some
α(ϕ)? We divide the algorithm into two steps: (1) Moving xc from the initial to
the final position without changing r much; (2) Adjusting r without disturbing
xc much. The combination of the two steps specifies the required control. Note,
that the two steps can be combine into one as the evolution of xc and r depend
on different terms in expansion (5).
Step 1. A strain field is specified if we prescribe the position of the origin,

the orientation and the strength. It is clear that if both the origin and the
orientation of are prescribed, xc can not be moved at will across the plane.
However, given the initial and final state we can prescribe either the initial
orientation or position of the origin of the strain field such that the system
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is moved from the initial to the final state in finite time. Varying 〈α〉 we just
change the speed of xc without changing the trajectory. For 〈α〉 = const, it
takes the time τ ∝ 1/(ε 〈α〉) to move xc from the initial to the final position.
It follows from (6), that if αf (ϕ) = 0 in the averaged system the vortex

separation does not change. As the duration of Step 1, τ , is of order 1/ε, the
vortex separation in exact system is within ε from the one in the averaged
system, and, therefore, from the initial value. Thus the objective of Step 1 is
met. For numerical simulations that check the numerical value of error of the
averaging technique see [89].
Step 2. Now our aim is to change the vortex separation from an initial

value 2ri to a final value 2rf without moving xc. We can do it by keeping the
perturbation in resonance with the unperturbed system: it follows from the
last line in (6), that if αf (ϕ) is of the same (opposite) sign as cos(2ϕ),

.
r is

always positive (negative) for non-vanishing values of r. It follows from the
first two lines in (6), that if we set 〈α〉 = 0 for this step xc in the averaged
system stays the same. The duration of Step 2, τ , is of order 1/ε,r and xc in
exact system are within ε from the ones in the averaged system.
Step 2 provides a convenient setting to describe the optimal control for the

averaged settings. Define a cost function as a flow of a control field through
some surface. The flow is proportional to

Φ(τ) = ε

∫ τ

0

|α| dt , (7)

where the integration is performed over the entire evolution of the system
(τ ∼ 1/ε). It is clear from (6), that as during Step 2 we do not want to move the
center of vorticity, without loss of generality, we can set 〈α〉 = 0, α = αf (ϕ).
It follows from (7), that

.

Φ(t) = ε |α| (t). Averaging this relation over ϕ we get
.

Φ = ε
1
2π

∫ 2π

0

|α(ϕ)| dϕ.

Introducing Φ as a new (slow) time we can rewrite the last line in (6) as

dr

dΦ
= r

∫ 2π

0
αf (ϕ) cos(2ϕ) dϕ∫ 2π

0
|αf (ϕ)| dϕ

(8)

under the constraint 〈αf 〉 = 0. We reduced the problem of minimizing flow to
minimizing the time of the evolution. It follows from (8), that the final value
of Φ does not depend on ε. Therefore, one can not just reduce ε to improve
the efficiency of control. On the other hand, the value of τ (see (7)) is (in the
first approximation) inversely proportional to ε. All we have to determine is
the shape of αf (ϕ). It follows from (8), to minimize the total flux we need to
maximize th integral at the right-hand-side over all α. It was shown in [89]
that such a function αf (ϕ) is a set of pulses which coincide with the extrema
of cos 2ϕ. For example, αf (ϕ) can be chosen as
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αf (ϕ) = ±1
4

(δ(ϕ) + δ(ϕ− π) − δ(ϕ− π/2) − δ(ϕ− 3π/2)) , (9)

where the positive and negative signs correspond to rf > ri and rf < ri,
respectively. The control given by equation (9) has the form of the so-called
impulsive control [94, 82]. Thus we have obtained a natural connection be-
tween optimal control in the averaging context and impulsive control methods.
Note that the resulting control (control of vortex merger by minimum flux)
is quite different from the standard bang-bang control profile (that would be
appropriate in the context of the minimum time problem, see e.g. [54]). The
detailed discussion of this is contained in [90].
Strictly speaking, the resulting optimal control αf (ϕ) is not in the space

of functions but in the space of signed measures (Dirac δ-functions) on the
circle and it does not satisfy the requirements used in [10, 16] to prove the
validity of the averaging method. However, the smoothness requirement in ϕ
that these references use can be easily overcome for the impulsive control (9)
using integral methods of averaging theorem proof such as in [61] to prove
that the full system and the averaged system stay within ε over times of order
1/ε.

4.3 Two Vortices in a Source/Sink Field

In this section we consider the problem of controlling the separation of a vortex
pair using a single source/sink field. Whilst in the previous section optimality
of a particular control was shown using “direct” optimization methods, here the
problem becomes more complicated and requires the use of more sophisticated
tools from control theory, such as the Pontryagin maximum principle. The
control is still specified as a feedback, but in this case besides the angle ϕ the
control depends on both the vortex separation and the position of the center
of vorticity. We are interested only in the vortex separation problem, – the
final position of the center of vorticity xc is arbitrary.
Let the source/sink be at the origin. Then the control flow is described by

a potential
Ψ = εα (xc(t), r(t), ϕ(t)) arctan (y/x) .

Like in the previous section we consider the control fields that do not depend
explicitly on time. Positive and negative values of α correspond to a source
and a sink, respectively. The corresponding velocity field is

ux = εα (xc, r, ϕ)
x

x2 + y2
, uy = εα (xc, r, ϕ)

y

x2 + y2
.

