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6.1 Introduction

Over the last three decades, molecular simulation has become ubiquitous in scientific
fields ranging from molecular biology to chemistry and physics. It serves as a tool to
rationalize experimental results, providing access to the dynamics of a system at the
atomistic and molecular level [1], and predictions of macroscopic properties of mate-
rials [2]. As computational hardware and software capabilities increase, molecular
simulations are becoming increasingly more important as a tool to complement exper-
iments and have become an invaluable asset for insight, prediction, and decision
making by scientists and engineers. This increased importance is associated with an
ever-increasing need to interpret quality of the predictions of the complex molecular
systems. In the context of Virtual Measurements, as proposed by Irikura et al. [3],
we remark that for the output of a molecular simulation to be considered equivalent
to an experimental measurement, it must include both a value of the quantity of interest
(QoI) and a quantification of its uncertainty. In turn, uncertainty can be defined [4] as a
“parameter, associated with the result of a measurement, that characterizes the
dispersion of the values that could reasonably be attributed to the measurand.”
Uncertainty quantification (UQ) is essential for building confidence in model
predictions and helping model-based decisions [5]. Monitoring uncertainties in
computational physics/chemistry has become a key issue [6], notably for multiscale
modeling [7]. Reliable predictions at coarser scales imply the rational propagation
of uncertainties from finer scales [8,9]; however, accounting for such uncertainties
requires access to a significant computational budget.

The sources of uncertainty in molecular simulations can be broadly categorized as
follows:

• Modeling (e.g., the choice of the particular force fields)
• Parametric (e.g., the 6e12 exponents and the s, ε parameters in the Lennard-Jones (LJ)

potentials)
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• Computational (e.g., the effects of the particular thermostats and non-Hamiltonian time
integrators)

• Measurement (involving the stochastic output of the simulations for various QoIs).

In this chapter, we focus on Modeling and Parametric uncertainties introduced by
the force fields employed in molecular simulations. A force field is a model to repre-
sent the energy of the system as a function of the atomic coordinates and empirically
determined parameters. In other words, the force field defines the potential energy sur-
face (PES) on which the system evolves in a molecular simulation. In recent years,
mathematical descriptions of force fields have also been proposed in nonexplicit
form by employing machine learning algorithms such as neural networks [10e12].

Macroscopic properties of systems studied through molecular simulations are
obtained using the laws of statistical mechanics through the use of algorithms, mainly
Monte Carlo or Molecular Dynamics, that sample the PES of the system. Molecular
simulations may involve large numbers of molecules (up to a few trillions of atoms
currently) and may reach time scales (up to few microseconds currently) that are pres-
ently inaccessible with quantum mechanics. At the same time the output of molecular
simulations hinges on the effective representation of the (electronic) degrees of
freedom that are removed from the quantum mechanics simulations.

One of the major challenges of molecular simulation is the specification of the inter-
particle interaction potentials, both in terms of the functional shape and the respective
parameter values. Even for force fields where the parameters have a physical meaning
(for example, the power of six in the LJ potential), their values are often not directly
accessible by experiments, nor by computational chemistry. They need to be calibrated
on a set of reference (experimental or calculated) properties. Force field calibration is
an exacting and intuitive task and is sometimes considered as an “art.” Most of the
time, the previous experience of the researcher is required to provide a reasonable
initial guess of the parameters, which are then refined locally, either by trial and error,
or using optimization methods [13e15]. Calibration is also difficult because the
simplicity of the mathematical expressions used in force fields for efficient computa-
tions often leads to the impossibility to correctly fit different properties with a unique
set of parameters [16,17]. The “best” parameter set is then often the result of a subjec-
tive compromise between representing the various data chosen for the calibration.
Validation of the force field thus obtained is made by computing properties not
used for calibration and comparing them with experimental data [14,18].

The effect of parameters on property predictions is sometimes estimated through
sensitivity analysis [14,19e21]. Until very recently, there was no attempt to compute
the uncertainties on those properties that are due to the force field parameters. This lack
of interest is due in part to the belief thatmeasurement uncertainties of molecular simu-
lation (inherited from the stochastic nature of Monte Carlo and molecular dynamics
simulations) were greater than parametric uncertainties. However, the increase in
computational power has greatly reduced the former, without affecting the latter,
thus making the parametric errors a significant contribution to the uncertainty budget
[17]. A second reason for the scarcity of literature on parametric uncertainties in
molecular simulation is the difficulty in estimating the uncertainties on the force field
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parameters. This requires an extensive exploration of the parameter space, which is
often inaccessible due to limited computational resources. Force field calibration
was, and still is, mostly based on deterministic least-squares optimization [22].

