- I want samples from the distribution $\,f\,$

- I want samples from the distribution f
- \cdot Instead, I have samples from $\,g\,\,$ and the information that $\,fpprox g\,$

$$\{Y_k\}_{k=1}^N,$$

 $Y_k \sim g$

- I want samples from the distribution f
- \cdot Instead, I have samples from $\,g\,$ and the information that $\,fpprox g\,$

$$\{Y_k\}_{k=1}^N,$$

$$Y_k \sim g$$

• These samples from g can be **transformed** (approximately) to samples from f according to :

- I want samples from the distribution f
- \cdot Instead, I have samples from $\,g\,\,$ and the information that $\,f\, pprox \, q\,$
 - $\{Y_k\}_{k=1}^N$,

1. Define:
$$w_k = \frac{f(Y_k)}{g(Y_k)}$$

$$Y_k \sim g$$

• These samples from g can be **transformed** (approximately) to samples from f according to :

$$\hat{w}_k = \frac{w_k}{\sum_{i=1}^N w_i}$$

- I want samples from the distribution f
- \cdot Instead, I have samples from $\,g\,$ and the information that $\,fpprox g\,$

$$\{Y_k\}_{k=1}^N,$$

1. Define:
$$w_k = \frac{f(Y_k)}{g(Y_k)}$$

2. For $k = 1, \ldots, N$ choose a new sample according to

$$X_{k} = \begin{cases} Y_{1}, & \text{w.p. } \hat{w}_{1} \\ \vdots \\ Y_{N}, & \text{w.p. } \hat{w}_{N} \end{cases}$$

$$Y_k \sim g$$

• These samples from g can be **transformed** (approximately) to samples from f according to :

$$\hat{w}_k = \frac{w_k}{\sum_{i=1}^N w_i}$$

- I want samples from the distribution f
- Instead, I have samples from $\, g\,$ and the infor

$$\{Y_k\}_{k=1}^N$$

- These samples from $\,g\,$ can be transformed (

L. Define:
$$w_k = \frac{f(Y_k)}{g(Y_k)}$$

2. For $k = 1, \ldots, N$ choose a new sample according to

$$X_k = \begin{cases} Y_1, & \text{w.p. } \hat{w}_1 \\ \vdots \\ Y_N, & \text{w.p. } \hat{w}_N \end{cases}$$

rmation that
$$f \approx g$$

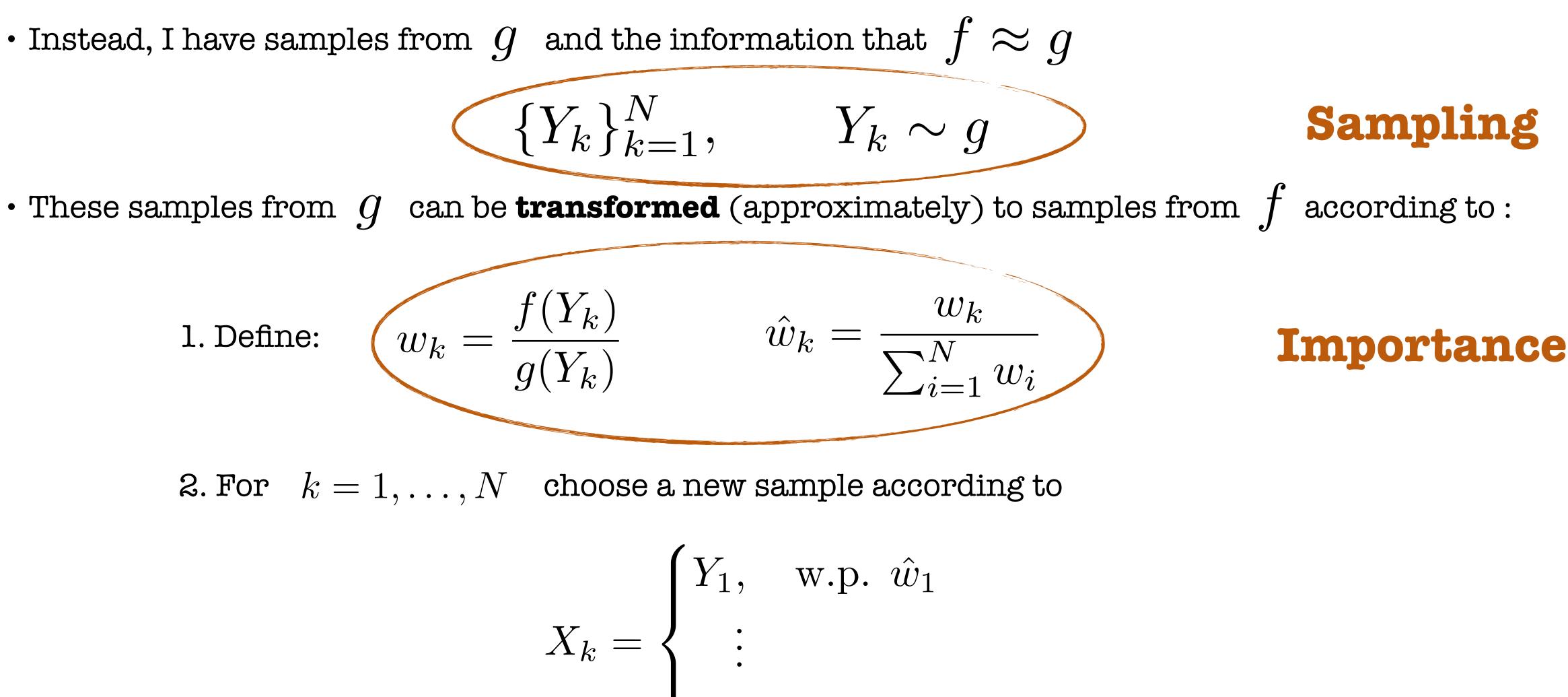
 $Y_k \sim g$ Sampling
(approximately) to samples from f according to :