Let the instantaneous position of the center of vorticity, xc, be at x = c,
y = 0. Denote by ϕ the phase of rotation of the vortices: tanϕ = (x1 −
c)/y1. We also assume that the source/sink is removed from the vortices:
c > r throughout the evolution. For the sake of simplicity we consider only
symmetric in ϕ perturbations that do not move xc from the x-axis and also
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reduce the discussion to a particular case of two identical vortices. Substituting
the above control field into (2) and averaging over the fast period we get

.
r = ε

1
2π

∫ 2π

0

α (xc, r, ϕ) fr dϕ,
.
c = ε

1
2π

∫ 2π

0

α (xc, r, ϕ) fc dϕ, (10)

where

fr = r
r2 − c2 cos(2ϕ)

r4 + c4 − 2r2c2 cos(2ϕ)
, fc = c

c2 − r2 cos(2ϕ)
r4 + c4 − 2r2c2 cos(2ϕ)

.

One can see that fr and fc satisfy the following relation:

cfc + rfr = 1. (11)

Similarly to Sect. 4.2, c and r can be controlled independently. In what follows,
we are going to concentrate on controlling r only. As fr is periodic in ϕ, by
appropriate choice of α(ϕ(t)) we can assure that in the averaged system

.
r

is always positive (negative) and it vanishes for r = 0 only. Hence, we can
change r in the averaged system from any initial value to any final value over
the time of order 1/ε. And, as the exact system stays within ε from the exact
system, it means that we can make the vortex separation in the exact system
arbitrarily close to the target value.
Similarly to Sect. 4.2, the extrema of fr and fc, that coincide and are

located at ϕ = 0, π and ±π/2, determine the structure of optimal control.
Define the optimal control as a perturbation that minimizes the total flow
through the source/sink and satisfies all the imposed constrains. The flow is
given by

Φ = ε

∫ τ

0

|α| dt,

where the integration is performed over the entire evolution of the system
(τ ∼ 1/ε). We consider the problem of changing the vortex separation from
an initial value 2ri at t = 0 to a final value 2rf .
Evolution equations (10) are nonlinear and possess 2 degrees of freedom.

Therefore, the solution is more complicated compared with the strain field
case. What allows us to obtain an analytical solution is conservation law (10).
Similar to the strain field case, the optimal control is a set of δ-pulses. If
rf > ri, the optimal control consists of sink pulses applied at ϕ = 0, π. For
rf < ri there exists a critical value of r, r∗ = rf (1 + r2

i /c
2
i )

1/2, such that
depending on the relation between ri and r∗ we can have no switches or one
switch. For ri < r∗ there are no switches and the control is a set of source
pulses at ϕ = 0, π. For ri > r∗ the control is a set of sink pulses at ϕ = ±π/2
until r reaches the value r = r∗ and then the control becomes a set of source
pulses at ϕ = 0, π.
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5 Control of a Pair of Vortex Patches

When the vortices come closer the point vortex approximation cease to be
valid and one must take into account distributed vorticity. A possible ap-
proximation is vortex patches (blobs) model. The control of such structures
was pioneered by Cortelezzi and his co-workers [25]. In the current section we
study the behavior of identical patches. We provide insight into using control
to force or prevent the merging, by putting a point vortex of a time-varying
strength in the joint center of the vorticity.
For a certain range of parameters (e.g. initial separation) merging might

occur or not occur depending on the initial conditions. In other words, in the
phase portrait there are regions of merging and co-rotating regimes. Depend-
ing on the initial and current location of a phase point different control regimes
are admissible. While in a co-rotating state the time of evolution might be of
no concern, one need to act pretty fast to prevent patches on a merging trajec-
tory from passing beyond a point of no return (although a recent publication
by Yu and Driscoll, [96], suggest that even after the beginning of merging the
process can be somewhat reversed).
Consider uncontrolled nominal dynamics of a pair of two identical ellip-

tical vortex patches. Numerous simulations showed, that, if the separation
between the patches is relatively large, then initially elliptical patches stay
close to (albeit not exactly in) the elliptic shape. Therefore, we can use the
characteristics of the ellipses to describe, with varying degree of accuracy, the
system. Any state of such system is specified by three variables: the separation
between the centers of the patches, 2R, the aspect ratio λ = b/a, where a and
b are the lengths of the major and minor axes, respectively, and the orienta-
tion angle ϕ (see Fig. 1). The system possesses two conserved quantities. The
first is the position of the joint center of vorticity: xc = (x1 + x2) /2, where
xi is the position of the center of the i-th patch, assumed to be located at the
origin, the way it is shown in Fig. 1. The second is the total angular impulse,
M = 2Aω

(
R2 + (A/4π)

(
1 + λ2

)
/λ
)
, where A and ω are the area and the

circulation of a patch, respectively. Note, that the angular momentum (in a
more general, integral, form) is conserved even without the ellipticity assump-
tion. The value ofM roughly specifies how far (compared with their size) from
each other the patches are located. It follows from the conservation ofM , that
there is a maximum value of the patches’ separation, which is achieved when
λ = 1 (circular patches) and is given by R2

max = M/(2Aω) −A/(2π).
We discuss two possible control algorithms. The first is obtained using

method of flat coordinates [11, 71]. We show that Hamiltonian structure of the
control field is important to prove controllability. The Hamiltonian structure
of the nominal system leads to significant extension of reachable domain. In
particular, it provides a way to overcome singularities. The second method
is to use the method of adiabatic control, similar to the one discussed in
the previous subsection. Using this problem as an example we compare these
approaches and discuss there relative advantages and disadvantages.
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Fig. 1. A sketch of two elliptical vortex patches symmetrically situated around the
joint center of vorticity at the origin

In the normalized variables evolution equations can be written as

.

