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Effect of the meniscus contact angle during early
regimes of spontaneous imbibition in nanochannels

Nabin Kumar Karna,ab Elton Oyarzua,a Jens H. Walthercd and Harvey A. Zambrano*a

Nanoscale capillarity has been extensively investigated; neverthe-

less, many fundamental questions remain open. In spontaneous

imbibition, the classical Lucas–Washburn equation predicts a

singularity as the fluid enters the channel consisting of an anom-

alous infinite velocity of the capillary meniscus. Bosanquet’s equa-

tion overcomes this problem by taking into account fluid inertia

predicting an initial imbibition regime with constant velocity.

Nevertheless, the initial constant velocity as predicted by Bosanquet’s

equation is much greater than those observed experimentally. In the

present study, large scale atomistic simulations are conducted to

investigate capillary imbibition of water in slit silica nanochannels

with heights between 4 and 18 nm. We find that the meniscus contact

angle remains constant during the inertial regime and its value

depends on the height of the channel. We also find that the meniscus

velocity computed at the channel entrance is related to the particular

value of the meniscus contact angle. Moreover, during the sub-

sequent visco-inertial regime, as the influence of viscosity increases,

the meniscus contact angle is found to be time dependent for all the

channels under study. Furthermore, we propose an expression for the

time evolution of the dynamic contact angle in nanochannels which,

when incorporated into Bosanquet’s equation, satisfactorily explains

the initial capillary rise.

Advances in micro- and nano-fabrication techniques provide
the ability to develop a variety of structures with well-defined
features. Promissory integration of micro- and nanofluidic
structures into complex nanofluidic systems such as nano-Lab
On a Chip (LOC) and nanosensor devices requires a compre-
hensive understanding of the driving mechanisms for fluid
transport in nanoconfinement. Due to the large surface to
volume ratio inherent to nanofluidics, the influence of surface
effects and interfacial liquid dynamics presents fundamental

challenges to the application of macroscopic theories of capillary
flow in nanoconfinement. Indeed, in the topic of capillarity, the
classical Lucas–Washburn (LW) equation,1 which is derived
assuming a single force balance between viscous friction and
capillary pressure, has proved adequate for describing the
uptake of viscous fluids in relatively large capillaries and porous
solid materials.2 Nevertheless, the LW equation fails to describe
the initial stage of liquid penetration.3–5 The main drawback of
the LW equation is the prediction of a singularity at the liquid
uptake, which has been attributed to not taking inertia into
consideration.6–9

Bosanquet’s equation, which is equivalent to Washburn’s
equation for long filling times,10 describes the imbibition kinetics
taking the inertia effect into account, thus overcoming the
singularity present in the LW equation. Recently, it has been
shown that the imbibition kinetics are divided into three main
flow regimes:3,5 an initial stage, the inertial or inviscid regime,
where the capillary force is balanced only by the inertial drag
and characterized by a plug flow velocity profile; thereafter,
a regime in which the force balance has contributions from
both inertia and viscous friction; and subsequently, a regime
wherein viscous forces dominate the capillary force balance.2,3,5

It is noteworthy that during the inviscid flow regime, the
Bosanquet solution predicts a constant velocity;2–5 therefore,
in a non-accelerating imbibing fluid the capillary force must be
exactly balanced by fluid inertia. It seems to be contradictory to
the usually assumed immediate and continuous variation of the
meniscus contact angle right from the channel entrance11–13 as
the continuously increasing capillary force due to Laplace
pressure cannot exactly balance the inertial force induced by
the fluid inertia.2,4,5,10,14 Therefore, it implies that all the other
factors during the capillary imbibition remained constant, and
there should exist a meniscus with a constant contact angle
during the inertial regime. Furthermore, it has been found that
the initial constant velocity is lower than that predicted by
Bosanquet’s equation.2,5,14,15

In this study, we address this problem by performing large
scale molecular dynamics simulations of the initial imbibition
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of nano-confined water into silica channels. We report the time
evolution of the capillary front and meniscus contact angle during
the capillary filling of nanochannels with heights ranging from
4 to 18 nm. Providing an atomistic description of the capillary
filling process in its earliest time stage and during the subsequent
transition towards a fully developed flow regime, our study allows
complete characterization of the kinetics of liquid imbibition in
nanochannels, which explains the initial meniscus formation and
its relationship to the constant velocity during the inertial regime.