$$\hat{w}_k = \frac{w_k}{\sum_{i=1}^N w_i}$$

- I want samples from the distribution f
- \cdot Instead, I have samples from $\,g\,$ and the information that $\,f\,pprox\,g\,$

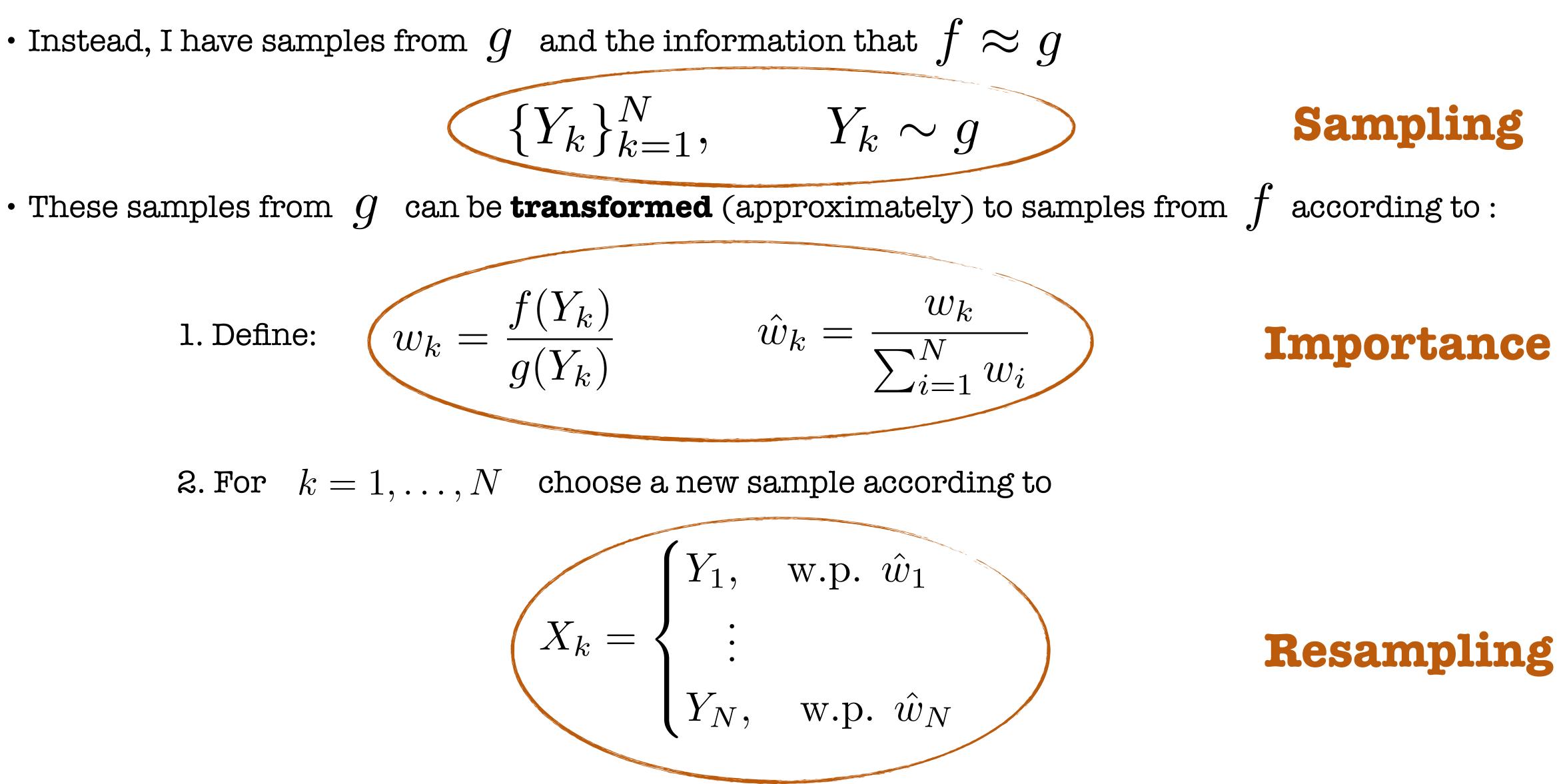
2. For k = 1, ..., N choose a new sample according to

$$X_k = \begin{cases} Y_1 \\ \\ \\ Y_1 \end{cases}$$



N, w.p. \hat{w}_N

- I want samples from the distribution f
- \cdot Instead, I have samples from $\,g\,$ and the information that $\,f\,pprox\,g\,$



Transitional Markov Chain Monte Carlo (TMCMC)

• The goal is to sample the distribution:

 $p(\vartheta \mid d) \propto p(d \mid \vartheta) \pi(\vartheta)$

Transitional Markov Chain Monte Carlo (TMCMC)

• The goal is to sample the distribution:

• Instead, sample iteratively the annealed distribution

 $p_k(\vartheta \mid d) \propto p(d \mid d)$

where

$$\gamma_1 = 0 < \cdots < \gamma_k$$

 $p(\vartheta \mid d) \propto p(d \mid \vartheta) \pi(\vartheta)$

$$\vartheta)^{\gamma_k}\pi(\vartheta), \quad k=1,\ldots N$$

 $< \cdots < \gamma_N = 1$

Transitional Markov Chain Monte Carlo (TMCMC)

- The goal is to sample the distribution:
 - $p(\vartheta \mid d) \propto$
- Instead, sample iteratively the annealed distribution

$$p_k(\vartheta \mid d) \propto p(d \mid \vartheta)^{\gamma_k} \pi(\vartheta), \quad k = 1, \dots N$$

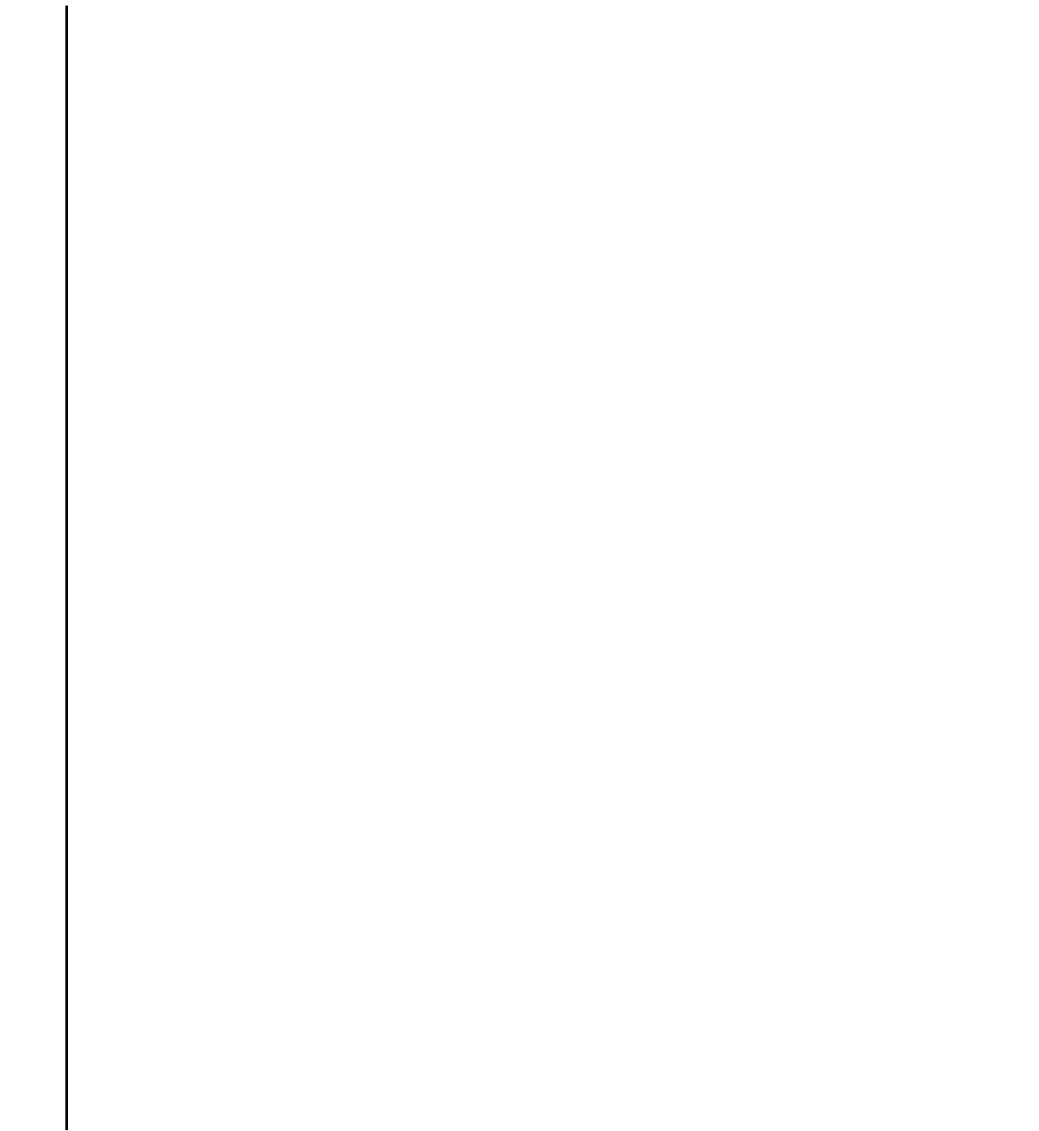
where

$$\gamma_1 = 0 < \cdots < \gamma_k < \cdots < \gamma_N = 1$$

• At the last step, we obtain samples from the target distribution.