λ = +
1
4ρ

λ sin 2ϕ + γ(t)
1
ρ
λ sin 2ϕ, (12)

.
ϕ =

λ

(1 + λ)2
− 1

8ρ

[
2 −

[
1 + λ2

1 − λ2
+

1
4ρ

1 − λ2

λ

]
cos 2ϕ

]
(13)

−γ(t)
1
ρ

(
1 − 1 + λ2

1 − λ2
cos 2ϕ

)
,

4ρ = σ −
(
λ +

1
λ

)
.

where ρ = R2π/A and σ = 2πM/A2ω are normalized square of the patches
separation and angular impulse, respectively, λ is the aspect ratio and ϕ is
the orientation angle (see Fig. 1). Normalized vorticity of a point vortex, γ(t),
is a control parameter.
Terms without γ describe nominal dynamics. Of them, the first term on the

right-hand side in the second line is self-interaction and the remaining terms
are mutual interaction between the patches. The dynamics of the nominal
system was studied in details in [64, 95].

5.1 Flat Coordinates

When the patches are in the merging-bound state, the major requirement for
a control algorithm is to be fast. It also might be quite strong control in order
to overcome dynamics of the original system and make the state variables
evolve in a prescribed, however “unnatural”, manner. In that case, of course,
the structure of the nominal flow is completely destroyed. The method of flat
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coordinates [11, 71] provides a way to construct such an algorithm. Apply
change of variables

z1 = −1
2

1 − λ2

λ
cos 2ϕ +

(1 − λ)2

λ
,

z2 = sin 2ϕ

(
1 − λ

1 + λ
− 1

32ρ2

(
1 − λ2

λ

)2

cos 2ϕ

)
. (14)

In the new coordinates evolution equations (12) and (13) can be written as
.
z1= z2,

.
z2= g1(z1, z2) + γ(t)g2(z1, z2), (15)

where g1(z1, z2) and g2(z1, z2) are certain (known) functions of z1 and z2.
Advantage of new variables (14) is that in (15) γ(t) appears in one equation
only. It is clear that the required change of variables exist if and only if the
control field is integrable. If the control field has just one degree of freedom,
it is integrable if it is Hamiltonian. The method of flat coordinates works
as follows. The initial and target states of the system specify the initial and
terminal values of z1 and z2. We can choose an arbitrary trajectory z1(t)
provided that it satisfies the first equation in (15) at the initial and final
points. The evolution of z2 is governed by the first equation in (15). The
second equation in (15) yields the equation for the control parameter γ(t):

γ(t) =
.
z2 − g1(z1, z2)

g2(z1, z2)
,

provided that g2(z1, z2) is not zero. The difference between the system under
consideration and those studied earlier (see e.g. [72]) is that g2(z1, z2) is zero
on a special curve, which we call the uncertainty curve and denote by Γ . The
uncertainty curve presents an obstacle for the method of flat coordinates: the
equation for γ(t) has a singularity on that curve. Therefore, we need to modify
the method of flat coordinates.
If the initial and final points are on the same side of the uncertainty curve

we can choose a path z1(t), z2(t) that does not intersect the uncertainty curve.
If these points reside on different sides of the uncertainty curve, we can nav-
igate the way across Γ using the internal dynamics of the original system.
First, we bring the system close to the uncertainty curve in a region where
the vector field of the original system intersects the uncertainty curve in the
proper direction: inside or outside. The existence of such a region follows from
the preservation of the phase volume in Hamiltonian systems. Second, we turn
the control off (γ = 0). The original flow moves the system across the uncer-
tainty curve. Then we proceed in a conventional way with flat coordinates
using the terminal point of the previous step as the new initial point.
To summarize, the usefulness of the method of flat coordinates for flow con-

trol lies in the freedom to choose nearly arbitrary control profile. In particular,
we can avoid “dangerous” parts of the phase space and make the total time
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of the evolution arbitrary small. These properties are particularly important
if the objective is to take the system from a merging-bound to a co-rotating
state. In that case the available time is obviously bounded: patches will merge
in less then half a period of full rotation. Therefore, although the method of
flat coordinates is not cost-efficient, it is quite useful as “emergency” control.

5.2 Adiabatic Control

The control mechanism considered in Subsect. 5.1 could involve relatively big
control impacts (large values of γ(t)) as they are supposed to suppress the
nominal dynamics. In the present section we discuss the opposite case, when
control can be considered to be small perturbation compared with the original
system. In this case characteristic time scale of the unperturbed system is
much smaller than characteristic time scale of the perturbation. This means
that we can apply the method only as long as patches are in some form of
steady state, i.e. in a non-merging regime [64]. This approximation allows
us to average the perturbation over a fast period and consider an averaged
system instead of the exact one.
The state of the unperturbed system can be described using H0, which is

the excess energy and the Hamiltonian of the nominal system, and an angle
variable ψ, that is a phase on a line of constant H0. The equations of motion
of nominal dynamics are:

.

H0= 0,
.

ψ= Ω (H0) , (16)

where Ω (H0) is angular frequency. Note, that Ω is a function of H0 only.
Let the control vortex have a characteristical strength ε � 1. The evolution

equations for the perturbed system are
.

H0= εγ(t)fH ,
.

ψ= Ω (H0) + O(ε), (17)

where fH is the time derivative of H0 due to the control field:

fH = − sin 2ϕ

(
1 − λ

1 + λ
− 1

32ρ2

(
1 − λ2

λ

)2

cos 2ϕ

)
.

Averaging (17) over a fast period we arrive at

.

