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We investigate with experiments and computer simulations the nonequilibrium dynamics of DNA
polymers crossing arrays of entropic barriers in nanofluidic devices in a pressure-driven flow. With
increasing driving pressure, the effective diffusivity of DNA rises and then peaks at a value that is many
times higher than the equilibrium diffusivity. This is an entropic manifestation of “giant acceleration of
diffusion.” The phenomenon is sensitive to the effective energy landscape; thus, it offers a unique probe of
entropic barriers in a system driven away from equilibrium.
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The term “giant acceleration of diffusion” (GAD) refers
to a nonequilibrium phenomenon that Brownian particles
exhibit in a tilted periodic potential, like the one in Fig. 1(a)
[1,2]. The particles’ effective diffusivity peaks at a critical
value of the tilt, where it attains a value that can exceed the
diffusivity in a uniform potential D0 by orders of magni-
tude. GAD has been observed in such varied systems as
trapped particles circling corrugated optical vortices [3],
colloidal spheres moving across an undulating surface tilted
in a gravitational field [4], and the rotating F1-ATPase
protein motor [5]. It is theoretically predicted that
Brownian particles conveyed across entropic barriers can
exhibit GAD [6–8]; however, this has not been shown
experimentally. The entropic case is remarkable because
entropic barriers are not fixed; they can change or even
vanish as the system is driven away from equilibrium.
Here, we report the observation of GAD in the dynamics of
DNA polymers driven across arrays of entropic barriers in
nanofluidic structures.
A polymer’s configurational entropy varies within a

nanofluidic device with an inner topography like the one
in Figs. 1(b) and 1(c) [9,10]. A nanofluidic slit with an
array of depressions called nanopits gives rise to entropic
barriers at the pit edges because more configurations
are available to a polymer inside the relatively deep pits
than inside the shallow slit, and the entropic penalty for
entering the slit is significant when the slit height is
smaller than the polymer’s radius of gyration Rg. DNA
can fully explore the vertical space inside such devices
within milliseconds [11], which is much shorter than its
typical dwell time in a pit. Previous theoretical studies
highlighted the entropic nature of the barriers polymers
encounter in similar geometries [12,13]. Furthermore,
in a pressure-driven flow, DNA hops from pit to pit
with exponentially distributed dwell times in the pits
and a pressure-dependent mobility; this experimentally

observed behavior is consistent with thermally activated
transport across entropic barriers [14,15]. Previous studies
focused on DNA statistics under nanoconfinement
[10,16–22] and DNA mobility in nanotopographies
[9,14,21–24] and interpreted the results in terms of the
free energy in equilibrium. Here, by contrast, we probe
DNA’s diffusivity and its effective energy landscape as it
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FIG. 1. (a) Sketch of a tilted periodic energy landscape.
(b) Illustration of a nanopit array embedded in a nanoslit, with
DNA hopping from pit to pit. (c) Side view of the nanofluidic
geometry indicating h, H, and a. A simulated polymer hops
between pits under an applied drive of v ¼ 0.05. (d) Time-sliced
fluorescence images of λ DNA climbing a column of high-barrier
pits (h ¼ 75 nm, H ¼ 124 nm) for Δp ¼ 400 mbar. (e) DNA
trajectories from the same experiment. The dashed line indicates
Δy ¼ vpt (vp ¼ 0.7 μms−1).
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is driven away from equilibrium. Our experiments and
dissipative particle dynamics simulations reveal the pico-
newton forces at play.
We created arrays of nanopits within nanofluidic slits on

fused silica chips, similar to devices described previously
[14,25]. The square pits had 1.05� 0.05 μm sides and
were linearly arrayed with periodicity a ¼ 2.0 μm. The
depth of a pit relative to the slit controls the height of the
entropic barrier. Accordingly, “high” barriers were obtained
in one device with slit height h ¼ 75 nm and pit depth
H ¼ 124 nm, and a second device with dimensions
h ¼ 88 nm and H ¼ 79 nm had “low” barriers. The terms
“low” and “high” are relative comparisons; in both devices,
the barriers are higher than the thermal energy kBT, so a pit
traps DNA nearly indefinitely without a driving force
applied [14]. The slits were 3 mm long and 160 μm wide.
λ DNA molecules (New England Biolabs), whose contour
length is L ¼ 16.5 μm and Rg ¼ 0.73 μm [26], were
fluorescently stained with YOYO-1 at a 10∶1 base-pair-
to-dye ratio and suspended in 20 mM Tris-EDTA buffer
titrated to pH ¼ 8.0 with HCl, with 3% β mercaptoethanol
added. Molecules were driven through the devices by a
pressure difference Δp supplied by an air pump. Individual
molecules were imaged by epifluorescence microscopy
using a 100×, 1.49 NA oil-immersion objective (Nikon)
and an EMCCD camera (Andor iXon). The excitation light
was shuttered with a frequency of 1 Hz and a 50 ms
exposure time. Our experimental methods are described in
detail in Ref. [14].
Figure 1(d) shows a molecule moving up a column of