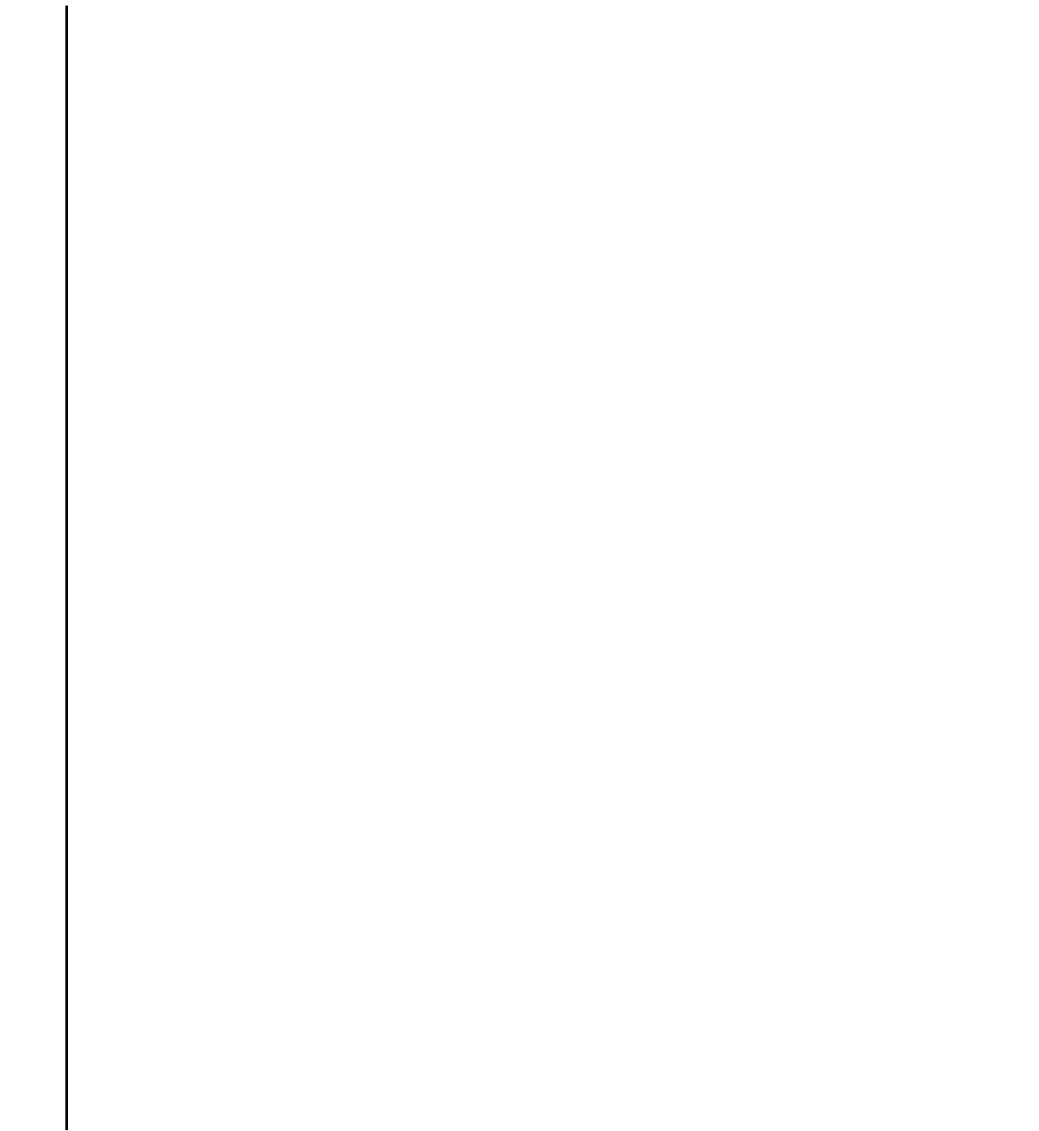
$$\propto p(d \,|\, \vartheta) \pi(\vartheta)$$

 $p_k(\vartheta \mid d) \propto p(d \mid \vartheta)^{\gamma_k} \pi(\vartheta)$

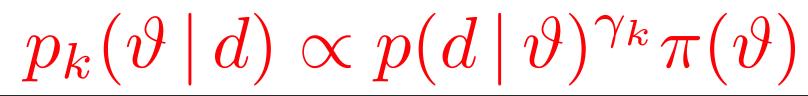


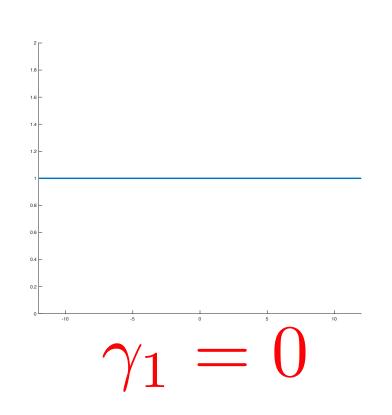
 $p_k(\vartheta \mid d) \propto p(d \mid \vartheta)^{\gamma_k} \pi(\vartheta)$

