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Abstract

Cytoplasmic transport of organelles, nucleic acids and proteins on microtubules is usually bidirectional with dynein and
kinesin motors mediating the delivery of cargoes in the cytoplasm. Here we combine live cell microscopy, single virus
tracking and trajectory segmentation to systematically identify the parameters of a stochastic computational model of
cargo transport by molecular motors on microtubules. The model parameters are identified using an evolutionary
optimization algorithm to minimize the Kullback-Leibler divergence between the in silico and the in vivo run length and
velocity distributions of the viruses on microtubules. The present stochastic model suggests that bidirectional transport of
human adenoviruses can be explained without explicit motor coordination. The model enables the prediction of the
number of motors active on the viral cargo during microtubule-dependent motions as well as the number of motor binding
sites, with the protein hexon as the binding site for the motors.
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Introduction

The function of eukaryotic cells relies on the transport of

macromolecules and organelles throughout the cytoplasm. Path-

ogenic viruses can exploit a cell’s cytoplasmic transport mecha-

nisms [1,2] in order to reach their site of replication. Cytoplasmic

transport involves three types of molecular motors. Kinesin and

dynein motors use microtubule tracks to move cargo throughout

the cytoplasm, while myosin motors interact with actin filaments to

move their cargoes [3,4]. Microtubule based transport is usually

bidirectional and its mechanism can be explained by the exclusive

binding of dynein and kinesin motors to the cargo, motor

cooperation and regulation, or a stochastic tug-of-war [5–8].

Exclusive binding of motors has not been reported in cells, while in

systems with cooperating motors, additional factors such as on/off

switches or coordinators between motors have been postulated for

bidirectional transport of large cargo, such as vesicles [7]. The

mechanism of bidirectional motor transport by non-coordinated

motors of opposite polarity has been the basis of tug-of-war models

[7,9].

In this work we propose a stochastic model for motor transport

on microtubules and we systematically identify its parameters

using virus trajectories obtained by in vivo imaging (Fig. 1).

Trajectories are obtained by live cell microscopy of fluorescently

labelled human adenovirus type 2 (Ad2) using confocal microsco-

py. Motility information extracted through single virus tracking

[10], and trajectory segmentation [11] are implemented in order

to study the properties of virus transport by employing a systems

identification process [12] for a stochastic model of cargo transport

on microtubules.

A Stochastic Model for Cargo Transport
The small number of motor proteins involved in microtubule

transport implies a system where the fluctuations in the behavior of

motors and the randomness of molecular reactions are essential

characteristics [13] suggesting a stochastic modeling of the

governing processes. Here we propose a stochastic representation

of the main events involved in motor transport, namely stepping

along microtubules and binding and unbinding of molecular

motors to the cargo.

The proposed model has six parameters, namely the binding,

unbinding and stepping rates of plus-end and minus-end motors

(herein presumed to be dynein and kinesin, respectively). The step

sizes of the motors were set to 28/+8 nm for dynein/kinesin as

suggested by the results of single molecule experiments [14,15].

We note that we do not impose any geometrical information on

the motors and their binding sites on the virus capsid. The motor

protein binding sites on the adenovirus capsid are not known even

though a recent cryo-EM image of the structure of the human

adenovirus type 2 temperature sensitive mutant revealed the

organization of the surface of the virus capsid [16].

The six model parameters are inferred through a system

identification process using the velocity and displacement

distributions of segmented trajectories as the cost function of our

optimization. An evolutionary algorithm, capable of handling

noisy cost functions, is used to obtain the rates that minimize the

distance between the velocity and displacement distributions of the

in silico and in vivo trajectories.

The velocity distribution in virus trajectories has led to several

suggestions regarding the cooperation or lack thereof between

molecular motors. High velocities, in the order of a few microns
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per second, were observed for intracellular viruses (Fig. 2E) [17].

