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Unbounded domain

1. Introduction

Green’s functions are the preferred methods for solving linear differential equations in an unbounded
domain, i.e. with free-space boundary conditions. The Green’s function represents a homogeneous solution
which is derived analytically, and then used to obtain the particular solution by a convolution with the
right-hand-side field of the Poisson equation.

The analytical Green’s function of a continuous smooth field is singular at its origin. Applied in discretized
numerical calculations, the singularity of the Green’s function evidently causes a number of difficulties. In
order to amend this, smoothing regularization techniques have been applied (e.g. [1-3]) which introduce a
continuous and smooth field distribution around the discrete points and thus avoid the singularity of the
Green’s function. However, most regularization methods that have been applied are based on functions that
only conserve a finite number of field moments, and are thus only accurate up to a finite order of convergence
rate.
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Vico et al. [4] derived non-singular Fourier transforms of the Green’s function in two and three dimensions
by imposing an isotropic maximum length scale of the integrated domain in real space. This method
was shown to provide a spectral accuracy when the computational domain was sufficiently extended in
all directions to provide a sufficient spectral resolution when evaluating the Green’s function in Fourier
space. However, as the Green’s function is isotropic the imposed maximum length scale dictates the spectral
resolution criteria, and thus the length of the integrated domain, for all directions. This makes the method of
Vico et al. [4] potentially inefficient for elongated domains, as the imposed length scale must be proportional
to the maximum length of the domain to insure that the integration includes the full domain.

In this work we impose a minimum length scale in the real space, analogous to a discretization length, in
order to obtain a non-singular expression to the real space Green’s function. This is achieved using a spectral
cut-off function to avoid the aforementioned singularity in the real space representation. By using a spectral
cut-off function, we impose a minimum length scale, allowing us to derive the Green’s function analytically.
As no explicit smoothing function is applied, the obtained non-singular Green’s function gives an optimal
accuracy when used in numerical calculations, as it is only subject to quadrature errors, converging in a rate
proportional to the smoothness of the right-hand-side field.

As with the method of Vico et al. [4] the presented method also imposes an isotropic length scale for
all directions, albeit here as a minimum length scale of the solution. Consequently, if the discretization is
non-isotropic the proposed method will provide a solution, in all directions, which is limited to the minimum
length scale of the lowest resolved direction.

The gradient vector of the non-singular Green’s function is also derived. This function is useful in
applications where the Poisson equation represents a vector or scalar potential function of a vector field
as it enables a direct solution of the vector field.

The proposed non-singular Green’s functions may be used directly in efficient computational methods
such as the fast multipole method [5,6] or the mesh based FFT solver [7]. The mesh based Poisson solver was
recently shown capable of obtaining a high order convergence rate by using regularized Green’s functions
[8-10]. The mesh based solver was extended to handle mixed unbounded and periodic boundary conditions
by Chatelain and Koumoutsakos [11] and for high order accuracy in Spietz et al. [12]. Here the periodic
Green’s function solution is combined with that of an unbounded solution of reduced dimensionality.

Using the non-singular Green’s functions presented here in the mesh based Poisson solver effectively
results in a solution of spectral accuracy. The reader is referred to the open source software [13] for a
numerical implementation of this.

2. Methodology

The Poisson equation in an unbounded domain is formally stated as:
V?A(z) = —B(x) where A(x) -0 for |xz] = o0 (1)

Here B(x) is a known bounded field and A(x) is the desired solution field. In many applications such
as astrophysics, electrodynamics and vortex dynamics, the vector field to be solved v(x) is described by
potential functions using the Helmholtz decomposition:

v(x) =V x¢P(x) — V(x) where V- (x)=0 (2)

The fundamental operations describing the conservation of the flux and circulation of the vector field v is
the divergence ¥(x) = V - v(x) and the curl w(z) = V x v(x), respectively. From Eq. (2) it follows that
these may be expressed by the potential functions as:

I(x) = -V(x) and  w(x)=-Vy(x) 3)
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Both potentials may thus be obtained by solving a Poisson equation. By utilizing the linearity of the Poisson
equation, and considering the equations by their Fourier transform, we obtain the algebraic equations:

—k2p(k) = —I(k) o(k) = G(k) D(k) e L
“Rpk)=-ak) | p(k) = Clk)G(k) h Glk) = 12 (4)

Here = denotes a Fourier transformed variable, ¢ the imaginary unit, k is the angular wave-number of
the Fourier space, and k = |k| its modulus. @(kz) is the Green’s function in Fourier space which represents
the homogeneous solution to the Poisson equation. We may furthermore obtain the vector field of Eq. (2)
directly by incorporating the gradient operator into the Green’s function as K (x) = VG(x) after which:

—k2By(k) = —kD(k) by (k) = K (k) 0(k) e Tk
e ﬁi(k) = ik x (k) T ek =Rk <ok e Kk=5o 6

As the Green’s function in Fourier space (Eq. (4)) is in fact unbounded, an infinite domain in the Fourier
space is needed in order to obtain the correct solution. However, for a discrete approximation, such as is used
in numerical simulations, the discretization of the domain in the physical space results in a bounded domain
in the Fourier space, represented by the set of wave-numbers k; = {—ks/2,... ,ks/2}. Here ks = 27/h is the
angular sampling wave-number corresponding to the discretization length h and k/2 is the highest resolved
angular wave-number due to the Nyquist—Shannon sampling theorem. The exact Green’s function of Eq. (4)
thus cannot not be represented in a discretized space, and using it will introduce errors in the calculation
resulting in a limited convergence rate of O(h?) [14].

In order to amend this and derive a Green’s function which is bounded by a maximum wavenumber, we
regularize the Green’s function using a radial cut-off function in Fourier space:

1 for O<k‘§%

k
f E> =
0 for >2

This leads to a regularized Green’s function and a corresponding homogeneous equation of:

am="%"" o v =—n 7)

Using the radial cut-off function of Eq. (6), it is seen that the Green’s function of the non-regularized
equation (Eq. (4)) is unchanged in the range of wave-numbers 0 < k < ky/2.

3. Results

By utilizing the radial symmetry of the Green’s function, the regularization function in real space ((p) may
be obtained by considering the unbounded Fourier transform in d-dimensional spherical/polar coordinates
which is given by:

~ (sp)
C(s) = (2m0” %/ C(p k! 1@_1 ptdp 8)

where J,, denotes the Bessel function of the first kind and of order v. Using an integral identity of the Bessel
functions [15], we may satisfy Eq. (6) by using the cut-off function:

N OOJg(p)Jg_l(sp) 1 for 0<s<1
C(s):/ %d/}: 1/2 for s=1 (9)
0 52 0 for 1<s
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Here we have shifted to normalized coordinates s = ok and p = r/o where o is determined by fulfilling
s=1for k =ks/2:

a%zo%zl = O’Z% = s:% and p:%r (10)
Here h is an isotropic minimum length scale. In case of a non-isotropic discretization, h must be chosen as
the largest discretization length in order to ensure that the Green’s function is sufficiently resolved in all
directions. This however, comes at the cost of low-pass filtering the higher resolved directions and hence an
isotropic discretization is preferred for this method.

Considering Egs. (8) and (9), we find that the regularization function in real space is given by:

Ja(p)
P)=—"—"_ - "4a
(2m02p)®
For the case of d = 2 this is identical to that presented in Refs. [1,3].