1. If I have samples for $\gamma_1=0$ then using SIR I have samples approximately for γ_2

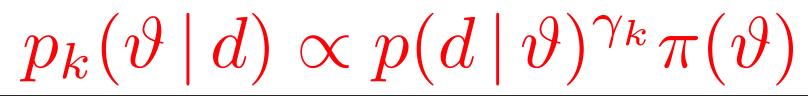


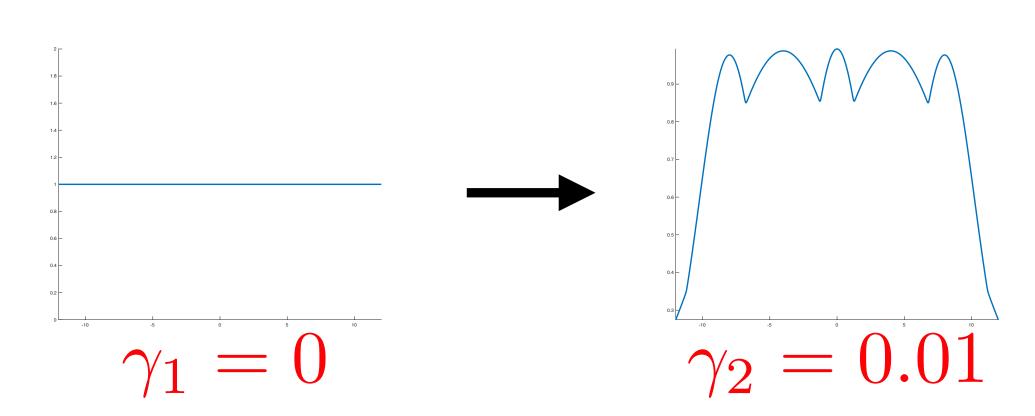
1. If I have samples for $\gamma_1 = 0$ then using **SIR** I have samples approximately for γ_2



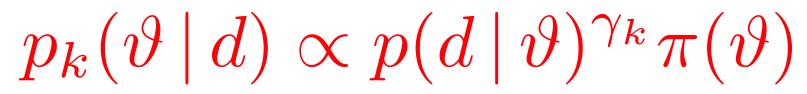


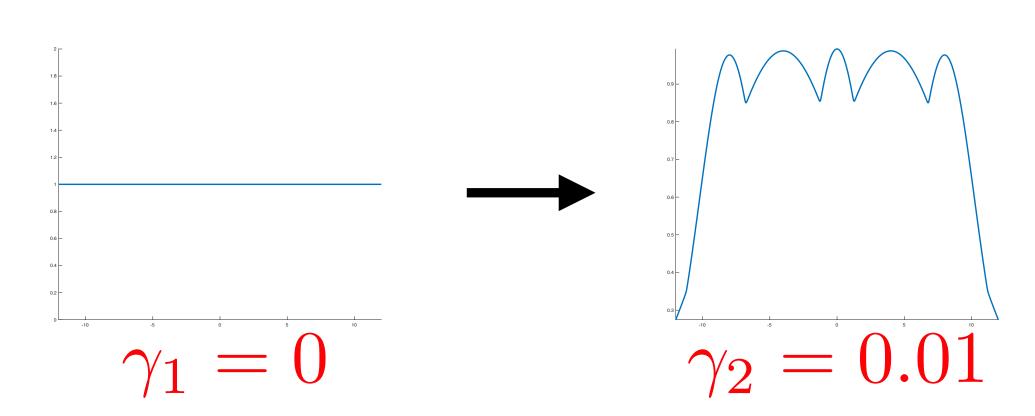
1. If I have samples for $\gamma_1 = 0$ then using **SIR** I have samples approximately for γ_2





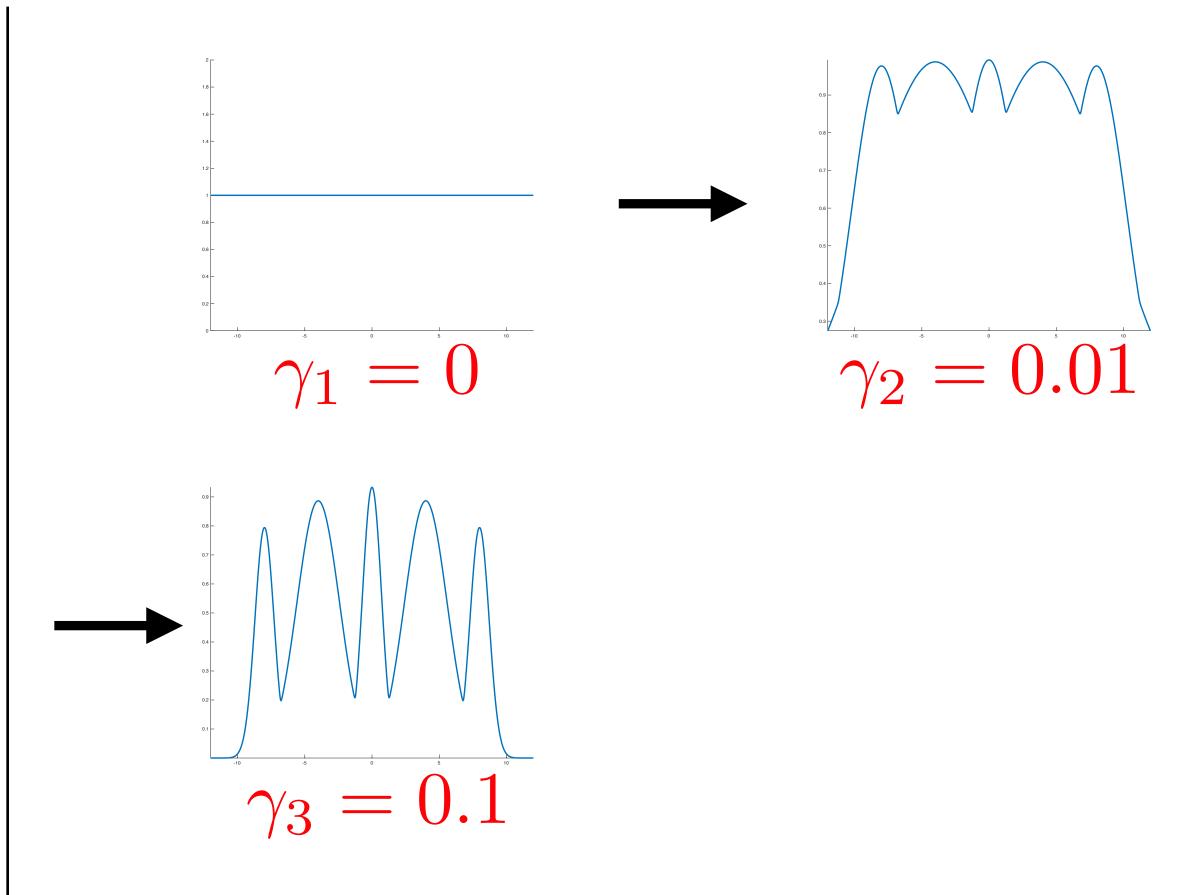
- 1. If I have samples for $\gamma_1 = 0$ then using **SIR** I have samples approximately for γ_2
- 2. If I have samples for γ_2 then using **SIR** I have samples approximately for γ_3