Similar high speeds have been observed for vesicles moving along

microtubules such as peroxisomes [18] and endosomes [19]. These

velocities are above the maximum velocities measured for single

motors without load (3 mm/s for dynein, [14]; 0.4 mm/s for

kinesin-1, [20]; 3 mm/s for kinesin-1, [21]; 0.8 mm/s for kinesin-1,

[22]; 0.8 mm/s kinesin-1 and 0.5 mm/s kinesin-2, [23] in in vitro

experiments. It has also been reported for drosophila lipid

droplets, that multiple processive motors do not move cargoes

faster [24]. It is likely that yet unknown mechanisms account for

the high velocities measured in in vivo biological systems. These

mechanisms may involve motors which are able to increase their

Author Summary

Molecular motors, due to their transportation function, are
essential to the cell, but they are often hijacked by viruses
to reach their replication site. Imaging of virus trajectories
provides information about the patterns of virus transport
in the cytoplasm, leading to improved understanding of
the underlying mechanisms. In turn improved understand-
ing may suggest actions that can be taken to interfere with
the transport of pathogens in the cell. In this work we use
in vivo imaging of virus trajectories to develop a
computational model of virus transport in the cell. The
model parameters are identified by an optimization
procedure to minimize the discrepancy between in vivo
and in silico trajectories. The model explains the in vivo
trajectories as the result of a stochastic interaction
between motors. Furthermore it enables predictions on
the number of motors and binding sites on pathogens,
quantities that are difficult to obtain experimentally.
Beyond the understanding of mechanisms involved in
pathogen transport, the present paper introduces a
systematic parameter identification algorithm for stochas-
tic models using in vivo imaging. The discrete and noisy
characteristics of biological systems have led to increased
attention in stochastic models and this work provides a
methodology for their systematic development.

Figure 1. Imaging, tracking and trajectory segmentations of
single adenoviruses. (A) HeLa cells were infected with fluorescent
adenovirus type 2 for 30 min, and imaged by spinning disc confocal
fluorescence microscopy [42]. Virus tracks (black lines) recorded by a
single particle tracking algorithm [10] using the nucleus (red square) as
a reference point are displayed over a phase contrast image of the
infected cell. (B) Two-dimensional projection of a single virus trajectory
with directed motion segments in red. (C) Distance travelled along the
trajectory shown in Fig. 1B plotted as a function of time. Reduction to
1D is justified, since in cultured cells microtubules are largely flat and
straight over distances of many micrometers [43]. Negative/positive
values indicate displacements towards the cell centre/periphery.
doi:10.1371/journal.pcbi.1000623.g001

Figure 2. A stochastic model for microtubule-dependent
movements of human adenovirus. The stochastic model
reproduces directed motion length and velocity distributions of
human adenovirus, and predicts the optimal number of either
common or separate binding sites for dynein and kinesin motors on
the capsid. (A) Dynein (D, blue) and kinesin (K, orange) bind to, and
unbind from the capsid and transport it along a microtubule (green).
Equations [1]–[6] describe the dynamics of the model: [3]/[4] dynein
binding/unbinding and decrease/increase of the number (r) of the
available motor binding sites on the virus capsid with da/dd binding/
unbinding rates, [5]/[6] kinesin binding/unbinding and decrease/
increase of the number(r) of the available motor binding sites on the
virus capsid with ka/kd binding/unbinding rates, and [1]/[2] dynein/
kinesin motor stepping with dm/km stepping rates. Cost function (B)
and parameter values (C) (blue = dm, green = km, red = da, cyan = ka,
yellow = dd, magenta = kd) versus number of evaluations during the
optimization of the 14 common binding sites model. Probability
distribution of directed motion length (D) and velocity (E) for the in
vivo and in silico (black/red) trajectories. (F) Plot of the cost function
versus the number of motor binding sites for the common (red) and
the separate binding sites model (blue, grey, dark blue, black
colours). The separate binding sites have a total number of 8 (blue),
10 (grey), 12 (dark blue) and 14 (black) binding sites for dynein plus
kinesin motors. The central dot in each curve represents 50% dynein
and 50% kinesin occupancy (e.g. black curve: 7+7). The remaining
dots denote permutations with decreasing/increasing dynein binding
sites (e.g. 6 dynein + 8 kinesin on the right and 8 dynein +6 kinesin
on the left of the central dot of the black curve). (G, H) examples of
segmented in silico 1D trajectories for the 14 common (G) or 7+7
separate (H) binding sites models. The distance (mm) traveled along
the 1D microtubule is plotted against the time in seconds, and the
directed motions are depicted in red.
doi:10.1371/journal.pcbi.1000623.g002
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velocities up to few microns per second or motors are able to act