H0= ε
1
2π

∫ 2π

0

γ(ψ)fH(ψ) dψ. (18)

The solutions of averaged system (18) are close to those of the nominal system
(17) to an accuracy of order ε over time intervals of order 1/ε [10, 16] provided
Ω(H0) is not zero.
As fH is π-periodic in ψ, it follows from (18), that we can always choose

γ(ψ) such that H0 will change from any initial value to any final value, pro-
vided that the system stays in a steady, non-merging regime. Therefore, we
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can use the feedback control and keep γ to be of the same (opposite) sign as
fH to make H0 increase (decrease). This method allows us to move the system
to the desired phase curve of the original system and the fast rotation will do
the rest.
Similar to the previous section, consider a cost function of the form similar

to (7):

Φ = ε

∫ τ

0

|γ(t)| dt, (19)

Note that
.

Φ (t) = ε |γ| (t). By averaging this relation over ψ and introducing
Φ as a new (slow) time we arrive at the equivalent of (8):

dH0

dΦ
=

∫ 2π

0
γ(ψ)fH(ψ) dψ∫ 2π

0
|γ(ψ)| dψ

. (20)

Similarly to (9), the optimal control can be written as a set of Dirac δ-
functions:

γ∗(ψ) = ±
∑

i

sign(fH(ψ)) δ
(
ψ − ψ(i)

max

)
, (21)

where {ψ(i)
max(H0)} is a set of values of ψ at which |fH | reaches its maximum

value, fH,∗ at a given value of H0; plus and minus signs correspond to increase
and decrease of H0, respectively. Substituting (21) into (20) we arrive at

Φ =
∫ H0,max

H0,min

1
fH,∗(H0)

dH0. (22)

Optimal control lets the nominal system go around the phase trajectory
and the impulses are applied every time the phase point intersects comes to
ψ = ψmax(H0) to move the system to the next level of H0.
Note that there is no lower bound of the magnitude of the actuation: when

ε becomes smaller, the time of the evolution increases, but the controllability
results do not change.

Conclusions

In the present paper we presented an overview of the control of vortex-
dominated flows and discussed two particular algorithms of controlling the
motion of a pair of interacting vortical structures: point vortices and ellipti-
cal vortex patches with application to control of the merging. One way is to
use the method of flat coordinates. The Hamiltonian structure of control field
is crucial to prove controllability and the Hamiltonian structure of nominal
system leads to significant extension of the reachable domain. The other ap-
proach is to use the “adiabatic” control, that is a small perturbation compared
with the nominal system. In this context, we use the method of averaging over
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the fast rotation of vortices around the center of vorticity. We show that one
can make control more efficient by using the internal dynamics of the system,
in particular, keeping the perturbation in phase with fast (angle) variable of
the nominal system.
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Abstract. We present a set of stochastic optimization strategies and we discuss
their applications to fluid mechanics problems. The optimization strategies are based
on state-of-the-art stochastic algorithms and are extended for the application on fluid
dynamics problems. The extensions address the question of parallelization, strategy
parameter adaptation, robustness to noise, multiple objective optimization, and the
use of empirical models. The applications range from burner design for gas turbines,
cylinder drag minimization, aerodynamic profile design, micromixer, microchannel,
jet mixing to aircraft trailing vortex destruction.

1 Introduction

The optimization of physical processes for applications in areas such as tur-
bomachinery, aeronautics, and microtechnology poses different challenges to
the optimization engineer.
Jet mixing, for example, is an application in which an increased mixing is

aimed at in order to reduce noise, suppress signature, and increase lift in civil
and/or military aircraft. Mixing the hot jet gas with the surrounding air can be
enhanced by actuating the flow at the outlet of the jet. For a systematic search
for optimal actuation parameters, one first needs to obtain the mixing rate
as a function of the actuation parameters. This can be achieved by setting
up experiments or simulations. Let us assume that a computer program is
available that simulates the jet and computes the value of the mixing rate.
Then, for an automated optimization, we need to wrap a search algorithm
around the simulation program. What is a suitable optimization method in
this case?
The program can compute the mixing rate as a function of the actuation

parameters, that means, only function information is available but no gradi-
ent information. To obtain gradients, we would need to (i) approximate them
using e.g. finite difference methods that are inaccurate [4], or (ii) compute
them using automatic differentiation techniques which is not so trivial and
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might not be easily applicable to this particular case [3], or (iii) determine
them using e.g. an adjoint variable method which is a difficult task that has
not been solved yet for jet mixing (and for most other fluid dynamics appli-
cations) [36]. The problem of jet mixing exemplifies the difficulties associated
with optimization using gradient based methods, namely noise, multiple min-
ima, and the overall absence of an explicit function relating parameters and
objective function. The same underlying difficulties are present in other appli-
cations tackled in this paper ranging from realistic turbomachinery to shape
optimization in nanoscale structures. Therefore, the applicability of gradi-
ent methods in these case appears not convincing. More promising for these
problems are nongradient optimization techniques despite their slow conver-
gence properties. Among those, we can decide for deterministic or stochastic
techniques. As the jet and other fluid dynamics applications represent highly
dynamical systems that are susceptible to small changes in actuation parame-
ters, a stochastic optimization algorithm that can handle noise is preferable.
Among stochastic search methods, evolutionary algorithms have become

more and more popular in recent years, mainly because of their ease in imple-
mentation and their advantages compared with traditional algorithms espe-
cially when dealing with nondifferentiable, discontinuous, multimodal and/or
noisy optimization functions. As most engineering optimization problems deal
with such kinds of functions, it is obvious that evolutionary algorithms are an
interesting alternative to classical methods.
Our stochastic optimization framework includes

• the Covariance Matrix Adaptation Evolution Strategy (CMA-ES) [19, 20,
31],

• Evolutionary Algorithms using adaptation techniques that employ Self-
Organizing Maps [6, 7, 8, 23],

• Evolutionary Multi-Objective optimization algorithms with adaptation
and noise-tolerance [5],

• Clustering Genetic Algorithms for finding correlations in a set of solutions
[27], and

• Response Surface Methods including Gaussian processes for interpolation
of solutions [1, 16, 24, 41].