Bosanquet’s equation

Bosanquet’s solution of capillary imbibition for an infinite
rectangular capillary takes the form of eqn (1)5:

lðtÞ2 ¼ 2AI
2

B
t� 1

B
ð1� expð�BtÞÞ

� �
(1)

AI and B in the above equation are given by

AI ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2g cos y
rH

� �s
(2)

B ¼ 12m
rH2

(3)

where AI corresponds to the initial velocity just at the entrance.
The equilibrium contact angle in this equation is assumed to
be attained instantaneously, which is contrary to more recent
studies.7,16–21 Hence, it is important to account for the dynamic
contact angle (DCA) in Bosanquet’s equation to adequately explain
the capillary rise. We propose that DCA, which can only be seen
after the inertial regime, can be modeled by eqn (4):

cos yd ¼
cos yi for t � ti

cos ye 1� exp �t
t

� �� �
for t4 ti

8<
: (4)

In the above equation, t should be proportional to character-
istic time for fully developed flow and is given by eqn (5),22 and
ti refers to the time during which the inertial regime persists
and yi is the initial contact angle made by the liquid with the
nanocapillary walls.

t ¼ K1
H2r
m

� �
(5)

We consider this correlation after the inertial regime as viscous
force starts playing a significant role and inertia becomes negligible.

Inertial regime

The inertial regime refers to the ‘‘inviscid regime’’ and is char-
acterized by constant velocity (Uo), where the filling is driven by a
balance between the inertial force and capillary forces, which
results in

Uo �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g
rH

� �s
(6)

Assuming l B H, during the inertial regime and taking into
account Uo = l/ti, we obtain

ti ¼ K2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H3r
g

� �s
(7)

where K2 is the proportionality constant. To study the validity of
these models we conduct a series of MD simulations using the
MD package FASTTUBE5,23–26 to investigate the initial imbibition in
silica nanochannels. The potential parameters used in the present
study have been calibrated in our previous study26 wherein the
silica–water interaction potential was calibrated using as a criterion
the water contact angle reported by Thamdrup et al.27 Water is
described using a modified version28 of the simple point charge
SPC/E model29 and silica by the TTAMm model developed by
Guissani and Guillot.30 For further details of the potentials used,
we refer the reader to Zambrano et al.26 and Oyarzua et al.5

Rectangular nanochannels of different heights (4, 6, 10,
14 and 18 nm) were built using amorphous silica slabs (Fig. 1).
For details of slab construction, the readers are requested to
refer to our previous study.5 In the simulations, using a time step
of 2 fs, a water slab is coupled to a Berendsen heat bath5 at 300 K
during 0.5 ns; then, the thermostat is disconnected and the
simulations are conducted in the microcanonical ensemble
(NVE) until the system is equilibrated. Subsequently, the water
slab is released from the rest to move spontaneously towards the
silica channels. The number of water molecules in each simula-
tion is listed in Table 1.

The initial velocity and the inertial time (ti) for each simula-
tion were estimated from the atomic trajectories. Subsequently,
the value of t was approximated such that the dynamic contact
angles predicted using eqn (4) fitted those obtained using the
simulation results. Then, the values of K2, as indicated in eqn (7),
were calculated using the values of ti estimated from the simula-
tion results. Similarly, the contact angle at time ti was obtained
and the velocity in the inertial regime was calculated for each
channel using eqn (3). The instantaneous position of the advan-
cing capillary front is tracked along the direction perpendicular
to the flow of water to find the penetration length of water. An
example of the meniscus is shown in Fig. 1. In Fig. 2, we plot the
temporal evolution of the imbibition length as a function of time
for all the channels under study. The time evolution of penetra-
tion lengths during early time periods, as displayed in the figures,
is linear, which indicates a capillary flow with constant velocity,
thus confirming the existence of the inertial regime as predicted
by Bosanquet.2,5,10 It can be observed that the inertial regime is

Fig. 1 A snapshot of the capillary filling for a 6 nm silica nanochannel.
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more prominent in a channel of greater height. Inertial times
for all the cases were directly calculated from the simulation

data. The slope of the plot of inertial time against
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H3r=g

p
,

gives an estimated value of K2, mentioned in eqn (7), and is
approximately found to be 1 (Fig. 4). Hence, the inertial time is
given by eqn (8):

ti ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H3r
g

� �s
(8)