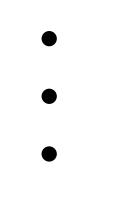
 $p_k(\vartheta \mid d) \propto p(d \mid \vartheta)^{\gamma_k} \pi(\vartheta)$

- 1. If I have samples for $\gamma_1=0$ then using **SIR** I have samples approximately for γ_2
- 2. If I have samples for γ_2 then using **SIR** I have samples approximately for γ_3

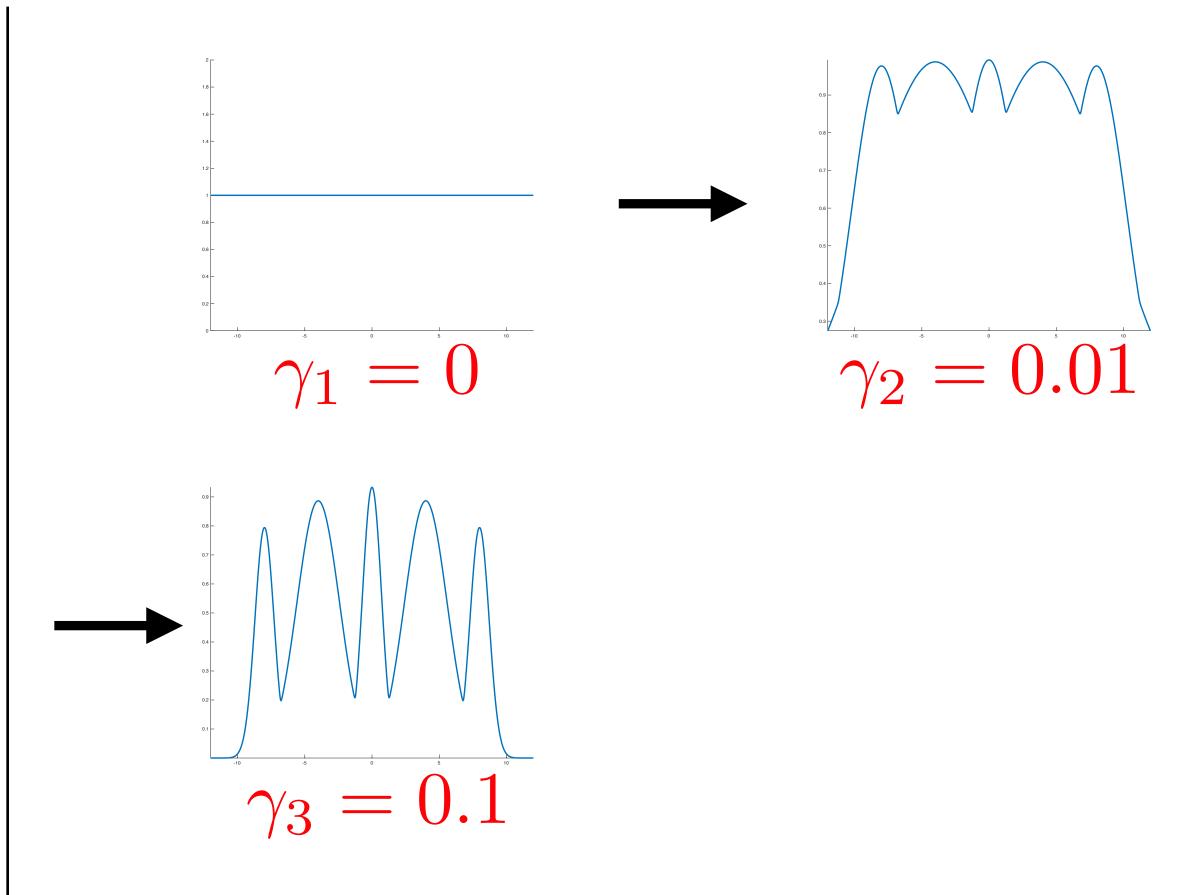


 $p_k(\vartheta \mid d) \propto p(d \mid \vartheta)^{\gamma_k} \pi(\vartheta)$

- 1. If I have samples for $\gamma_1=0$ then using SIR I have samples approximately for γ_2
- 2. If I have samples for γ_2 then using **SIR** I have samples approximately for γ_3