Uncertain quantities can be represented by probability density functions (PDFs)
[4,23], which grounds uncertainty management in the theory of probabilities and pro-
vides a sound mathematical framework for their consistent treatment. Parameter cali-
bration is an inference process, for which probability theory provides a computation
framework through Bayes’ rule. When compared to least-squaresebased calibration
procedures, the Bayesian approach presents several decisive advantages: (a) it exposes
clearly the statistical assumptions underlying the calibration process; (b) it enables the
implementation and calibration of complex statistical models (e.g., hierarchical
models, model selection .); and (c) it provides directly information on parameter
identification through the shape of the PDF.

In the context of molecular simulations, Bayesian inference has been introduced in
2008 by Cooke and Schmidler [24], who calibrated the protein dielectric constant to be
used in electrostatic calculations in order to reproduce helicities of small peptides.
Since then, several research groups have brought significant contributions to the use
of Bayesian calibration aiming at the estimation of force field parameter uncertainties
and their impact on property predictions.

This chapter begins with an overview of Bayesian calibration in Section 6.2,
focusing on the “standard” approach (Section 6.2.1), its limitations (Section 6.2.2),
as well as advanced schemes (Section 6.2.3). Then, in Section 6.3, we discuss compu-
tational aspects focusing on metamodels (Section 6.3.2) and approximation of intrac-
table posteriors (Section 6.3.3) necessary to make Bayesian strategies compatible with
the high cost of molecular simulations. The main topics treated in the previous sections
are summarized in Fig. 6.1. In Section 6.4, we describe representative applications to
show what has been learned during the last decade. Finally, in Section 6.5, we present
conclusions and perspectives.

6.2 Bayesian calibration

This section introduces Bayesian inference and the general concepts used in Bayesian
data analysis [25e27]. It presents also some basic and commonly used statistical
models and hypotheses, only to better show their limitation in the context of force field
calibration and the necessity to design more advanced calibration schemes.

6.2.1 The standard Bayesian scheme

6.2.1.1 Bayes’ theorem

In general, a force field calibration problem involves searching for the value(s) of the
parameters w ¼ fwigNw

i¼1 of a given computational model Fðx;wÞ that minimizes the

difference between model predictions and a set of reference data D ¼ fdigND
i¼1 in spec-

ified (macroscopic, observable) physical conditions (temperature, pressure, etc.)
defined by X ¼ fxigND

i¼1.
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In contrast to deterministic least-squares fitting resulting in a single set of parameter
values, in a Bayesian perspective the parameters are considered as random variables w
with associated PDFs that incorporate both prior knowledge and constraints by refer-
ence data through the model. Bayesian calibration gives the estimation of the condi-
tional distribution of the parameters that fit the available data given a choice of
calibration model M, pðwjD;X;MÞ. By M, we denote the full calibration model under
consideration, i.e., the computational model F, and a statistical model presented below.

Bayes’ rule relates the data and prior assumptions on the parameters into the pos-
terior density of the target parameters. The posterior PDF of the parameters, knowing
the data and model, is

pðwjD;X;MÞ¼ pðDjw;X;MÞpðwjMÞ
pðDjX;MÞ

; (6.1)

Physical model Calibration data

Prior PDF Likelihood

Posterior PDF

Validation

Results

Yes

No

Bayesian inference

Statistical modeling
Variances/covariances (Ex. 6.4.1.2)
Hierarchical models (Ex. 6.4.1.3)
Stochastic embedding models (Ex. 6.4.3)
Additive model correction
Approximate bayesian computation

Metamodels (kriging, PCE) (Ex.6.4.2)
Laplace appoximation
Variational inference
HPC strategies (Ex. 6.3.4)

Figure 6.1 Flowchart of the Bayesian calibration process, underlining the main topics
developed in this chapter. The section numbers of application examples are given in italics.
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where pðDjw;X;MÞ is the likelihood of observing the data given the parameters and
model, pðwjMÞ is the prior density of the parameters reflecting our knowledge before
incorporating the observations, and pðDjX;MÞ is a normalization factor, called the
evidence. The denominator is typically ignored when sampling from the posterior
since it is a constant, independent of w; however, this factor has to be estimated if one
wishes to compare different models (see Section 6.2.1.3).

The choice of a prior PDF is an important step in Bayesian data analysis, notably
when the data provide weak constraints on (some of) the parameters. Data influence
the resulting posterior probability only through the likelihood pðDjw;X;MÞ, which
involves the difference between the reference data D and the model predictions
FðX;wÞ.