As mentioned earlier, the velocity during the inertial regime
remains constant (Fig. 2), which implies that the dynamic
contact angle observed during this regime remains constant
(Fig. 3), which is consistent with the hydrodynamic models of
contact angle development,17,21,31 which relates DCA to the
capillary number and constant velocity during the inertial
regime predicted by Bosanquet’s equation.10 In other words,
the DCA remains constant during the inertial regime when the

velocity is constant and gradually decreases with decreasing
velocity when viscous losses in the bulk become significant till
it apparently attains the equilibrium value. A constant contact
angle during the inertial regimes implies that this angle should
be achieved right at the channel entrance when the liquid comes
into contact with the upper and lower solid walls. For a channel
with constant height, the imbibition velocity depends only on
the contact angle made by fluid with the walls.6 As it is well
known that the initial velocity decreases with channel height,5 as
seen in Table 2, the contact angle which determines the velocity
during the inertial regime6 should increase with channel height.
This has been confirmed in the present study and can be seen in
Fig. 3. It leads to an interesting conclusion that the initial angle
made by water at the channel entrance is different from 901 and
depends on the height and material of the channel.32 It also
concludes that during inertial filling capillary force is balanced
by inertial force as predicted by Bosanquet. It is noteworthy that
the product of the cosine of the initial contact angle made by the
fluid with the nanochannel walls and the height of the channel
remains constant and is given by

H cos yi = C (9)

where C is a constant and most probably depends on the
materials in the system and the pre-imbibition conditions.2,33

For the silica water system, this constant is approximately equal
to 0.67 (Fig. 4). This also explains the low velocity observed

Table 1 Configurational details of water imbibition in silica nanochannels

Case no. H (nm) No. of H2O molecules

1 4 18 000
2 6 22 000
3 10 32 000
4 14 52 000
5 18 56 000

H = channel height; channel length was kept constant (31.6 nm) in all
the cases.

Fig. 2 Nanocapillary imbibition length as a function of time for different
height of capillaries. The black dots represent the imbibition length as a
function of time. The straight yellow dashed lines are visual guides to
indicate the l(t) = AIt, which also illustrate estimated times of inertial
regime. The solid lines depict the fits of modified Bosanquet’s equation
to the experimental data. The colored dotted lines are visual guide lines to
indicate the original Bosanquet’s equation.

Fig. 3 Measured contact angles (dotted lines) and those predicted by the
model (solid lines) during the nanocapillary imbibition in silica nanochannels
of different heights. The red, green, blue, pink and cyan lines represent the
contact angles for 4, 6, 10, 14 and 18 nm channels, respectively.

Table 2 Values of the important parameters during initial rise

H (nm) E. vel (nm ns�1) C. vel (nm ns�1) ti (ns) t (ns)

4 76 77.5 0.025 0.047
6 56 54 0.047 0.105
10 33 35 0.11 0.29
14 23 25 0.19 0.57
18 18 20 0.28 0.95

H = channel height, E. vel = estimated velocity, C. vel = calculated
velocity, ti = inertial time, t = adjusting parameter for DCA.
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during the capillary filling which cannot be explained using
original Bosanquet’s equation. Hence, we propose that effective
Bosanquet’s velocity is given by eqn (10):

A ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2g cos yi
rH

� �s
(10)

where yi is the initial contact angle made by the liquid surface
with the nanochannel walls. The above equation satisfactorily
explains the observed and predicted velocities during the inertial
regime, as can be seen in Table 2. The initial constant angle
determined using eqn (9) remains constant for time ti, which can
be predicted using eqn (8), after which the dynamic contact
angle is observed and is described using eqn (4). The values of
t mentioned in this equation can be estimated using eqn (11),
substituting the average value of K1 from Table 2.

t ¼ 2:132
H2r
m

� �
(11)

Similar results have been observed by Fries3 for cylindrical
channels when the capillary filling is determined by the balance
between the viscous and capillary forces. This time (tf) as deter-
mined by Fries3 is given by

tf ¼ 2:1151
H2r
m

� �
(12)

The constant angle observed during the inertial regime and good
approximation of initial velocity obtained from the simulations
and those calculated using modified Bosanquet’s equation con-
firm that the predominant forces during the inertial regime are
inertial and capillary forces and other forces are not relevant
during the initial filling, contrary to the predictions made by
other researchers.34–36 It can be observed that Bosanquet’s equa-
tion modified by including a dynamic contact angle satisfactorily
describes the initial regimes of capillary imbibition (Fig. 2).

In summary, the present study revealed that the velocity
and contact angle remain constant during the initial time of

nanocapillary imbibition, thus confirming the predictions by
Bosanquet that the predominant forces during the inertial
regime are inertial and capillary forces. We find that the dynamic
contact angle is observed after the inertial regime when viscous
dissipation becomes more prominent. The dynamic contact
angle is found to be height and time dependent for the channels
under study. The incorporation of the proposed time dependent
relationship for DCA in Bosanquet’s equation successfully pre-
dicts the initial filling kinetics of the silica–water system as well
as the initial velocity at the entrance. Initial contact angles
different from 901 have been observed for all the channels, which
establishes that, for a given system, the initial contact angle
depends on the height of the channel.
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