We may now obtain the corresponding real space Green’s function by radial integration of the
homogeneous equation (Eq. (7)) in the unbounded real space. For the one-dimensional case (d = 1), we

(11)

obtain:
G(p) = —% (Si(p)p + cos(p)) + C1 for d=1 (12)

Here Si(p) = fop Sin—q(q) dq is the sine integral function and Cj is an arbitrary integration constant, which
we may use to define a reference value. In this work we determine C; such that we obtain an asymptotic
behavior towards the non-regularized Greens function for large p whatever the value of o:

1 1
Cl:iL = G(p)ﬁfi(rfL) for p— o0 (13)

Here L is a chosen global reference length of arbitrary value.
The gradient vector of the Green’s function, which may be used to combine the gradient operator directly
in Eq. (5), is given by:

K(p)=— for d=1 (14)

Similarly, for the two-dimensional case (d = 2) the radial integration yields the real space Green’s function:
1
G(p) = —?Jio(p) + Cy for d=2 (15)
s

where Jig(p) = fop %‘)([’) dq is the Bessel integral function which for a numerical implementation may be
approximated efficiently e.g. by Chebyshev polynomials cf. [16]. Cy is an arbitrary integration constant,
which we may use to define a reference value. Again, we determine the integration constant Cs such that
we obtain an asymptotic behavior towards the singular Greens function for large p whatever the value of o:

2m L L
Here L is a chosen global reference length.
The gradient vector of the Green’s function, which may be used to calculate the vector field directly in
Eq. (5), is given by:

Cy = —iln (20) + = G(p) — —iln (i) for p— o0 (16)

| LdG(p) 1 1= J(p)
K(p) = —K(ple, with K(p)=—-22W) _ = 2= JP)
(p) (p)er  wi (p) = —~ ap D T—
Here K(p) > 0 and K(0) = 0 and e, = x/|x| is the radial normal vector. This result is identical to that
presented in Refs. [1,3].

Using the same approach for the three-dimensional domain (d = 3), we obtain the Green’s function:

Glp) = 3 732 . Si/()p)

for d=2 (17)

1

Here the integration constant C3 = 0 to impose that G(p) — 0 for p — oo whatever the value of o.
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1-Dimensional Green’s functions
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Fig. 1. The regularized Green’s functions (blue) compared to the singular Green’s functions (black) for the one-, two-, and three-
dimensional cases. (Left) The Green’s function G(r) (Egs. (12), (15) and (18)). For the Green’s functions in 1D and 2D, L = 3 is used
to determine the integration constants. (Right) The radial component of the Green’s function gradient K (r) (Egs. (14), (17) and (19)).

The gradient vector of the Green’s function is then obtained as:

_1dG(p) _ 1 Si(p) —sin(p)

K(p) = —K(p)e, with K(p)= !

for d=3 (19)

dp — 2m202 p
where we also have that K(p) > 0 and K(0) = 0.
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The derived non-singular Green’s functions are compared to the singular Green’s functions in Fig. 1. The
oscillatory behavior of the non-singular Green’s functions is analogous to the sinc function approximation
of the Dirac delta function, and ensures the conservation of the field moments.

For validation we have implemented the non-singular Green’s functions into the numerical methodology
used in the Poisson solver presented in Refs. [8-10,12]. Using this method we are able to obtain an accuracy
in the solution limited only by the machine precision, when tested on the same benchmark cases as is used
in [8] (not shown). It is here emphasized that this order of precision is only feasible given a sufficiently
smooth and resolved right-hand-side field. For less smooth and resolved fields, the presented non-singular
Green’s functions still provide the highest possible accuracy allowed by the quadrature error. For the exact
numerical implementation that we have used for these tests, the reader is referred to the provided open
source software [13].

4. Conclusion

We have derived the non-singular Green’s functions for the unbounded Poisson equation, in one, two and
in three dimensions, using a spectral regularization method. By applying a radial cut-off function in Fourier
space, the regularized Green’s function is derived analytically in unbounded domains subject to a minimum
resolved length scale (e.g. a mesh size h). As a sharp cut-off function is used, smoothing errors are avoided
and the obtained regularized Green’s function achieves an optimal accuracy for discretized fields.

The gradient vector of the Green’s function was furthermore derived. The obtained Green’s function
for the two-dimensional case corresponds to that presented in Refs. [1,3]. In the present work, we formally
showed the spectral derivation of this function, and we extended it to the one and three-dimensional cases.
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