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Abstract. CUBISM-MPCF is a high throughput software for two-phase flow simu-
lations that has demonstrated unprecedented performance in terms of floating point
operations, memory traffic and storage. The software has been optimized to take
advantage of the features of the IBM Blue Gene/Q (BGQ) platform to simulate cav-
itation collapse dynamics using up to 13 Trillion computational elements. The per-
formance of the software has been shown to reach an unprecedented 14.4 PFLOP/s
on 1.6 Million cores corresponding to 72% of the peak on the 20 PFLOP/s Se-
quoia supercomputer. It is important to note that, to the best of our knowledge, no
flow simulations have ever been reported exceeding 1 Trillion elements and reach-
ing more than 1 PFLOP/s or more than 15% of peak. In this work, we first ex-
tend CUBISM-MPCF with a more accurate numerical flux and then summarize and
evaluate the most important software optimization techniques that allowed us to
reach 72% of the theoretical peak performance on BGQ systems. Finally, we show
recent simulation results from cloud cavitation comprising 50000 vapor bubbles.
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Introduction

Modern supercomputers enable engineers to design effective solutions for the energy
and the environment where fluid flows play a key role. Cloud cavitation collapse can in-
duce pressure peaks up to two orders of magnitude larger than the ambient pressure [1].
It is detrimental to the lifetime of high pressure injection engines and ship propellers
and instrumental to kidney lithotripsy and drug delivery [2]. The simulation of cavita-
tion requires two-phase flow solvers capable of capturing interactions between deform-
ing bubbles, formation of shocks and their impact on solid walls, over a multitude of spa-
tiotemporal scales. Moreover, simulations of bubble cloud collapse are very demanding
in terms of numbers of operations, system size and memory traffic.

CUBISM-MPCEF [3] is a compressible, two-phase finite volume solver capable of
simulating and study cavitation collapse of clouds composed of up to 50000 bubbles. It
is designed for multi-core clusters and highly optimized on Blue Gene/Q (BGQ) plat-
forms, where it has managed to achieve up to 72% of the peak performance, to date the
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best performance for flow simulations in supercomputer architectures. A set of software
techniques take advantage of the underlying hardware capabilities and concern all levels
in the software abstraction aiming at full exploitation of the inherent instruction/data-,
thread- and cluster-level parallelism.

1. Models and numerical approach

Cavitation dynamics are mainly governed by the compressibility of the flow while vis-
cous dissipation and capillary effects take place at orders of magnitude larger time scales.
We therefore solve inviscid, compressible, two-phase flows by discretizing the corre-
sponding Euler equations. The system of equations describing the evolution of density,
momentum and total energy of the flow reads:
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The evolution of the vapor and liquid phases is determined by another set of advection
equations:

5, TuVe=0, 2)

¢
d
where ¢ = (I',TI) with T = 1/(y—1) and IT1 = yp./(y— 1). The specific heat ratio y
and the correction pressure of the mixture p. are coupled to the system of equations (1)
through a stiffened equation of state of the form I'p +IT = E — 1/2p|u|?. We discretize
these equations using a finite volume method in space and evolving the cell averages in
time with an explicit time discretization.

Finite Volume Method. The governing system (1) and (2) can be recast into the con-
servative form
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where Q = (p,pu,E, )7 is the vector of conserved variables and F, G, H are vectors of
flux functions
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The last term in R is due to rewriting (2) in conservative form [4]. The method of lines
is applied to obtain a semi-discrete representation of (3), where space continuous oper-
ators are approximated using the finite volume method. The time continuous system of
ordinary differential equations

=2V (), ©)

is then solved using a low-storage third-order Runge-Kutta scheme [5]. V € R™ is a
vector of conserved cell average values at each center of the N cells in the domain. The
evaluation of the discrete operator .Z: R’V — R’V requires the solution of a Riemann
problem at each cell face in the computational domain.