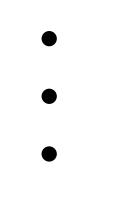


N. If I have samples for γ_{N-1} then using **SIR** I have samples approximately for $\gamma_N = 1$



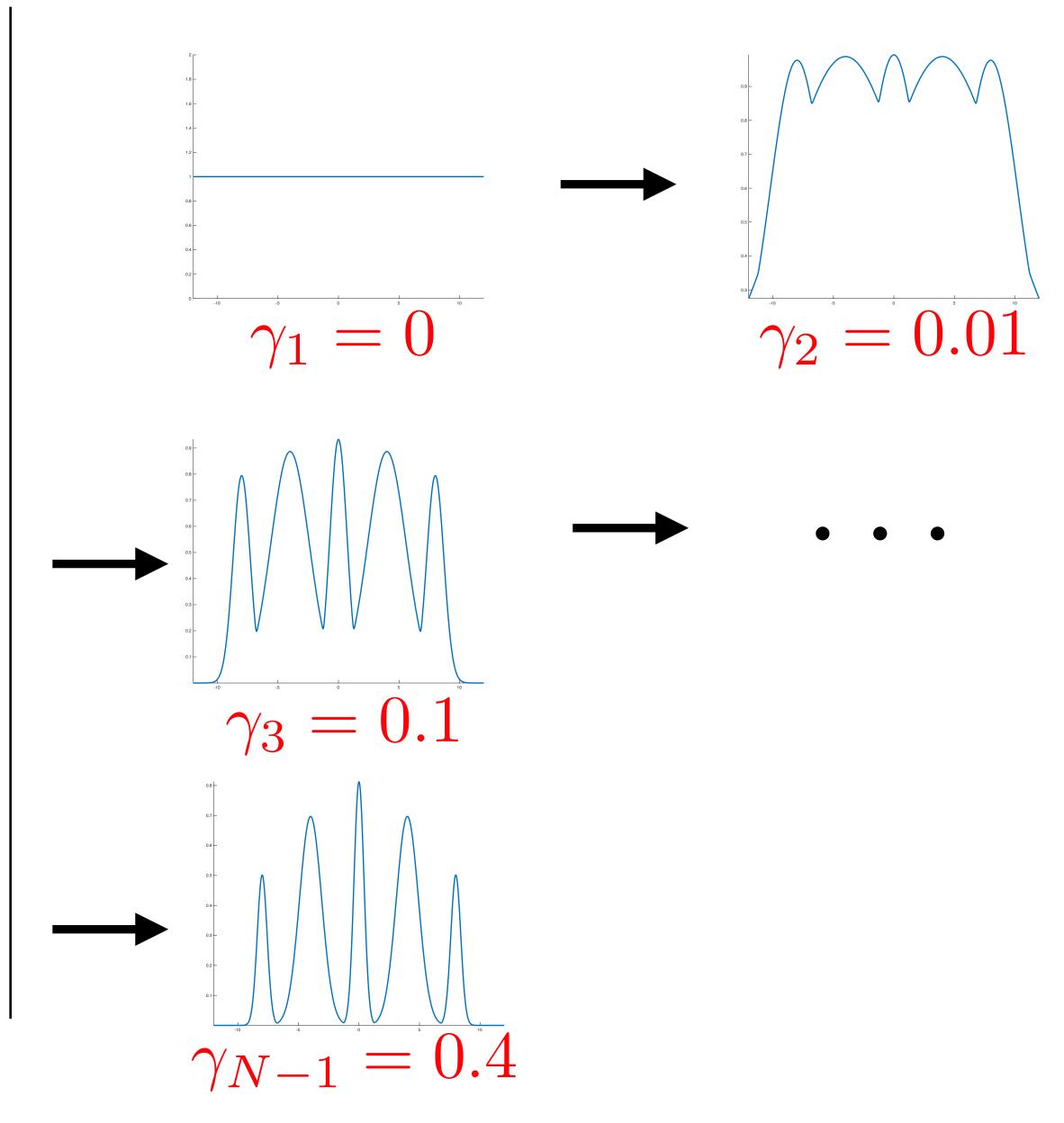
 $p_k(\vartheta \mid d) \propto p(d \mid \vartheta)^{\gamma_k} \pi(\vartheta)$

- 1. If I have samples for $\gamma_1=0$ then using SIR I have samples approximately for γ_2
- 2. If I have samples for γ_2 then using **SIR** I have samples approximately for γ_3



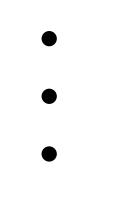
N. If I have samples for γ_{N-1} then using **SIR** I have samples approximately for $\gamma_N = 1$