The applications are presented in the following order: We start with the
experimental optimization of a burner in combustion processes in Sect. 2. Bluff
body flow and particularly the minimization of cylinder drag is the topic of
Sect. 3. In Sect. 4, we describe how aerodynamic profiles can be designed using
novel stochastic optimization concepts. The optimization of micromixers is
shown in Sect. 5, microchannel design in Sect. 6, jet mixing in Sect. 7, and
aircraft trailing vortex destruction in Sect. 8. Our observations are concluded
in Sect. 9.
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2 Multi-Objective Optimization
in Combustion Processes

The optimization of the combustion process of a stationary gas turbine is
a challenging real-world application with conflicting objectives. New govern-
mental laws on emission taxes and global agreements on emission reduction
such as the Kyoto resolution on greenhouse-gases (1997, 2001) demand expen-
sive, highly thermodynamically efficient power plants with low emissions. On
the other hand, the liberalization of the electric power market puts pressure
on overall production costs. In recent years, the use of gas turbines among new
power plants has significantly increased due to a number of appealing prop-
erties: Using natural gas instead of coal or oil leads to a cleaner combustion,
while moderate installation and operating costs and a high thermodynami-
cally efficiency reduce overall energy production costs. Moreover, using the
exhaust heat for a steam turbine in a combined cycle is one way to increase
power output and efficiency of the plant.
A central component in the design of a gas turbine is the design of the

burners in the combustion chamber. The burners mix air and fuel and com-
bust them continuously. This is different to Diesel engines, which combust
in a cyclic manner. The design of a burner addresses two main objectives:
First, the burner should mix air and fuel uniformly for low emissions, since
the presence of areas of rich combustion results in increased NOx emissions
and a non-homogeneous temperature distribution may damage the turbine
blades. Second, the burner should produce a stable combustion flame, avoid-
ing undesired pulsations. Pulsations are due to thermo acoustic waves, which
occur in particular for lean combustion when operating under part load con-
dition. They reduce the lifetime of the turbine by fatigue and by destroying
the film cooling along the blades surface. These two objectives are conflicting,
thus motivating the requirement for a variety of designs as manifested on a
Pareto front. The lack of viable analytical models and the limited information
about the underlying physical processes involved makes combustion processes
a suitable candidate for the optimization using stochastic optimization tech-
niques [13].
Our contribution has been the application of multi-objective evolutionary

optimization to a realistic industrial set-up [5]. Experimental setups present
a number of challenges to any optimization technique including: availability
only of pointwise information, experimental noise in the objective function,
uncontrolled changing of environmental conditions and measurement failure.
Based upen the SPEA [44], our evolutionary algorithm incorporates a number
of new concepts, as dictated by the experiments, such as domination depen-
dent lifetime, re-evaluation of solutions, and modifications in the update of
the archive population.
We consider the optimization of a single burner in an atmospheric test-rig.

Preheated air enters the test-rig from the plenum chamber and is mixed with
fuel in the low-emission burner by swirl. The burner stabilizes the combustion
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flame in a predefined combustion area by a controlled vortex breakdown. The
fuel is natural gas or oil and is injected through injection holes, which are uni-
formly distributed along the burner. A detailed description is given by Jansohn
et al. [21]. Various investigations aimed to reduce pulsations and emissions of
the burner by active and passive control mechanisms. We consider a passive
control mechanism, choosing the fuel flow rates through the injection holes of
the burner as design variables of the setup, due to the low modification cost
for the gas turbine compared to an active control system. Eight continuous
valves are used to control the fuel rates. Each valve controls the mass flow
through a set of adjacent injection holes along the burner axis.
The Pareto front is constructed for the objectives of minimization of NOx

emissions and reduction of the pressure fluctuations of the flame, yielding
reduced emissions and pulsation of the burner [5]. The results from this work
have led to three patents for new burner designs [13, 14].

3 Cylinder Drag Minimization

A real coded genetic algorithm was implemented for the optimization of
actuator parameters for cylinder drag minimization. We consider the two-
dimensional and incompressible flow at Re = 500 past a circular cylinder, in
combination with two types of idealized actuators that are allowed either to
move steadily and tangentially to the cylinder surface (“belts”), or to steadily
blow/suck with a zero net mass constraint. The genetic algorithm that we im-
plemented has the property of identifying minima basins, rather than single
optimum points. The knowledge of the shape of the minimum basin enables
further insights in the system properties and provides a sensitivity analysis in
a fully automated way. The drag minimization problem is formulated as an
optimal regulation problem.
By means of the clustering property of the present genetic algorithm, a set

of solutions producing drag reduction of up to 50% is identified. A thorough
cluster analysis [27] revealed that the important parameters for the flow con-
trol are only the ones corresponding to actuators containing the separation
point in the uncontrolled flow. At the same time all the other actuators could
be sliding/blowing/sucking with random velocities or remain fixed. To verify
this hypothesis another validation run was performed, this time maintaining
active only the relevant actuators.
A comparison between the two types of actuators, based on the clustering

property of the algorithm indicates that blowing/suction actuation parameters
are associated with larger tolerances when compared to optimal parameters
for the belt actuators. The possibility to use few strategically placed actua-
tors in order to obtain a significant drag reduction was explored using the
clustering diagnostics of this method. The optimal belt-actuator parameters
obtained by optimizing the two-dimensional case have been employed in three
dimensional simulations, by extending the actuators across the span of the
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cylinder surface. The three dimensional controlled flow exhibits a strong two-
dimensional character near the cylinder surface, resulting in significant drag
reduction [27].
The results obtained using two dimensional simulations are shown to be

useful for three dimensions when the actuators are suitably extended on the
third dimension of the flow [27]. This suggests that optimization in two di-
mensions followed by a validation of the results in three dimensions is a viable
approach to the rapid design of realistic control devices.