Three computational kernels are considered to perform one step. First, the admis-
sible time step, Az, is determined by adhering to the CFL condition. We call this ker-
nel “DT” and execute it once per step. The second stage requires the evaluation of the
right-hand side in (4). The explicit third order time integration requires the evaluation of
& three times per step. The computational kernel for this task is called “RHS”. Finally,
updating the state of each of the solution variables in the domain is performed by call-
ing the kernel “UP” once each step. RHS is bounded by the maximum performance of a
BGQ node, while the DT and UP are memory bound [3]. In addition, RHS, DT and UP
correspond approximately to 90%, 2% and 8% of the total simulation time, respectively
(with I/O disabled).

Improved Numerical Flux. The RHS solves a Riemann problem on each cell inter-
face in order to determine the numerical flux .Z" (W~ ,W™) at discrete time ¢". Here
W = (p,u,p,9)T is a vector of primitive variables. The two states W~ and W are the
initial states for the Riemann problem. They are reconstructed from cell center values to
the cell faces, using a third- or fifth-order weighted essentially non-oscillatory (WENO)
scheme [6]. We use primitive variables for reconstruction to prevent numerical instabil-
ities at interfaces [4]. The Riemann problem is then approximated at each cell face by
assuming a single constant state W* instead of the state W', obtained from the exact
wave structure, cf. Figure 1. This approximate Riemann solver is due to Harten, Lax
and van Leer [7] and known as HLLE, where the wave speed estimates, s;, and sg in
Figure 1(b) are computed based on the work of Einfeldt [8].

In the context of this work, the accuracy of the approximate Riemann problem has
been improved by explicitly modeling the contact discontinuity, labeled by “c” in Fig-
ure 1(a), by implementing the HLLC numerical flux [9]. The HLLC approximation as-
sumes two constant intermediate states, separated by a contact discontinuity, propagat-
ing with a speed s*, cf. Figure 1(c). Separating the contact discontinuity by two states
allows for sharper resolution of material interfaces, which is important for multicom-
ponent flows. The single state in the HLLE approximation is diffusive over the whole
wave structure and consequently produces larger amounts of numerical viscosity in flow
regions with multiple components. Estimates for sz and sg are again obtained from Ein-
feldt [8], which results in comparable approximations for shock and expansion waves for
both, HLLE and HLLC solvers.
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Figure 1. (a) Exact solution of the Riemann problem for the 1D Euler equations with intermediate states W/
for j = 1,2. “r” denotes a continuous rarefaction wave, “c” a contact discontinuity and “s” a shock wave. The
initial states W~ and W are obtained from a WENO reconstruction. (b) HLLE approximation to the exact
solution (a) using a single intermediate state W*. (¢) HLLC approximation to (a) using two intermediate states
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tion of RHS on the core layer.

Figure 2. (a) Memory layout for a computational block in CUBISM-MPCEF. The data is stored in an array of
structures (AoS) format in memory. Each cell provides enough space to store the vector of conserved variables
Q, illustrated by the different colors. (b) At the core layer, the AoS layout is reformatted into a structure of
arrays (SoA) layout to exploit data parallelism. Note that a second copy of each block (gray) is stored in
memory due to the low-storage time integrator.

2. Optimization techniques and software

CUBISM-MPCEF is decomposed into three layers: cluster, node and core to maximize the
reusability. The cluster layer is responsible for the domain decomposition and the inter-
rank information exchange. We divide the data into blocks that are formed by 323 cells.
Each cell is represented by the vector of conserved variables Q, which we consecutively
store in memory. The 3D block structure is represented in linear memory by V for a
total of N computational cells. This results in an array of structures (AoS) format for the
data in main memory. A second copy for each block is required due to the low-storage
Runge-Kutta scheme. See Figure 2(a) for a visualization of a block.

The data is further decomposed into subdomains across the ranks in a cartesian
topology with a constant subdomain size. The cluster layer dispatches the blocks for
computation to the node layer, which is responsible for coordinating the work within
each rank. The work associated to each block is exclusively assigned to one thread. To
evaluate the RHS of a block, the assigned thread loads the block data and ghosts into
a per-thread dedicated buffer. For a given block, the intra-rank ghosts are obtained by
loading fractions of the surrounding blocks, whereas for the inter-rank ghosts data is
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Table 1. Performance in fraction of the peak as well as time-to-solution (TtS) for the two accuracy levels on
96 BGQ nodes [10].