In general, given the complexity of the model, the posterior density is not known in
closed form and one has to resort to numerical methods to evaluate it (see Section
6.3.1).

From the model to the likelihood. A widely adopted approach in data analysis is
to express the difference between a reference value of the data di and the respective
model prediction FiðwÞ^Fðxi;wÞ using an additive noise model

di¼FiðwÞ þ εi; (6.2)

where εi is a zero-centered random variable. This expression is a measurement model,
expressing that the observed datum is a random realization of a generative process
centered on the model prediction. This formulation is assuming that the model Fðx;wÞ
accurately represents the true, physical process occurring with fixed, but unknown,
parameters. This is a strong assumption, which is usually wrong, because every model
of a physical process involves some approximation. This is one of the main
deficiencies of this approach, which will be treated at length in the following sections.
Nevertheless, this is a commonly used method due to its simplicity.

The next common modeling assumption, especially if the data come from various
experiments, is to assume the errors to be independent normal random variables with
zero mean, i.e., εiwN

!
0; s2i

"
, where s2i is the variance of the errors at xi. Based on

Eq. (6.2), an equivalent formulation is diwN
!
FiðwÞ; s2i

"
, which yields the following

expression for the likelihood

p

 

Djw;X;MÞ ¼
YND

i¼1

pðdijw; xi;M

!

;

¼
YND

i¼1

!
2ps2i

"%1=2
exp

 

% ðdi % FiðwÞÞ2

2s2i

!

;

¼

"
YND

i¼1

2ps2i

#%1=2

exp

 

% 1
2

XND

i¼1

ðdi % FiðwÞÞ2

s2i

!

:

(6.3)
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The value of si depends on the error budget and the available information. As εi is
the difference of two quantities, its variance is the sum of the variances of di and FiðwÞ
[4]. Typically, one would write

s2i ¼ u2di þ u2FiðwÞ; (6.4)

where udi^uðdiÞ is the uncertainty attached to di, and uFiðwÞ is the measurement un-
certainty for model prediction FiðwÞ. In this formulation, the only parameters are those
of the model F.

When no value of udi is available, it is convenient to make the assumption that the
reference data uncertainty is unknown and identical for all data of a same observable.
Depending on the heterogeneity level of the reference dataset, one then has one or
several additional parameters s ¼ fsigNs

i¼1 to be identified, and the likelihood becomes

pðDjw; s;X;MÞ¼

"
YND

i¼1

2ps2i ðsÞ

#%1=2

exp

 

% 1
2

XND

i¼1

ðdi % FiðwÞÞ2

s2i ðsÞ

!

; (6.5)

with

s2i ðsÞ¼ s2j¼IðiÞ þ u2FiðwÞ; (6.6)

where IðiÞ is a pointer from the datum index i to the adequate index in the set of
unknown uncertainty parameters s.

Although this is a very convenient and commonly used setup, akin to the ordinary
least-squares procedure for regression with unknown data variance [28], one should be
aware that it can become problematic, especially if the model is inadequate, i.e., it is
not able to fit properly the data (more on this in Section 6.2.2.1).

By noting RðwÞ the vector of ND differences between the model and data, and SR
the corresponding covariance matrix, one gets a compact notation for the likelihood in
the case of a normal additive noise:

pðDjw;X;MÞf
##SRj%1=2exp

$
% 1
2
RðwÞTS%1

R RðwÞ
%
; (6.7)

where the proportionality symbol means that a multiplicative constant has been
omitted. SR is the sum of the covariance matrix for the reference data SD and the
covariance matrix of the measurement errors of the model SF , and jSRj is its deter-
minant. So far, especially in Eqs. (6.3) and (6.5), SR has been considered as diagonal,
with elements SR;ij ¼ s2i dij. Whenever available, covariances of the reference data
should be included in the nondiagonal part of SD.

The prior PDF. In order to complete the definition of the posterior PDF, one needs
to define the prior PDF, encoding all the available information on the parameters not

174 Uncertainty Quantification in Multiscale Materials Modeling



conditioned to the data to be analyzed. Mathematical and physical constraints (e.g.,
positivity) are introduced here through the choice of adapted PDFs [27].

The most common choice in absence of any information on a parameter might be a
uniform distribution, or a log-uniform one in case of a positivity constraint (so-called
noninformative priors). A normal distribution would typically be used to encode a
known mean value and uncertainty [23]. An essential consideration at this stage is
to ensure that the prior PDF captures intrinsic correlations between parameters (e.g.,
a sum-to-zero constraint).