additively to achieve higher speeds. Both assumptions have not

been experimentally validated or discarded in in vivo experiments.

Additive behaviour of motors is an underlying assumption in our

model (Fig. 2A). The additive behaviour is inherent to the

Stochastic Simulation Algorithm [25] used herein to simulate the

model, since the time step to the next event depends on the total

propensity (numbers and event rates). The proposed stochastic

model does not impose any explicit coordination between motor

proteins, e.g. a switching mechanism that selects a certain motor

protein type to be active.

We emphasize that our model does not aim at a mechanistic

description at the motor level. Forces are known to affect motor

properties, but it is not clear how they are distributed among

multiple motors [26]. Furthermore while it is possible to obtain

data relating forces for certain motors in vitro, there is no such data

for in vivo experiments. In the present model the forces between

molecular motors and cargo are implicitly taken into account

through the binding/unbinding/stepping rates of the stochastic

models.

Results

The simulation of the stochastic model produces cargo

trajectories that depend on the parameter settings. The model

contains no a-priori assumptions on the existence of either a tug-

of-war or coordination between molecular motors. In turn, the

model parameters are systematically identified with a derando-

mized evolution strategy that minimizes the difference between the

length and velocity distributions of directed motions (fast

microtubule dependent runs [11]) produced by the model and

those of fluorescently labelled human adenovirus type 2 (Ad2) as

measured by confocal microscopy at 25 Hz temporal resolution.

The two-dimensional virus trajectories are extracted by a single

particle tracking algorithm [10] (Fig. 1A, B). Directed motions

along microtubules are classified by trajectory segmentation [11]

and the distance travelled along the microtubule is determined as a

function of time (1D trajectory shown in Fig. 1C). The same

analysis is applied to trajectories obtained by the simulation of our

model using the Stochastic Simulation Algorithm (SSA) [27].

These trajectories are also subsequently segmented to classify

directed motions [11]. In turn an optimization algorithm is

employed to identify the parameters of the stochastic model [28].

Here the six model parameters (binding, unbinding and

stepping for both kinesin and dynein, Fig. 2A) were identified by

minimizing the Symmetric Kullback-Leibler divergence between

the in silico and in vivo length and velocity distributions using an

Evolution Strategy with Covariance Matrix Adaptation (CMA-ES)

[29] (Fig. 2B,C). The proposed de-randomized optimization

algorithm is an essential aspect of our method. CMA-ES samples

the six-dimensional multivariate normal distribution involving the

parameters of this problem at each iteration and it encodes

relations between the parameters of the model and the objective

that is being optimized without requiring explicitly the gradients of

the cost function [29]. The CMA-ES is a method capable of

optimizing noisy cost functions (such as those from the present

stochastic model) and its efficiency, reliability and robustness were

demonstrated over a number of benchmark problems [30,31]. The

CMA-ES is particularly suitable to this optimization problem as it

is know to perform best [29] in problems that are low dimensional

(here six parameters), inherently noisy (here a stochastic model),

multimodal and computationally expensive (for each parameter set

thousands of trajectories are generated and segmented to collect

reliable statistics). The algorithm identifies an optimal set of

parameters and at the same time provides a sensitivity analysis of

the model. The standard deviations of the six principal axes are

shown to converge (Fig. 3), thus yielding a minimum (Text S1).