| Accuracy |  ALL RHS \ DT \ UP | TiS(sec) |
I NR iteration 61.1% 68.5% 10.2% 2.3% 152
2 NR iterations 64.8% 71.7% 13.2% 2.3% 17.0

fetched from a global buffer. The node layer relies on the core layer for the execution
of the compute kernels on each block. In order to exploit the data parallelism, the AoS
layout is reformatted into a structure of arrays (SoA) layout, expressed by 2D slices
suited for the required stencil computations in RHS, see Figure 2(b) for a visualization.
The data conversion is a substage of RHS with about 1% execution time relative to the
execution time of RHS (cf. Table 8 in [3]). The conservative variables stored in each
block are read once by DT, UP and RHS, where the same number is written back by
UP and RHS. Further micro-kernels are called within RHS, requiring further memory
accesses that correspond mostly to cache hits due to the design of the blocks to fit the
cache. A roofline plot of the three kernels on BGQ is shown in Figure 9 in [3].
CUBISM-MPCF employs a number of optimization techniques such as data re-
ordering, vectorization by using QPX intrinsics, computation reordering and code fusion.
These techniques are applied to increase the FLOP/Byte and FLOP/instruction ratios [3].
In addition, the code exploits mechanisms supported by the BGQ hardware, such as data
prefetching, optimized memory copy functions and computation-transfer overlap using
asynchronous progress communication. Finally, the software implements two levels of
accuracy for floating point divisions by employing one or two iterations in the Newton-
Raphson (NR) scheme. A detailed description of these techniques can be found in [10].

3. Results

In this section we present for the first time, performance results that concern the strong
scaling efficiency of our code. We also demonstrate the effect of asynchronous progress
communication and discuss, in detail, about the different levels of code fusion. Finally,
we evaluate the performance of the improved approximate Riemann solver.

We compiled our code with the IBM XL C/C++ compiler (v12.1) and used the
IBM Hardware Performance Monitor (HPM) Toolkit for measuring performance figures.
We use 16° = 4096 blocks per compute node with 323 computational elements in each
block. Performance measurements from a previous publication are presented in Table 1.
It is important to note that due to the efficient computation/transfer overlap employed in
CUBISM-MPCEF, these results are valid for practically any number of BGQ nodes [10].

Strong scaling. Figure 3(a) depicts the strong scaling efficiency of the cluster layer
from 256 to 2048 BG/Q nodes, ranging the number of blocks per node from 4096 to 512.
We observe an efficiency of 89% on 2048 nodes and that both metrics, overall time/step
and achieved performance of RHS, exhibit similar scaling results.

Figure 3(b) shows how the cluster layer scales with respect to the number of blocks
per node. In this case, we range the number of blocks from 64 to 4096, running our
experiments on 512 BGQ nodes. For down to 512 blocks, the results coincide with those
in Figure 3(a). The efficiency remains above 82% for 256 blocks and drops down to 63%



772 P. Hadjidoukas et al. / High Throughput Simulations of Two-Phase Flows on Blue Gene/Q

T T
1001 —o— RHS (FLOP/s) || 100 |- 7
—&— Time/step
98 - =
¥ 9| 1§ 8o 8
> >
[3) 5
8 94F 13
= =
d o 1 & 60 .
90 - =
40 - —
88 I I [ | | | | | | |
28 29 210 211 212 o1l 210 29 28 27 26
Number of nodes Number of blocks/node

(a) Efficiency with respect to achieved performance  (b) Efficiency on 512 nodes for decreasing number
of RHS and time required per simulation step. of blocks per node.

Figure 3. (a) Strong scaling efficiency of the cluster layer of CUBISM-MPCE. The efficiency is illustrated for
both floating point operations of RHS and time per Runge-Kutta step. (b) Efficiency for fixed number of nodes
(512) and decreasing number of blocks that are processed by each node.
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Figure 4. Effect of asynchronous progress communication on (a) peak performance and (b) time-to-solution.

and 48% for 128 and 64 blocks per node, due to underutilization of processor cores and
inefficient computation/communication overlap. For instance, the 64 blocks, arranged in
a 4x4x4 subdomain, correspond to 27 inner and 37 halo blocks that are processed in two
phases by the 64 total OpenMP threads of each node. Therefore, the majority of threads
remains idle.