Estimation and prediction. The posterior PDF is used to generate statistical sum-
maries of the target parameters. Point estimations can be obtained by the mode of the
posterior PDF, or Maximum a posteriori (MAP),

bw¼ argmax
w

pðwjD;X;MÞ; (6.8)

and/or the mean value of the parameters,

wi¼
Z

dwwi pðwjD;X;MÞ; (6.9)

which are different for nonsymmetric PDFs.
The parameter variance, uw2 , and covariances, Covðwi;wjÞ, are also derived from

the posterior PDF:

Covðwi;wjÞ¼
Z

dw
&
wi%wi

'&
wj%wj

'
pðwjD;X;MÞ; (6.10)

uwi ¼Covðwi;wiÞ1=2: (6.11)

If the posterior PDF has a shape different from the ideal normal multivariate distri-
bution, other statistical summaries might be useful, but one should also consider con-
tour or density plots of the PDF, which are important diagnostics to assess problems of
parameter identification (multimodality, nonlinear correlations, etc.).

Predictions of a QoI AðwÞ is made through the estimation of the PDF of the QoI
averaged over the posterior PDF of the parameters

pðA¼ ajD;X;MÞ¼
Z

dw pðA¼ ajwÞpðwjD;X;MÞ; (6.12)

where pðA¼ ajwÞ is a PDF describing the dependence of the QoI on w. If A is a
deterministic function of the parameters, then pðA ¼ ajwÞ ¼ dða %AðwÞÞ, where d is
the Dirac delta function. The posterior-weighted integrals used for estimation and
prediction are generally evaluated by the arithmetic mean on a representative sample of
the posterior PDF (Monte Carlo integration).
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6.2.1.2 Validation

As the Bayesian calibration process will always produce a posterior PDF indepen-
dently of the quality of the fit, it is essential to perform validation checks, notably
of the statistical hypotheses used to build pðDjw;X;MÞ. A posterior PDF failing these
tests should not be considered for further inference. In particular, the uncertainties on
the parameters and their covariances would be unreliable.

Residuals analysis. In a valid statistical setup, the residuals at the MAP, R
&
bw
'
,

should not display serial correlation along the control variable(s), which is usually
assessed by visual inspection of plots of the residuals [17] and their autocorrelation
function. Serial correlation in the residuals is a symptom of model inadequacy and
should not be ignored.

Moreover, the variance of the residuals should be in agreement with the variance of
the data and model. Ideally, the Birge ratio at the MAP,

rB

$
bw
%
¼

 
1

ND % Nw
R
$
bw
%T

S%1
R R

$
bw
%!1=2

; (6.13)

should be close to 1 [29]. The Birge ratio might be too large when the model does not
fit the data or when the variances involved in SR are underestimated, but it can also be
too small when these variances are overestimated.

Note that if the calibration model contains adjustable uncertainty parameters (s in

Eq. 6.5), their optimization might ensure that rB
&
bw;bs

'
x1, but would not guarantee

that the residuals have no serial correlation [30].
Posterior predictive statistics and plots. The posterior predictive density for the

value ed at a new point ex is [27]

p
&
ed
###ex;D;X;M

'
¼
Z

dw p
&
ed
###ex;w;M

'
pðwjD;X;MÞ: (6.14)

ex is used to generate high-probability (typically 0.9 or 0.95) prediction bands from
which one can check the percentage of data effectively recovered by the model predic-
tions [31]. Plots of high-probability bands for the model’s residuals as function of the
control variable(s) are particularly informative for model validation [30].

6.2.1.3 Model selection

Let us consider a set of alternative models M ¼
(
MðiÞ)NM

i¼1, parameterized by wðiÞ, for
which one wants to compare the merits in reproducing the reference data D. The pos-
terior probability of model MðiÞ is estimated by applying Bayes’ rule

p
&
MðiÞ

###D;X
'
¼

p
!
D
##X;MðiÞ"p

!
MðiÞ"

PNM
i¼1 p

!
D
##X;MðiÞ

"
p
!
MðiÞ

"; (6.15)
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where p
!
MðiÞ" is the prior probability of model MðiÞ and the evidence p

!
D
##X;MðiÞ" is

obtained by

p
&
D
###X;MðiÞ

'
¼
Z

dwðiÞp
&
D
###wðiÞ;X;MðiÞ

'
p
&
wðiÞ

###MðiÞ
'
: (6.16)

This approach has been used in Refs. [32e36] to compare the performances of
different models. Computation of the evidence terms is costly, and high-
performance computing (HPC) is generally necessary. On the other hand, the TMCMC
algorithm [37], which will be described in Section 6.3.1, offers an estimator for the
evidence term.