After the convergence of the optimization process (Fig. 3) we

found that the directed motion length and velocity distributions of

the in silico trajectories, under the optimal set of parameters,

matched with high accuracy the experimental data (Fig. 2D, E).

The maximum number of motors attached to the viral cargo is

limited by the number of binding sites on the virus. The present

model enables predictions on the number of motor binding sites

on the viral capsid, a quantity that is difficult to determine

experimentally but important for understanding the mechanisms

of transport. We first estimated the number (between 2 and 20) of

motor binding sites on the virus by an optimization procedure

(Fig. 2F). In models with 6–16 binding sites, the cost function

values were almost constant around the minimum value obtained

for 14 binding sites (Text S1). For less than 6 motor binding sites,

the optimization process did not converge to the experimentally

observed directed motion length and velocity distributions. Above

16 binding sites, an unbalanced configuration of motors was

feasible only at low binding and unbinding rates, and yielded

largely unidirectional trajectories due to infrequent motor binding

to the virus. We concluded that 14 common binding sites for

dynein and kinesin correspond optimally to the experimental data.

Since it is not possible to differentiate between common and

separate binding sites, we additionally investigated the possibility

that the experimental data support separate binding sites for the

different motors. We optimized a model where dynein and kinesin

have distinct binding sites, namely 4+4, 5+5, 6+6, 7+7 binding

sites, and various permutations thereof (Fig. 2F, Text S1), and

found that an equal number of motor binding sites was optimal in

all cases. This is consistent with the observation that center and

periphery directed length and velocity distributions were almost

symmetric (Fig. 2D, E). We note that the optimal number of

binding sites, i.e., 14, is the same for the models with common and

separate binding sites (Fig. 2F, black curve).

Molecular motors carrying cargo on microtubules operate as

individuals or as an ensemble. We found that, on average, during

virus directed motions, 1.5660.56 dynein or kinesin (for minus-

end and plus-end directed motions, respectively) motors, and

0.1560.22 motors of opposite polarity were bound to the virus

(Fig. 4A). The probability of binding more than four motors to one

Figure 3. Convergence of the standard deviation of the
principal axes. Convergence is shown for the six axes of the
distribution which CMA-ES samples from. The evolution of the standard
deviations during the optimization procedure is shown for the non-
competing binding sites model with 14 receptors.
doi:10.1371/journal.pcbi.1000623.g003

A Stochastic Model for Adenovirus Transport

PLoS Computational Biology | www.ploscompbiol.org 3 December 2009 | Volume 5 | Issue 12 | e1000623



virus particle was below 1023, and most often only one type of

motor was bound (Fig. 4A, B). These data are in agreement with

low number of motors estimated on vesicular cargo in squid

axoplasm by cryo-EM [7]. For other organelles, the estimates for

motor numbers range from a few to dozens based on

immunological detections in chemically fixed cells.

In order to quantify the correlation between the number of

bound motors and the directed motion length, the Sample Pearson

Product Moment correlation coefficient (with a range of 0 to 1,

where 1 is maximal correlation) between motor numbers and

directed motion length was computed to be 0.51 for dynein and

0.49 for kinesin for minus-end and plus-end directed motions,

respectively. This implies a weak correlation between the number

of bound motors and the directed motion length, showing that

long runs do not necessarily require many motors, as two or three

already account for lengths in the order of micrometers (Fig. 4B).

This result is consistent with the recent in vitro observation that two

motors are sufficient to move a cargo over several micrometers

[32].

The velocities, derived from optimized stepping rates, for single

dynein and kinesin motors were 866 nm/s and 833 nm/s,

respectively, consistent with values reported for dynein and

conventional kinesin-1 or kinesin-2 [21–23,33]. Although kinesins

are currently not known to be involved in cytoplasmic transport of

adenovirus [1], the model makes a clear prediction for a plus end

directed motor in cytoplasmic transport of adenovirus.