4 Aerodynamic Profile Design

We consider the automated profile design for compressor blades of stationary
gas turbines. The design is restricted to blades with subsonic flow. An opti-
mization loop is implemented comprising an optimization algorithm, a profile
generation tool and a computational fluid dynamics (CFD) analysis tool. The
profile generator describes the profile by a set of Bezier splines whose control
points are encoded into engineering design parameter like the profile length,
the nose and trailing edge radius, and the curvature distribution [22, 42]. The
flow analysis is performed with MISES [15], a quasi 3D computational flu-
id dynamics solver, which solves the Euler equation with an integral, viscous
boundary layer formulation. It takes into account the change in the streamline
thickness along the profile (quasi 3D). Our approach is to calculate various in-
cidences in order to approximate the loss polar of the profile as given in Fig. 2.
The loss polar specifies the behavior of the profile over the complete operat-
ing range. A disadvantage is the large number of flow calculations, which are
needed to specify the polar as in the optimization of [22]. Furthermore, there
is the problem of how many incidences should be computed and for which
values.
In the following, we do not compute the complete loss polar and show that

it is sufficient to compute 3 different incidences in order to assess a profile.
The 3 calculations are performed for the design condition, i.e. 0◦ incidence
and for one positive incidence I1 > 0◦ and one negative incidence I2 < 0◦.
The key concept is to define I1 and I2 by a free multiplier θ as I1 = 1.0 · θ and
I2 = −0.8 · θ. This definition takes into account that the positive incidence
I1 is more critical for stall than I2. The incidence multiplier θ is an addition-
al design variable. The profile losses for the 3 incidences are summed to the
first objective function f1. For small values of θ, the losses are computed at
small incidences. An optimization for small values of θ leads profiles which
have minimal losses in the vicinity of the design condition, while for large
values of θ, profiles are optimized for a large incidence range. Thus, θ is not
only used as free design variable, but also as second objective function f2. We
minimize f1 and maximize f2 where the objective functions include penalties:
f1 =

∑3
i=1 li + p1 + p2 + p3 + p4 and f2 = θ − p1, where li is the profile loss

for the incidence i and p1 to p4 are 4 penalties, which are non-zero, if the
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corresponding constraint is violated. The first p1 penalty regards convergence
of the CFD solver. Penalty p2 to p4 address flow separation and mechanical
stresses. The 15 free design variables are the parameters from the profile gen-
erator and the incidence multiplier θ. Two optimization runs are performed
for a profile design at an inlet Mach number of 0.67, a desired flow turning
of 12◦ and δβ = 0.1◦. In the first optimization, the two conflicting objec-
tives f1 and and f2 are aggregated and a single objective algorithm is used.
The second optimization run is a Pareto optimization for the two conflicting
objectives. Most optimization algorithm are designed for a single objective
function. Thus, for considering multiple objectives, the objectives have to be
aggregated into a single figure of merit fM , which is then optimized. Here, we
restrict ourselves to minimization of the figure of merit and construct it as
fM = f1 − f2.
We compare the convergence properties of the CMA evolution strategy

and the optimization algorithm including a Gaussian Process model, respec-
tively. A separete Gaussian Process is constructed for the loss at each design
incidence as well as for each constraint and the prediction of all models is
aggregation in order to approximate the merit function. First, 100 solutions
are computed randomly and then the model is used to search for promising
solutions. The model is always trained with all currently evaluated solutions.
In Fig. 1, the merit function is plotted over the number of design evalua-

tions N . The CMA-ES converges by constantly decreasing the merit function
and fM = −1.6868 is obtained as best function value after 1000 function eval-
uations. In the figure, the merit function for the algorithm using the model
decreases by a large value as the model is firstly used at N = 100 evalua-
tions. The initial 100 random solutions are already sufficient to approximate
the merit function well. After N = 300 evaluations, the best function value
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Fig. 1. The merit function versus the number of design evaluations for the CMA
(−) and for the Gaussian process model (- - -)
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is fM = −1.7892. The plot shows the superior performance of the Gaussian
process model compared with the CMA-ES.
We consider the optimization of the two objectives as a Pareto optimiza-

tion problem. The first objective f1 contains the losses, which is to be mini-
mized. The second objective f2 is the incidence multiplier and is to be max-
imized. The Pareto front underlines the conflict in optimizing the two objec-
tives. For small incidence multipliers, the losses are low, since all 3 incidences
are computed almost at the design point. For large incidence multipliers, the
loss increases for two reasons. First, the flow is computed at larger incidences
leading to higher losses and second, the profile losses are higher at the design
condition, since the design has to be more robust for converging at the high
incidences.
A multi-objective evolutionary algorithm with adaptive recombination and

mutation operators is used for the Pareto optimization [7]. In total, 10.000
solutions are evaluated. Among all evaluated solutions, 5.461 solutions do not
violate any constraints and generate a Pareto front of 283 solutions (Fig. 2).
Two Pareto solutions are marked in the figure and their loss polar is given
in Fig. 2. The minimal losses are at about 1.4%. The attainable operating
range is considered to be bounded by the double of the minimal losses [22].
Solution A contains the smaller incidence multiplier and the loss polar shows
lower losses close to the design incidence than solution B, but comprises a
smaller operating range. For solutions A and B, the operating range is about
14.4◦ and 15.5◦, respectively. Both polars are characterized by a smooth and
continuous increase of losses over the absolute incidence. This indicates a
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design A
design B

Fig. 3. Profile shape for the two selected Pareto solutions

soft stall behavior. Figure 3 contains the profile shape. Solution A shows the
smaller nose radius as well as the smaller maximal thickness.