6.2.2 Limitations of the standard scheme

As in all calibration process, the underlying statistical hypotheses have to be checked,
and the Bayesian approach offers no guarantee against model misspecification. In
particular, the common hypothesis of i.i.d. errors should be carefully scrutinized.

In fact, the simple likelihood scheme presented above (Eq. 6.7) is often unable to
deal properly with the specificities of the calibration of force field parameters, i.e.,
the corresponding posterior PDF does not pass some of the validation tests. These tests
might help to point out the deficiency sources(s), which concern the calibration dataset
and its covariance matrix (improper Birge ratio values) or the force field model (serial
correlation of the residuals) or both.

6.2.2.1 Modeling of the error sources

A convenient feature of the standard model is the possibility to infer uncertainty pa-

rameter(s) (s in Eq. 6.5) in order to ensure that rB

$
bw;bs

%
x1, i.e., to obtain a unit vari-

ance of the weighted residuals.
The applicability of this approach relies essentially on the independence of the

errors, to be validated by the absence of serial correlation in the residuals. Otherwise,
s is absorbing model errors in addition to data uncertainty. In the absence of dominant
measurement uncertainty, model errors present strong serial correlations, which is in
conflict with the standard scheme’s i.i.d. hypothesis. In these conditions, using the
uncertainty parameters s as “error collectors” should not be expected to produce reli-
able results. It is essential to devise a detailed scheme of error sources in order to get
unambiguous identification and modeling of all contributions.

6.2.2.2 Data inconsistency

Experimental data. In force field calibration, one is often confronted with multiple
versions of reference data, produced by different teams in similar or overlapping
experimental conditions. It is frequent that some measurement series are inconsistent,
in the sense that values measured with different methods, instruments, or by different
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teams (reproducibility conditions [4]) are not compatible within their error bars. This
might be due to an underestimation of measurement uncertainty, for instance, taking
into account only the repeatability component, and ignoring nonrandom instrumental
error sources.

Depending on the context, this problem can be dealt with in several (nonexclusive)
ways [17]:

• pruning the dataset, which should be reserved to experts in the specific data measurements
fields;

• scaling the data covariance matrix SD by factor(s) which might be parameter(s) of the cali-
bration process. This assumes that the initial uncertainty assessments are incorrect (this
approach is a common practice in the metrology of interlaboratory comparisons
[29,38,39]); or

• using data shifts, to be calibrated along with w, in order to reconciliate discrepant data series
by compensation of measurement biases [29,30].

Theoretical data. Data might also come from deterministic reference theoretical
models (e.g., equations-of-state, as used by the NIST database for the properties of
fluids [40]), in which case they are not affected by random errors, and the uncertainty
statement issued by the data provider quantifies the representative amplitude of errors
of this model with respect to its own calibration data [40,41]. A reductio ad absurdum
in this case would be to fit the model’s results with their declared error bars by the
generative model itself, which would produce numerically null residuals, invalidating
the Birge ratio test.

This type of data violates the errors independence hypothesis. One way to take it
into account would be to design a data covariance matrix SD, but there is generally
no available information to establish it reliably.

To our knowledge, this point has generally been overlooked in the force field cali-
bration literature, probably because the uncertainty budget is often dominated by other
error sources (numerical simulation uncertainty, and/or model inadequacy). It might,
however, readily occur when uncertainty scaling is used to compensate for data incon-
sistency [29] or model inadequacy [30]. Besides, as the quality of force fields and
computational power increase, the problem will eventually emerge in the standard cali-
bration framework.

6.2.2.3 Model inadequacy/model errors

Considering the approximate nature of force fields, model inadequacy has to be
expected as a typical feature of the calibration problem [42]. For instance, force field
approximations make molecular simulation unable to fit a property over a large range
of physical conditions [16,17]. This can be somewhat overcome by explicitly
modeling the dependence of the parameters on the control variable(s) (for instance,
by using temperature-dependent LJ parameters [43e45]). This kind of approach,
i.e., force field improvement, is in fact a change of model F. Similarly, for LJ-type
potentials, a unique set of parameters is typically unable to fit several observables
(e.g., the liquid and vapor densities of Argon [35]), which would call for
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observable-dependent force field parameters, and the loss of parameter transferability
for the prediction of new properties.

Using the standard calibration scheme (Eq. 6.3) in presence of model inadequacy
leads to statistical inconsistencies. Within this setup, parameter uncertainty is
decreasing when the number of calibration data is increased, which means that predic-
tion uncertainty of the calibrated model is also decreasing [46,47]. On the contrary,
model errors are rather expected to increasedat best to stay constantdwhen new
data are added to the calibration set. Therefore, parameter uncertainty as provided
by the standard calibration scheme is intrinsically inadequate to account for model
errors. It is thus necessary to devise alternative calibration schemes. There has been
recently a marked interest in statistical solutions enabling to integrate model errors
into parameter uncertainty [42,47e52]. These solutions, based on Bayesian inference,
are treated in the next section.