Our findings indicate that microtubule-based motility of

adenovirus requires a low number of bound motors compared to

the number of binding sites on the capsid. This allows

configurations where only one motor type is bound, and thereby

produce directed motions. Low numbers of motors allow fast

switches between directions and therefore, bidirectional motion.

Importantly, the binding and unbinding rates were much smaller

than the stepping rates, which is key for directed motion runs

(Fig. 2C). Small perturbations of binding and unbinding rates

greatly affect the model dynamics (Text S1). The susceptibility of

motor based cargo transport to these parameters has been

reported in other theoretical studies [26] and hints to a possible

mechanism to regulate the run length of the motors [32].

The present results enabled an assessment on the virus

binding sites for motor proteins. The outer surface of adenovirus

particles is composed of five polypeptides, three of which are still

present on cytosolic viruses that have undergone stepwise

disassembly [34]. Cytosolic particles contain the major protein

hexon, a large fraction of the pentameric penton base at the

icosahedral vertex, and protein IX (pIX), which stabilizes

hexon. By considering the size (90 nm in diameter) and

icosahedral geometry of the virus and the cylindrical microtu-

bule (25 nm in diameter), we can postulate that the maximum

number of microtubule motor-capsid interactions occurs along

the edge of a capsid facet, in this case on hexon (Fig. 5A, B).

This arrangement implies that 9 hexon trimers are aligned with

the microtubule, giving a maximum of 27 hexon binding sites

for the motors. This is above the value of 14 binding sites

predicted from the simulations. If we assume, however, that the

motor protein binding sites are located at the interface of two

trimeric hexons, one microtubule filament could cover 1–15

sites (Fig. 5B, red lines), which is within the predicted range of

6–16. In addition to hexon, 6 to 8 binding sites were available

for pIX, and less than 5 for penton base which detaches to a

significant extent from the incoming virions before reaching the

cytosol [34]. We analyzed trajectories of pIX-deficient adeno-

viruses to distinguish between hexon and pIX binding sites for

motor proteins [35]. The directed motion length and velocity

distributions of pIX-deleted adenovirus were similar to those

from wild-type viruses without significant deviations or asym-

metries, indicating that pIX may not provide a binding site for

microtubule dependent motors during cytoplasmic transport

(Fig. 5C, D). Therefore, we predict that hexon harbours the

binding sites for dynein and kinesin motors.

Figure 4. A low number of dynein and kinesin motors mediate
directed motions of adenovirus. (A) In silico probabilities of the
number of bound dynein (black) and kinesin (red) motors during
periphery directed motions. Similar results were observed for center
directed motions with dynein prevalence. Phase diagrams of the length
(B) of directed motions versus the average number of bound dynein
(black) and kinesin (red). Positive (negative) lengths correspond to
periphery (center) directed motions. The results were obtained with the
optimized model with 14 common binding sites.
doi:10.1371/journal.pcbi.1000623.g004

Figure 5. Hexon not protein IX is the predicted to be motor
binding site on the adenovirus capsid. (A) Schematic model of the
icosahedral adenovirus capsid with the major capsid protein hexon
(blue hexagonal structures representing trimers), and pIX (yellow lines
representing trimers). An icosahedral facette is enlarged in (B), where
hexon-hexon trimer interfaces are depicted in red and in light green the
microtubule orientation that maximizes the overlap with one facet.
Note that the fourth trimer of pIX is covered by the red lines depicting
hexon-hexon interfaces. (C, D) Directed motion length and velocity
distributions for protein IX deficient adenovirus recorded in HeLa cells
30 to 90 min post infection.
doi:10.1371/journal.pcbi.1000623.g005
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Discussion

In this study, we use in vivo imaging to identify a stochastic

model of cargo transport by molecular motors on microtu-

bules. The model parameters were systematically identified

using live imaging data of virus trajectories and a de-

randomized optimization algorithm to minimize the Kull-

back-Leibler divergence between the length and velocity

distributions of adenovirus directed motions on microtubules

with the in silico trajectories produced by the model. The model

accounts for directed motions at mm/s speeds, processive

stepping over hundreds of nanometres, and periods of

stationary behaviour. The results show that the stochastic

model can result in bidirectional support without an explicit

coordination mechanism.