5 Micromixer

We studied mixing in a transverse-momentum micromixer for pharmaceutical
applications. The mixer involves the parallel injection of two fluids which in
an uncontrolled configuration do not mix due to the low Reynolds number of
the flow. The flow configuration is shown in Fig. 4.
The control involves the use of side micropistons which should be activated

so as to induce mixing. A straightforward trial and error experimentation with
these actuations did not lead to any significant mixing. Extensive theoretical
studies have identified suitable actuation parameters.

three pairs of activelly controlled side channels

x mixing channel A

5h
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2                     2                      2     2       2
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h                     h                      h    3h     3h

0                                                                           12h    13.5h         x’

Fig. 4. Sketch of the flow configuration
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Fig. 5. Flow actuated by the initial frequencies x = (1/2, 1/2, 1/2) (left) and by
the optimal frequencies x = (0.14, 0.32, 0.50) (right)

Our approach was to combine evolution strategies as optimization method
with the simulation of the mixing behavior of the two fluids. The flow is mod-
eled by the Navier-Stokes and convection-diffusion equations discretized using
a second order finite volume technique and solved on a Cartesian grid using
a standard computational fluid dynamics package [40]. The chosen optimiza-
tion strategy was an evolution strategy with covariance matrix adaptation
[17, 18, 19]. Optimization parameters are the frequencies of the movement of
the micropistons and the objective is to increase the mixing of the two fluids
which is estimated from the local variance of the concentration field.
Figure 5 shows two snapshots of the flow in the micromixer at time t = 45

for initial and optimal frequencies, respectively.
It was shown that the evolution algorithms can identify, in an automated

fashion, effective actuations with mixing results that far exceeded those ob-
tained by theoretical studies for the same configuration. In addition, we found
that optimal frequencies for an increasing number of transverse channels are
superposable despite the nonlinear nature of the mixing process [29, 30, 32].

6 Microchannel Flow

We apply both single and multiobjective EAs applied to a fluidic microchannel
design problem [37, 38]. Bio-analytical applications require long thin channels
for DNA sequencing by means of electrophoresis. In order to pack a channel
of several meters in length onto a small square plate, curved geometries are
required. However, curved channels introduce dispersion and, therefore, limit
the separation efficiency of the system. The question is how to shape the
contour of the channel in order to minimize dispersion. A detailed description
of the problem as well as an optimization solution using gradient methods can
be found in [28].



222 P. Koumoutsakos and S.D. Müller

3

2

1

0.5

1

1.5

2

2.5

3

3.5

4

2.5 3 3.5 4 4.5 5 5.5

de
fo

rm
at

io
n

skew

Pareto front at generation 80

Fig. 6. Pareto-front of nondominated solutions after 80 generations

In a first study, we study a single-objective: The goal is to minimize the
final skew of the flow inside the channel, i.e., it is required that the iso-values of
the advected species be normal to the flow field when they exit the channel.
The shape of the 90-degree turn is described by 11 parameters. The main
result of our optimization using a (1 + 1)-ES with 1/5 success rule is that
we find a novel double-bump shape that has not been found before. Previous
studies had shown single-dented designs always.
In a second study, we optimize two goals, the skew and the total defor-

mation of the channel contour. The second goal is introduced to take into
account manufacturing costs which increase when the channel is deformed
strongly. The results from our two-objective minimization using the Strength
Pareto Evolutionary Algorithm [44] are compared with the gradient-based op-
timization results by [28]. Figure 6 shows the Pareto-optimal trade-off front
after 80 generations of the algorithm, and Fig. 7 shows the corresponding
solutions, i.e., optimized shapes of the channel. From this front, we can de-
cide for a solution with minimal skew at the expense of a higher deformation
(point 1; represented in Fig. 7, left), some intermediate result (point 2), or
with minimal deformation with the lowest skew possible (point 3, represented
in Fig. 7, right).
Figure 8 shows two classes of optimized shapes obtained by [28] using

gradient methods. Interestingly, the gradient technique offers two different
designs, namely the single-dented (Fig. 8, left) and the double-dented shapes
(Fig. 8, right) which we found with the evolution strategy also. Therefore,
we obtain qualitatively similar results from both methods. Using the gradient
method, the skew is reduced by one order of magnitude [28] which is com-
parable to the numbers obtained by evolutionary optimization. While trial
and error procedures were used in the gradient methods to obtain various



Flow Optimization Using Stochastic Algorithms 223

-0.4

-0.2

0

0.2

0.4

0.6

0 0.2 0.4 0.6 0.8 1

Solution for point 1 

-0.4

-0.2

0

0.2

0.4

0.6

0 0.2 0.4 0.6 0.8 1

Solution for point 3 

Fig. 7. Solution at point 1 (left) and at point 3 (right)

Fig. 8. First (left) and second (right) optimized shape using a gradient method [28]

solutions, ES provides us with a number of solutions and a Pareto front in an
automated fashion. Unlike the gradient based methods which require an ex-
plicit formulation of the optimization problem at hand, the evolution strategy
provides a straightforward optimization procedure.