Computation/transfer overlap. To overlap communication with computation, we use
non-blocking point-to-point communications to exchange ghost information for the halo
blocks and then process the inner blocks before calling MPT Waitall(). To take full
advantage of this mechanism and eliminate communication overheads, however, we had
to activate the asynchronous progress communication at the PAMID layer. In addition,
we had to modify the workflow in the RHS kernel as follows: after issuing the MPI calls
for the ghost data, we create an OpenMP parallel region with 63 threads, each processing
a single inner block. After this parallel region, we call MPI_Waitall() and then process
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Table 2. Levels of micro-kernel fusion.

’ Level ‘ Description

0 No fusion, 8 micro-kernels.
As Level 0 with reduced accuracy of WENO smoothness indicators.

) Fusion of energy flux with wave speed estimator, as well as fusion of mass flux with the
diagonal entry of the momentum flux, 6 micro-kernels.

3 As Level 2 with reduced accuracy of WENO smoothness indicators.

4 Aggressive fusion of all micro-kernels into a single macro-kernel with code transformations
and reduced accuracy of WENO smoothness indicators.

the rest of the blocks using 64 threads [10]. In Figure 4 we observe the gain in achieved
performance (left) and time-to-solution (right) on up to 2 BGQ racks, attributed to the
negligible communication time of MPT_Waitall () due to the available hardware thread
that advances MPI communications.

Effect of code fusion. The evaluation of RHS requires the computation of the numer-
ical flux #" (W~ ,W") € R’ for each of the 7 components of the conserved variables Q
based on the HLLE or HLLC scheme. In addition, wave speed estimates for s; and sg
must be computed based on [8]. This results in 8 micro-kernels for each spatial direction
in 3D space.

We have implemented and tested several depths of code fusion, which are summa-
rized in Table 2. Code fusion reduces redundant accesses to main memory and increases
instruction level parallelism. On the other hand, pressure on the register file increases,
which might cause register spills. In addition to fusing the low-level micro-kernels of
RHS, reduction of complexity for the WENO smoothness indicators allows for further
code optimizations.

We assess the performance of these optimizations at the node layer by perform-
ing simulations on a single BGQ chip. Although this layer performs ghost reconstruc-
tion across the blocks, it completely avoids explicit communication and synchronization
overheads due to MPI. In contrast to the cluster layer, the 4096 blocks are dynamically
scheduled to the 64 OpenMP threads using a single parallel for loop.

Figure 5 shows the results for the different levels of code fusion on a single BGQ
node, where we further distinguish between the IBM SWDIV intrinsic and our NR im-
plementation for floating point divisions. Figure 5(a) illustrates the achieved peak per-
formance, which we managed to increase by 8% in absolute value when going from
the initial version to the one with the most aggressive optimizations. Figure 5(b) shows
time-to-solution based on our optimizations.

Improved numerical flux. The increased complexity of the HLLC algorithm further
improves the fraction of the peak for RHS to 69.5% and 72.8% for one and two NR
iterations, respectively, on a single BGQ node. Despite the additional logic required to
distinguish between the two constant states W} and W}, in the HLLC algorithm, we ob-
serve an improvement of about 1% in the achieved performance using the HLLC approx-
imate Riemann solver over HLLE. The improvement is due to a slightly better density of
FMA instructions in the QPX implementation of HLLC. This, however, at the expense
of higher execution time, which is increased by 9% compared to the version that uses the
HLLE scheme, due to the increased number of floating point operations. Table 3 com-
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Table 3. Measurements for time to solution and RHS performance on a single BGQ node for one and two NR
iterations, respectively, for the HLLE and HLLC solvers. On 2048 BGQ nodes, RHS using the HLLC solver
achieves 68.8% and 72.1% of peak performance for one and two NR iterations, respectively.