pits. We tracked the DNA center-of-mass position along the
flow direction as a function of time t. Figure 1(e) shows
typical trajectories yðtÞ. We testedΔp from 50 to 700 mbar.
At each Δp, we recorded 50–80 molecules crossing the
pits; more than 2000 total pit-to-pit hops were typically
observed in order to obtain good estimates of the mean
velocity and the diffusion coefficient. 12–20 molecules
were also recorded crossing pit-free regions of the slit,
where the flow velocity is proportional to Δp. The mean
DNA velocity in the slit is vs; we used vs to quantify the
driving force rather than Δp because manometer readings
of the latter were less consistent.
To quantify the DNA diffusivity, we first evaluated the

drift-subtracted mean square displacement (MSD) for each
ensemble of trajectories,

MSD ¼ h½ΔyðτÞ − vpτ�2i; ð1Þ
where ΔyðτÞ is a molecule’s y displacement in the time
interval τ, h� � �i indicates an ensemble average, and vp is
the mean DNA velocity across the pits. (See Supplemental
Material [27], which includes Refs. [28,29], for details and
comparisons with alternative analysis methods.) The effec-
tive diffusivity D is related to MSD by

D≡ lim
τ→∞

MSD=2τ: ð2Þ

Figures 2(a) and 2(b) show the growth of MSD with τ in
devices with low and high barriers, respectively, at four Δp
each. On the log-log plot, MSD increased linearly with τ
with a slope near 1. For each Δp, there was an upper
experimental limit to τ, beyond which MSD rose sharply.
That limit corresponded to the time it took the fastest
molecules to exit the camera’s field of view, which
decreased as Δp increased. To compare measurements
on an equal basis, we evaluated D using Eq. (2) with
τ ¼ 2 s. We verified that velocity autocorrelations are
negligible for τ ¼ 2 s and that D is relatively insensitive
to τ (see Supplemental Material [27]). The self-diffusion
of DNA in a slit with Δp ¼ 0 could be observed
for long times, so we obtained D0 from the slope of
MSD versus τ (see Supplemental Material [27]); we
found D0 ¼ 0.084 μm2 s−1 in the h ¼ 88 nm slit and
D0 ¼ 0.067 μm2 s−1 in the h ¼ 75 nm slit.
Figure 2(c) shows the dependence of D=D0 on vs.

In both devices, D=D0 increased with vs from zero to a
peak, after which D=D0 decreased. The peak occurred
at vs ¼ 7.2 μms−1 in the device with low barriers and at
vs ¼ 19.7μms−1 in the device with high barriers. The
height of the D=D0 peak also depended on the nano-
topography; it reached ≈5.5 in the device with low barriers
and ≈15.5 in the one with high barriers.
A nonmonotonic dependence of D on driving force (i.e.,

tilt) is a hallmark of GAD [2]. The theory is based on the
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FIG. 2. Dependence of MSD on τ in (a) the device with low
barriers for Δp ¼ 250 (A), 140 (B), 90 (C), and 60 mbar (D). And
in (b) the device with high barriers for Δp ¼ 750 (i), 650 (ii), 555
(iii), and 400 mbar (iv). The corresponding D=D0 and vs are
indicated in (c). The dashed line has a slope of 1. (c) Dependence
of D=D0 on vs for low (blue dots) and high (red squares) barriers
with τ ¼ 2 s. Error bars are the standard error from a bootstrap
analysis of 200 resamplings of the full data set.
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Langevin equation for an overdamped Brownian particle in
a periodic potential, GðyÞ ¼ Gðyþ aÞ, with a constant tilt
force F,

ζ
dy
dt

¼ −
dGðyÞ
dy

þ F þ fðtÞ; ð3Þ

where ζ is the drag coefficient and fðtÞ is the random force
from thermal fluctuations, defined by the moments
hfðtÞi ¼ 0 and hfðtÞfðt0Þi¼ 2ζkBTδðt− t0Þ, where δðt− t0Þ
is Dirac’s delta function centered at t0 [30]. Reimann et al.
showed that the dynamics are governed by the form ofGðyÞ
near the critical point, which is the dynamical bottleneck
[2]. They expanded GðyÞ about the critical point, chosen to
be yc ¼ 0, to obtain the small y behavior

GðyÞ − yF ¼ −μyjyjq−1 − yϵ; ð4Þ
where q > 0, μ > 0 characterizes the gradient of the
potential force near yc, and ϵ≡ F − Fc. Equation (4) leads
to the following expression for D=D0 [2]:

D
D0

¼
�
aqμ
kBT

�
2=q

R∞
−∞ dyK2ðy; γÞKð−y; γÞ

½R∞
−∞ dyKðy; γÞ�3 ; ð5Þ

where Kðy; γÞ≡ R∞
0 dy0e−yjyjq−1þðy−y0Þjy−y0jq−1−γy0 and γ≡

ϵ=½μ1=qðkBTÞ1−1=q�. In the generic case, GðyÞ is an analytic
function and q ¼ 3. D is a peaked function of F, with the
peak occurring at F ≈ Fc.
The peak corresponds to particles alternating between

trapped and freely running states. When F is very low,
particles become trapped between energy barriers and D is
suppressed. Increasing F lowers the forward energy barrier
and facilitates downhill motion. Fc is where the barrier
vanishes. Beyond that, particles can run freely and D
approaches D0.
The DNA dynamics in nanopit arrays can be mapped

onto GAD theory by casting the effective free-energy
landscape for DNA, ΨðyÞ, in the role of GðyÞ − yF. The
entropic barriers give a periodic contribution SðyÞ to ΨðyÞ.
The viscous driving force is nonconservative, but we can
define an effective potential VðyÞ for it through the
work required to translate a molecule adiabatically against
the viscous force [14]. VðyÞ must be proportional to vs.
It can be written as the difference of two terms,
VðyÞ ¼ UðyÞvs − yζ�vs, where UðyÞ is a periodic function
related to the periodically varying flow speed inside the
nanopit array and ζ� is an effective drag that quantifies the
net force downstream. Combining the contributions, ΨðyÞ
becomes

ΨðyÞ ¼ SðyÞ þ UðyÞvs − yζ�vs: ð6Þ
Equation (6) describes the competition between entropy
and enthalpy. Inertial effects are absent because the
Reynolds number in nanofluidic systems is extremely
low. With these definitions, DNA obeys Eq. (3), with
GðyÞ ¼ SðyÞ þ UðyÞvs and F ¼ ζ�vs. Furthermore,

Eq. (5) gives the effective diffusivity of DNA with
μ ¼ − 1

6
½S000ð0Þ þ U000ð0Þvs� and ϵ ¼ ½ζ� −U0ð0Þ�ðvs − vcÞ

(primes indicate derivatives; see Supplemental Material
[27] for the derivation, which includes Refs. [28,31]).
We fit Eq. (5) to D=D0 using μ and Fc as fitting

parameters and assuming q ¼ 3. The device with high
barriers obtained μ ¼ 1.00kBTa−3 and Fc ¼ 0.18 pN. The
device with low barriers obtained μ ¼ 0.21kBTa−3 and
Fc ¼ 0.08 pN. Figure 3 shows D=D0 from both devices as
a function of the rescaled slit velocity vs=vc − 1, where vc
is the mean slit speed at the peak. Also shown is Eq. (5)
with the fit values of μ and Fc. The shape of Eq. (5) agrees
very well with the data.
To investigate the nonequilibrium forces that DNA

experiences and how well those are described by an
effective potential landscape, we performed computer
simulations that approximate the experiments. The system
was modeled using dissipative particle dynamics, a type of
coarse-grained molecular dynamics commonly used for
applications in nanofluidics [32–35]. A section of the
device comprising three consecutive pits in the slit, partly
shown in Fig. 1(c), was filled with water particles using the
standard parameters established by Groot and Warren [36].
We modeled λ DNA as a bead-spring polymer with 660
beads and matched its proportions to the device geometry.
A harmonic bending energy was imposed to give the
polymer a comparable Rg to that of the DNA in the
experiments. The dimensions of the pits and slit corre-
sponded to a device having 1.0 μm wide pits, periodicity
a ¼ 2.0 μm, and H ¼ h ¼ 100 nm. Partial-slip boundary
conditions were imposed on the top and bottom boundaries
according to the method of Pivkin and Karniadakis [37].
Finally, a uniform, time-varying force was applied to fluid
in the upper half of the device (the slit) to create the flow.
The force was adjusted to achieve a target mean fluid
velocity v. Periodic boundaries in the flow direction
ensured that fluid did not escape the system. The system
was evolved in time using a velocity Verlet scheme [32].