6.2.3 Advanced Bayesian schemes

One has shown above that there are several causes, notably model inadequacy, to reject
the standard force field calibration model. Alternative schemes which have been pro-
posed in the literature to deal with these shortcomings are presented in this section.

6.2.3.1 Additive model correction

We consider here a solution which improves model predictions without involving a
change of force field model. Model inadequacy can be solved with an additive term
to the original model:

di¼FiðwÞ þ dFiðwdFÞ þ εi; (6.17)

where the discrepancy function dF has its own set of parameters, wdF.
The representation of dF by a Gaussian process (GP) has been popularized by

Kennedy and O’Hagan [53]. It has many advantages over, for instance, polynomial-
based functions, but, by construction, dF can correct any error due to a misspecifica-
tion of F, which weakens considerably the constraints of D on w. The GP approach
might therefore be subject to severe identification problems, if the parameters of F
and dF are optimized simultaneously without strong prior information [46,50,54,55].

A two-staged solution, proposed by Pernot and Cailliez [30], is to constrain wwith
the posterior PDF resulting from an independent calibration of F. In this case, dF
is designed to fit the residuals of Fðx;wÞ by a GP of mean 0 and cova-
riance matrix SdF , with elements SdF;ij ¼ kðxi; xjÞ, based on a Gaussian kernel

kðu; vÞ ¼ a2exp
&
% b2ðu% vÞ2

'
. The kernel’s parameters wdF ¼ fa; bg have to be

estimated in addition to w.
The predictive posterior PDF has a closed form expression [56]

p
&
edjex;D;X;M

'
¼N

&
ed
###UTS%1

R D;a2 %UTS%1
R U

'
; (6.18)
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where U ¼ UðXÞ and Ui ¼ kðxi;exÞ.
The GP correction method is very efficient [30], but suffers from a major drawback,

inherent to all additive correction methods: the discrepancy function dF is not transfer-
able to other observables than the one it was calibrated with, nor can the GP correction
be used for extrapolation out of the range of the calibration control variables.

6.2.3.2 Hierarchical models

There is a wealth of heterogeneity when considering the data used for calibrating
potentials of molecular simulations. As discussed in Section 6.2.2.2, it is often the
case that different experimental groups provide different values for quantities of inter-
est, for example, diffusion constants, even when the experiments are performed in the
same thermodynamic conditions. Even more, calibration of molecular systems may
often require matching different experimental data ranging from structural properties
like radial distribution functions (RDFs) to transport properties like diffusivity.
Uncertainties due to different measurement techniques, facilities, and experimental
conditions are often reflected in the values of such data.

When model inadequacy arises from the use of a unique parameter set for different
observables or experimental conditions, hierarchical models may enable to derive
more robust parameter sets [57,58].

In a hierarchical model, the data are being gathered into NH groups, each containing

Ni data, D ¼ fdigNH
i¼1 and di ¼

(
di;j

)Ni

j¼1. For each group, a different parameter set wi

is considered, and all the parameters are controlled by hyperparameters k. The struc-
ture of this relation is given in Fig. 6.2 in plate notation. The likelihood is now written
as

pðDjk;X;MÞ¼
YNH

i¼1

Z
dwi pðDijwi;MÞpðwijk;MÞ: (6.19)

For example, a specific choice for the prior PDF on the wi is the normal distribution

pðwijk;MÞ¼N ðwi;mw;SwÞ; (6.20)

where k ¼ fmw;Swg are the parameters of an overall normal distribution, which have
to be inferred along with the local values of wi.

Hierarchical models enable the robust inference of multiple parameter sets with
global constraints (prior PDF on the hyperparameters). However, the uncertainty on
the hyperparameters k of the overall distribution is conditioned by the number of sub-
sets in the calibration data NH . When this number is small, strong prior information on
the hyperparameters should be provided to help their identification [30,57].

This scheme has been recently applied to the calibration of LJ parameters from
various sets of experimental data obtained in different thermodynamic conditions. In
Ref. [52], the dataset is split into subsets corresponding to different control tempera-
tures and pressures. A hierarchical model is used for the inference of the
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hyperparameters describing the LJ potentials (model MH2 in Ref. [52]). Using a
different data partition, the same authors used a parameter hierarchy to solve data
inconsistency (model MH1 in Ref. [52]). Hierarchical models have also been used
to accommodate heterogeneous datasets [59]. Pernot and Cailliez [30] introduced a
hierarchical model on data shifts to solve data inconsistency.