7 Jet Mixing

Enhanced jet mixing has several technological applications with the goal of
improving safety, efficiency, or reliability. One example relevant to military
aircraft is signature suppression where the dispersion of the hot jet exhaust is
aimed at. Another example in jet propulsion is to reduce the plume temper-
ature on aerodynamic surfaces, such as the blown flap of a C-17 aircraft. In
combustion processes, it is often important to enhance the turbulent mixing
of the chemical components to make the combustion process more efficient
with size and weight reductions possible, and to reduce the concentration of
pollutants. The mixing rate of a jet can be significantly altered by applying a
suitable excitation at the jet orifice. Since the external forcing interacts with
the natural modes of the jet in a nonlinear way, it is difficult to estimate which
kind of actuation is optimal to increase mixing.
Our work has focused on jet optimization using DNS and LES of an incom-

pressible jet [30, 32]. We have studied helical and combined helical and axial
forcing of a jet that maximizes mixing by combining an evolution strategy
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Fig. 9. Jet at Re = 1500. Left: No actuation. Middle: With maximum radial veloc-
ity for one-frequency excitation; Strouhal frequency Sth = 0.30, helical amplitude
Ah = 0.08. Right: With maximum radial velocity for two-frequency excitation; axial
Strouhal frequency Sta = 0.72, helical Strouhal frequency Sth = 0.29, axial ampli-
tude Aa = 0.025, helical amplitude Ah = 0.075

with direct numerical simulation of a round jet. Varying the actuation at the
orifice, we searched for the forcing that maximizes various metrics related to
enhanced jet mixing. For one- and two-frequency actuation, we have obtained
optimum mixing results presented in Fig. 9.
Since DNS of high Re flows were becoming exceedingly expensive, we con-

sidered vortex filament methods as a model for high Re flows [9]. The three-
dimensional evolution of a nominally axisymmetric jet subject to azimuthal
and helical perturbation waves has been studied [25]. Circular filaments are
uniformly initialized, with uniform circulation, and then slightly displaced to
generate the perturbation. We performed evolutionary optimization, starting
from values given by [26], that resulted in an improvement of the total length
of the filaments (the mixing metric) of 42% compared to the initial values.
The main finding from the jet mixing optimization using both vortex mod-

els and direct simulations was that the upper bound of the actuation ampli-
tude appears to be of utmost relevance to mixing. A study of the physics of
mixing has yet to reveal why this behavior emerges.
We have extended the implementation of an evolution strategy to the ex-

perimental laboratory at Stanford University [37]. We have used the original
device developed by Parekh and Reynolds to study bifurcating jets. By au-
tomating the control process using LABVIEWTM and by coupling this process
to our optimization algorithm we have obtained a 50% enhancement in the
temperature mixing profile as compared to the classic experiments [33].

8 Aircraft Trailing Vortex Destruction

Trailing vortices are naturally shed by airplanes. They result in a strong down-
wash which extends for several miles behind the plane and poses a hazard
to following aircraft, in particular at take-off and landing. Several previous
studies propose to alleviate the hazard by introducing perturbations to trigger
instabilities, and ultimately, break up the vortices [2, 12].
Recent studies [10, 35] have considered instabilities unique to several pairs

of vortices which model aircraft wakes in landing configuration [39]. Some of
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A

B

BB

Fig. 10. Sketch of vortex system shed by an airplane (Courtesy of Crouch and
Spalart [11]). B is a cross section of A as shown

these vortices quickly merge, but others persist for long times. At a distance
of several spans behind a typical airplane, three persistent vortex pairs can
generally be observed, originating at the tips of the wings, the outboard flaps,
and the fuselage, see Fig. 10.
Crouch [10] has studied the linear stability of two pairs of co-rotating

vortices (tip and outboard flap). He identified several instability modes de-
pending on the angle, wavelength, and amplitudes of the perturbations that
are imparted to each pair. Although the points of view adopted in recent
studies [10, 11, 35] differ in several respects, in particular in the way the in-
stability growth is measured, they have in common that they can provide
us with a better understanding of the mechanisms by which the cooperative
instabilities of several pairs can result in enhanced growth rates. Moreover,
the configurations studied in these works are investigated with a view to im-
plementing them in actual wing designs. One of the findings reported in [10]
and [35] is the extreme sensitivity of the overall dynamics with respect to the
initial state of the vortex pairs. In [10], the most effective transient growth
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was achieved when the outboard pair was not initially perturbed, while in [35]
early reconnection was obtained for a particular value of the inboard vortices
separation.
This motivates our attempt to perform a more systematic parameter search

and identify the wake system which would produce the largest instability
growth. Our goal is to revisit the above studies using viscous vortex methods
and optimization with evolution strategies. Vortex methods are well adapted
to wake simulation as they require the discretization of only the region of
vorticity [9]. Note that the work of [35] is in part based on a vortex filament
method. Using a (1 + 1)-evolution strategy, we optimize a total of seven pa-
rameters describing the perturbation of two pairs of co-rotating vortices, the
tip and outboard vortices, and the geometry. The objective function to be
maximized is the instability on the tip vortex.
We compare the results from the evolutionary optimization with parame-

ters reported in [10] as leading to efficient transient growth. Some striking
similarities can be noticed between these two sets of parameters. In partic-
ular, the ES has selected perturbations that are mostly located on the tip
vortex, confirming the observation from linear stability analysis in [10] of ef-
ficient transient growth when the outboard flap vortex is unperturbed. The
wavelengths of the perturbations are also close to the ones given in [10]. The
case of four pairs of vortices is also considered and leads to a larger distortion
of the tip vortex [37].

9 Summary and Conclusions

Biologically inspired stochastic search algorithms were applied to a variety of
engineering problems ranging from aerodynamics and turbomachinery to mi-
crotechnology. In summary, the results show that these optimization methods
are highly suitable for optimization in applications that are characterized by
noise, multimodality, and no availability of gradient information.
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