FIG. 3. Dependence ofD=D0 on vs=vc − 1 in devices with high
(red squares) and low (blue dots) barriers, and for simulation data
(diamonds). The lines are fits of Eq. (5) to the corresponding data,
with fit parameters μ and Fc.
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We simulated a range of v. We sampled the polymer’s
center-of-mass position at regular intervals, computed
MSD, used it to determine D, and then fit the data to
Eq. (5) as before. The sampling rate, corresponding to τ in
the previous analysis, was chosen so that the average
number of pit-to-pit hops per τ was comparable to the
experimental data. Figure 3 shows D=D0 and the fit of
Eq. (5) from the simulations. The simulation data closely
matched the behavior in the device with low barriers, whose
proportions it approximated.
Our computer simulations permitted deeper analysis of

the underlying forces, which could not be measured
experimentally. We tracked the total force on the simulated
polymer, Ftotalðy; tÞ, and mapped it to our analytical model:

Ftotalðy; tÞ ≈ −ζ
dy
dt

−
dΨðyÞ
dy

þ fðtÞ: ð7Þ

The first term on the right-hand side is the viscous drag
force, the second term is the potential force, and the third
term is the random thermal force. The effective force from
the energy landscape can be obtained by ensemble averag-
ing the simulation data:

−
dΨðyÞ
dy

≈
�
ζ
dy
dt

þ Ftotalðy; tÞ
�

t
: ð8Þ

Simulations were run below (v ¼ 0.04 simulation units),
near (v ¼ 0.05), and above (v ¼ 0.06) the velocity of peak
diffusivity, with the goal of observing changes in the
effective force landscape as the critical v is passed. For
each simulation, the velocity autocorrelation function
hvðtÞvðtþ τÞi was calculated. For small τ, this function
decays exponentially with ðζ=mÞτ, where m is the particle
mass. By matching this exponent with the simulation data,
effective values of ζ were calculated for each simulation.
We found ζ ¼ 147.7, 140.4, and 138.5 for v ¼ 0.04, 0.05,
and 0.06, respectively (see Supplemental Material for
details [27]). For each simulation, we binned data by the
center-of-mass y position using adaptive bins, which
equalized the number of data in each bin. Using the
calculated values of ζ and the mean values of Ftotal,
dy=dt, and position within each bin, we generated approxi-
mate potential force landscapes according to Eq. (8).
Figure 4(a) shows a simulated polymer trapped near

the critical point and Fig. 4(b) plots the potential force
landscapes. For the subcritical v ¼ 0.04, a portion of the
force landscape is negative, i.e., opposing the direction of
motion. As v increases, this minimum force shifts upward,
crossing through zero. In particular, the potential force
minimum was closest to zero as the diffusivity reached its
peak at v ¼ 0.05. The minima of all three landscapes
occurred around y ≈ 55, where the DNA molecule would
become trapped—pushed up against the forward wall of the
pit—before escaping.
In the theory of Reimann et al., the dynamical bottleneck

also governs the drift velocity [2]:

vp ¼ 1 − e−aF=kBTR
∞
−∞ dyKðy; γÞ : ð9Þ

As a final test, we compare in Fig. 5 vp from the experi-
ments and simulations with Eq. (9), using the previously
fit values of μ and Fc. The data are rescaled by
v0 ¼ vs=ð1þH=2hÞ, the approximate limiting velocity,
and plotted against F=Fc. Figure 5 shows good agreement
between the model and the data.
Entropic barriers develop at the nanopit edges and

give rise to GAD because the polymer can rapidly sample
the changing height inside the device (see the video
in Supplemental Material [27]). The situation is akin to
Brownian particles in an undulating geometry, which are
predicted to exhibit GAD if the equilibration in the
transverse dimension is relatively quick [6]. We note that
Eq. (9) seems to become less accurate at high vs in Fig. 5.

(a)

(b)

FIG. 4. (a) Side view of a simulated polymer inside a nanfluidic
device, near the critical point, with v ¼ 0.05. (b) Effective force
landscapes −dΨðyÞ=dy for v ¼ 0.04, 0.05, and 0.06 (labeled
curves), computed from Eq. (8). The position axis is aligned with
the nanofluidic geometry in (a). The inset shows an expanded
view of the force landscape around the critical point. The dashed
line indicates zero force.

FIG. 5. Dependence of vp=v0 on F=Fc in devices with high
(red squares) and low (blue dots) barriers, and simulation data
(black diamonds). The corresponding lines plot Eq. (9) using the
fit values of μ and Fc. The dot-dashed line shows vp=v0 ¼ 1.
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The shape of the force landscapes in Fig. 4 also changes
noticeably as v increases, with a sharper barrier developing
near the critical point. These effects hint at a changing
entropic barrier as the polymer is driven further from
equilibrium.
In conclusion, we have demonstrated giant acceleration

of diffusion, a nonequilibrium dynamical phenomenon, in a
system with entropic barriers. GAD remarkably enables
measurements of subpiconewton forces acting on a single
molecule by simply observing its motion. GAD also creates
an opportunity to study entropic barriers by revealing the
shape of the free-energy landscape near the critical point.
Future work should seek to understand how entropic
barriers change with the driving force and investigate the
possible emergence of nonideal behavior. Nanofluidics is a
convenient arena for studying GAD and other nonequili-
brium phenomena. Such work could lead to useful new
ways of controlling molecules.
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