Depending on the data partition scheme, predictions are made either from the
locally adapted parameters wi or from their overall distribution [57,58]. For instance,
when the data partition has been made along the control variables X or according to the
nature of data, local parameters can be addressed unambiguously for prediction in any
of the identified subset conditions. However, if the partition has been made to separate
inconsistent data series, or if one wishes to predict a new property, the local sets cannot
be addressed, and the overall distribution has to be used. In general, hierarchical
Bayesian inference tries to accommodate information across distinct datasets and, as
such, results in much larger prediction uncertainty than what can be inferred by using
distinct local parameters sets. In some cases, the prediction uncertainty resulting from
the overall distribution is too large for the prediction to be useful [30,59].

6.2.3.3 Stochastic Embedding models

A recent addition to the methods dealing with model inadequacy is based on the idea of
replacing the parameters of the model by stochastic variables. This provides an addi-
tional variability source to the model’s predictions which may be tuned to compensate
for model inadequacy. It is important to note, as underlined by Pernot and Cailliez

κ

ϑ

di,j di,j

j  = 1,...,Ni j  = 1,...,Ni

i  = 1,...,NH i  = 1,...,NH

κ

ϑ i

(a) (b)

Figure 6.2 Two approaches of grouping the data in a Bayesian inference problem. (a) For the
left graph, one parameter w will be inferred using all the available data. (b) In the right graph,
the data are gathered into NH groups each containing Ni data. Each group has a different
parameter wi. All the parameters are being linked through the hyperparameter k.
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[30], that this approach, mostly based on the tweaking of the parameters covariance
matrix, cannot reduce the gap between model predictions and reference data. Its impact
is on marginal, or individual, model prediction uncertainties, which can be enlarged
sufficiently to cover the difference with the corresponding calibration data.

In the stochastic embedded (SEm) models approach [60,61], the model’s parame-
ters, w, are defined as stochastic variables, with a PDF conditioned by a set of
hyperparameters k, typically their mean value vector mw and a covariance matrix
Sw, defining a multivariate (normal) distribution pðwjmw;Sw;MÞ.

Such stochastic parameters can be handled in the Bayesian framework either at the
model or at the likelihood level, defining two classes of methods. Both suffer from
degeneracy problems, because of the strong covariance of model predictions over
the control variable range [42,51].

Model averaging. Statistical summaries (mF , SF) of predictions of the model with
stochastic parameters are first estimated and inserted into the likelihood:

pðDjmw;Sw;MÞf
##ST j%1=2exp

$
% 1
2
RTS%1

T R
%
; (6.21)

where Ri ¼ di % mFðxiÞ and ST ¼ SD þ SF , and the mean values mFðxiÞ and
covariance matrix SF have to be estimated by forward uncertainty propagation (UP),
such as linear UP (or combination of variances) [4], or polynomial chaos UP (see
below).

When the number of parameters is smaller than the number of data points, SF is
singular (non-positive definite), causing the likelihood to be degenerate, and the
calibration to be intractable [51]. In presence of model inadequacy, the data covariance
matrix (and the model measurement uncertainties for stochastic models) are too small
to alleviate the degeneracy problem. As a remedy, it has been proposed to replace the
multivariate problem by a set of univariate problems (marginal likelihoods [51]), i.e.,
to ignore the covariance structure of model predictions

ST ;ij¼SD;ij þ SF;ijdij: (6.22)

It is then possible to modulate the shape of the prediction uncertainty bands by
designing the Sw matrix [42], notably through a judicious choice of prior PDFs for
the hyperparameters.

Likelihood averaging. Integration of the initial likelihood over the model’s
stochastic parameters provides a new likelihood, conditioned on the hyperparameters
k [47,51].

pðDjk;X;MÞ¼
Z

dw pðDjw;X;MÞpðwjk;X;MÞ: (6.23)

The integrated likelihood is in general degenerate, and it has been proposed to
replace it by a tractable expression involving summary statistics of the model
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predictions, to be compared to similar statistics of the data [51]. This approach, called
approximate Bayesian computation (ABC), is presented in the next section.

6.2.3.4 Approximate Bayesian Computation

The definition of the likelihood is a centerpiece of Bayesian inference. In certain cases,
the analytical statistical models that have been examined above are not suitable for
describing such likelihoods. One such example is computational models that generate
outputs over several iterations or employ complex simulations. In such cases, ABC
[62] has been introduced that bypass the calculation of the likelihood by using a metric
to compare the output of the model and the observations. ABC methodologies
have received significant attention in fields such as genetics [63], epidemiology
[64], and psychology [65]. The ABC approach is often referred to as a likelihood-
free approach.