One NR iteration Two NR iterations
HLLE HLLC HLLE HLLC
Time/step [s] 15.0 16.4 16.8 18.4
RHS [% peak] 68.7% 69.5% 72.0% 72.8%
T T T
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Figure 5. Achieved peak performance (a) and time-to-solution (b) for different code fusion levels on a single
BGQ node. The plots compare three variants for the computation of floating point divisions. We distinguish
between the NR scheme for floating point divisions with either one or two iterations, as well as the IBM
intrinsic SWDIV. See Table 2 for a description of the different fusion levels.

pares measurements for time to solution and RHS performance on a single BGQ node
for the HLLE and HLLC solvers.

4. Simulations

We present recent results from cloud cavitation comprising 50000 vapor bubbles. Fig-
ure 6(a) displays a random spherical cloud of vapor bubbles with an initial radius of
r. = 8mm and cloud interaction parameter of § = 120 at time ¢ = 0. The bubble radii
range from 50 m to 200 um. The domain is discretized using 4096° cells. The simula-
tion was scheduled on 2 BGQ racks and required 25000 time steps.

The collapse of bubbles is initiated at the most outer shell of the cloud and further
propagates towards the cloud center. Instantaneous bubble shapes of these initial col-
lapses are depicted in Figure 6(b). At the final stage of the collapse, a strong pressure
shock is emitted from the center of the cloud, see Figure 6(c). The maximum pressure,
an indicator for the damage potential, exceeds the ambient pressure by a factor of 25
for this particular cloud. The pressure amplification relative to the ambient pressure pe
is shown in Figure 7(a). Highest Mach numbers are observed prior to the final collapse
of the cloud. During that time, the collapsing bubbles are located at the outer shells
of the spherical cloud with re-entrant micro-jets focused towards the cloud center. The
non-spherical collapse generates high velocity jets, which penetrate through the bubbles.
These jets are associated with large kinetic energy, which in turn cause high Mach num-
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(a)  Spherical cloud  with (b) Close-up of the first collapsing (c) Peak pressure in the cloud cen-
50000 bubbles at time ¢ = 0. bubbles at the most outer shell. ter at the final stage of the collapse.

Figure 6. (a) Initial state of the cloud. (b) Close-up view of the outer bubbles during the collapse process. (c)
Emerging pressure wave after the final collapse of the cloud. Pressure regions are depicted in yellow (15-25
times larger than the initial ambient pressure) and blue (10-15 times larger). Refer to the online version for
colors.
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Figure 7. (a) Maximum Mach number and pressure amplification during the simulation. (b) Occurrence of
maximum pressure measured by radial distance from the cloud center.

bers. As the bubble collapse propagates closer towards the cloud center, the jet velocities
become weaker and concentrate at the center of the cloud. As the total kinetic energy
decreases, the potential energy increases due to conservation of energy. Hence the sharp
decline of the maximum Mach number just prior to the emission of the strong pressure
shock from the cloud center, cf. Figure 7(a).

Figure 7(b) illustrates the radial distance, D,, of the maximum pressure, measured
from the cloud center. For the first collapsing bubbles, the maximum pressure randomly
jumps to radial distances further away from the cloud center. As collapses progress, the
maximum pressure obeys a structured information propagation with a signal velocity of
approximately 1405m/s, which is lower than the speed of sound in water at standard
conditions due to the disruptive vapor cavities. The minimum radial distance of the max-
imum pressure is observed when the pressure is found to be the global maximum, see
Figure 7(a) and 7(b). The emission of a strong pressure shock at the final collapse stage
causes the radial distance of the maximum pressure to increase. As the radial distance in-
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creases, the structure in the information propagation is lost and maximum pressure loca-
tions continue to jump randomly between spherical shells. A notable difference to the ini-
tial phase of the collapse is that the pressure maximum in the post cloud collapse regime
rapidly jumps back somewhere close to the cloud center. Similar pressure rebounds are
observed in spherical collapse of a single bubble.

5. Conclusions

The employment of algorithmic and software techniques and the exploitation of under-
lying hardware capabilities have enabled CUBISM-MPCEF to reach 72% of the theoret-
ical peak performance of BGQ platforms, allowing us to perform simulation studies of
cloud cavitation collapse at unprecedented scale. Our approach is generally applicable
and can be adopted to enhance the performance of all uniform grid based solvers 2. We
are currently enhancing our software with wavelet adapted grids for multiresolution flow
simulations.
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