In our work kinetic rates of a stochastic model are determined

via an evolutionary optimization approach using experimental

data. The identified model enables a number of predictions. First,

it shows that one to four motors are active on virus particles during

microtubule-dependent motions, although the number of motor

binding sites is estimated to be 6–16. The observation that the cost

function value is constant within this range suggests that the virus

may align with the microtubule in different orientations (Fig. 5B)

and still preserve its motility. This range is consistent with the

maximum of 15 hexon trimer-trimer interfaces along the edge of a

capsid facet. The low number of motors involved in directed

motions supports an emerging concept from wet lab experiments

and in silico simulations, that key events of cell functions are in

many cases executed by only a few polypeptides [36].

Second, if equal numbers of opposite motors are attached, the

cargo oscillates and eventually stops, or remains confined to small

areas. This may be an important mechanism for fine-tuning the

subcellular velocity to achieve localized delivery of the cargo. We

anticipate that viral transport is tuned by the binding and

unbinding rates of motors to microtubules or the cargo, rather

than by additional regulatory factors. Such tuning could be cell-

type specific [17], and could control the number of engaged

motors and motor configuration, and also provide specific

segregation or guidance cues for traffic. In support of this, it has

been suggested that the microtubule binding protein Tau can fine-

tune the distance that the cargo travels by reducing microtubule

binding of kinesin in distal parts of neuronal axons [7,37]. In

addition, motor properties can be tuned by post-translational

modifications, such as phosphorylation of dynein or kinesin

binding partners, which could affect their enzymatic functions

and hence their stepping rates [7].

We close by noting that besides the results on motor transport

on microtubules, the algorithm taken here is in line with reverse

engineering and systems identification approaches [28,38–40]

which are gaining significance as discovery and model validation

tools in systems biology. The CMA-ES algorithm is capable of

handling noisy and multimodal cost functions that are inherently

associated with stochastic models. The CMA-ES optimization

algorithm along with image analysis of in vivo systems can be a

robust process to help identify parameters of stochastic models

employed in several areas of systems biology.

Materials and Methods

HeLa cells were grown to 30% confluency on 18 mm glass

cover slips (Menzel Glaser) and kept in Hanks buffered salt

solution containing 0.5% BSA (Sigma) and 1 mg/ml ascorbic acid

(Sigma). Adenovirus serotype 2 and protein IX deficient

adenoviruses were grown, isolated, and labeled with atto565

(Atto-tec, Germany) as described by Nakano and Greber in [41]

and Suomalainen et al. in [17].

HeLa cells were infected with Ad-atto565 and imaged

between 30 and 90 minutes post infection at 25 Hz. Flat

regions of the cell were chosen for imaging in order to

minimize the cytoplasmic volume above the imaging plane.

The center of the cell was detected by differential interference

contrast imaging to assign directionality to the virus motions.

Images were recorded using a spinning disc confocal micro-

scope (Olympus IX81) fitted with an UplanApo100x objective

of N.A. 1.35 on a back-illuminated monochrome Cascade 512

EM-CCD camera (Photometrics) containing a 5126512 pixel

chip (with 16616 micrometer large pixels).

For the computational methods see Text S1.

Supporting Information

Text S1 Supplementary information includes details on the

computational methods used. In particular it describes the

trajectory segmentation process, the models studied, the stochastic

simulation algorithm and the definition of the cost function used in

the optimization procedure.

Found at: doi:10.1371/journal.pcbi.1000623.s001 (1.05 MB PDF)
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