Annealing



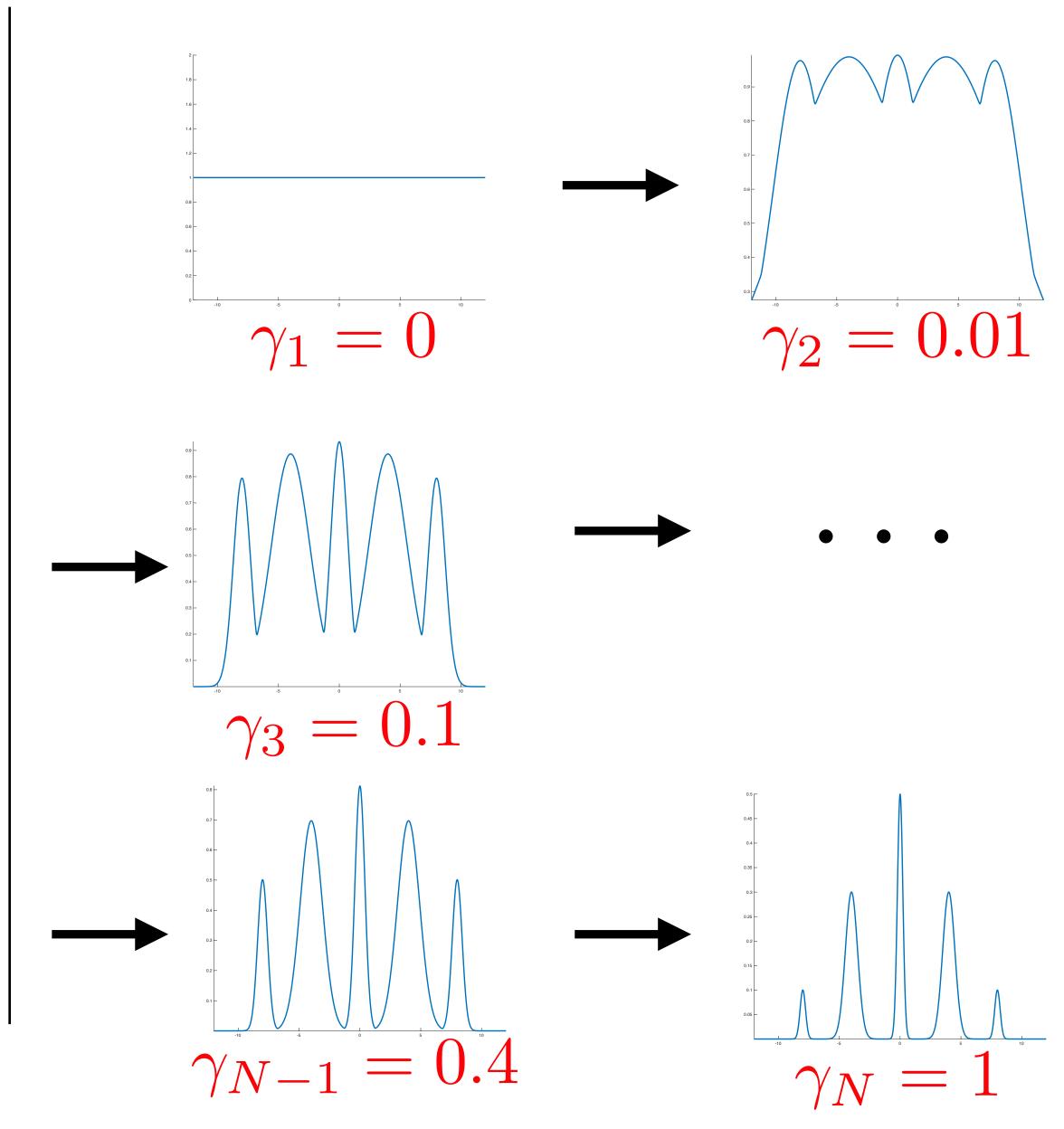
 $p_k(\vartheta \mid d) \propto p(d \mid \vartheta)^{\gamma_k} \pi(\vartheta)$

- 1. If I have samples for $\gamma_1=0$ then using SIR I have samples approximately for γ_2
- 2. If I have samples for γ_2 then using **SIR** I have samples approximately for γ_3



N. If I have samples for γ_{N-1} then using **SIR** I have samples approximately for $\gamma_N = 1$

Annealing



TIMCIMC for model selection

• Model selection: an estimator for the denominator is given by,

p(a)

$$d) \approx \prod_{k=1}^{N} S_k$$

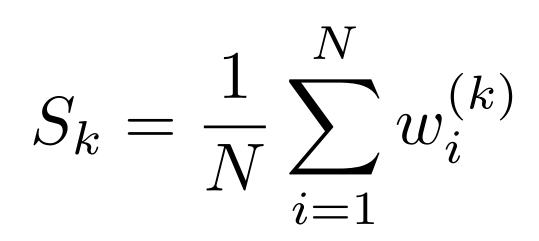
TMCMC for model selection

• Model selection: an estimator for the denominator is given by,

TMCMC for model selection

• Model selection: an estimator for the denominator is given by,

where



TMCMC for model selection

• Model selection: an estimator for the denominator is given by,

where