The ABC algorithm [66] aims at sampling the joint posterior distribution
pðw;YjD;X;MÞ, where Y follows pð ,jw;MÞ, i.e., Y is a sample from the forward
model. Applying Bayes’ theorem to the joint distribution we get,

pðw;YjD;X;MÞf pðDjw;Y;X;MÞ pðYjw;X;MÞ pðwjMÞ: (6.24)

The function pðDjY;w;X;MÞ gives higher values when Y is close to D and small
values in the opposite case. The idea of the ABC algorithm is to sample w from the
prior pðwjMÞ, then sample Y from the forward model pðYjw;X;MÞ, and finally accept
the pair ðw;YÞ when Y ¼ D.

Since the space that Y lies in is usually uncountable, the event Y ¼ D has zero prob-
ability. The basic form of the ABC algorithm introduces a metric r and a tolerance
parameter d and accepts ðw;YÞ when rðY;DÞ < d and rejects it otherwise. In another
variant of the algorithm, a summary statistic S is used to compare Y and D through a
different metric r. In this case, the pair is accepted when rðSðYÞ; SðDÞÞ<d. Note that
the ABC algorithm approximates the true posterior pðwjD;X;MÞ with the density

pdðwjD;X;MÞfIAdðDÞðYÞpðYjw;X;MÞpðwjMÞ; (6.25)

where AdðDÞ :¼ fy : rðSðyÞ; SðDÞÞ< dg and the indicator function IAdðDÞðYÞ ¼ 1
when Y˛AdðDÞ and zero otherwise.

Then, the approximation to the target marginal posterior is given by

pdðwjD;X;MÞ¼
Z

AdðDÞ

dYpðYjw;X;MÞpðwjMÞ: (6.26)

Notice that the integration over AdðDÞ needs not to be done explicitly since only the
w component is kept from the pair ðw;YÞ.

The parameter d controls the amount of computational effort that needs to be spent
for the generation of w samples. For large values of d, a large error is introduced in the
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approximation, but less computational effort is needed to accept a sample w. On the
other hand, small d leads to a better approximation but the event Y˛AdðDÞ becomes
a rare event and most of the Y samples will be rejected.

Various algorithms have been proposed for the acceleration of the original plain
ABC algorithm. In Ref. [66], the ABC-MCMC algorithm has been proposed where
the rejection step has been replaced by a Markov chain Monte Carlo (MCMC) step
leading to an increase of the acceptance ratio. In Ref. [67], the ABC-SubSim algorithm
has been proposed, where the subset simulation, an algorithm for sampling rare events,
has been combined with ABC. In Ref. [68], more accurate estimates of the posterior
distribution are obtained by incorporating the error in the ABC approximation.

Recently, the ABC-SubSim [69] has been used in force field identification of
molecular dynamics simulations. In Ref. [70], ABC has been used to approximate
the likelihood in the force field calibration of a water model. In Refs. [30,47,51],
the ABC algorithm has been used in order to approximate the intractable likelihood
in SEm models discussed in Section 6.2.3.3.

6.3 Computational aspects

The implementation of Bayesian calibration for molecular simulations presents chal-
lenging aspects due to the necessity to generate a large representative sample of the
posterior PDF for the estimation of parameters statistics that is incompatible with
the high computational cost of molecular simulations.

6.3.1 Sampling from the posterior PDF

Except for simple toy models, there is no direct method to sample from the posterior
PDF. The sampling is usually done by a random walk in parameters space based on the
Metropolis algorithm [71] as generalized by Hastings [72]. This is the basis for a fam-
ily of algorithms named MCMC. There are many flavors of MCMC, and the reader is
referred to reference textbooks for more information [73e75].

For the calibration of force fields and model selection, Angelikopoulos et al. devel-
oped a version of transitional MCMC (TMCMC), which is well adapted to HPC
[32,34,76]. If the evaluation of the model is not computationally heavy or model
selection is not required, non-HPC versions of MCMC can be used. For instance,
Pernot and Cailliez [17,30,77] used out-of-the-box functions available in the R [78]
and stan [79] programming languages.

Whichever the type of MCMC algorithm, the comprehensive exploration of param-
eters space by a Markov chain requires many thousands to millions of evaluations of
the model. One cannot envision to perform as many molecular simulations with
limited resources, and it is mandatory to use alternative strategies involving computa-
tionally cheap emulators of the simulation model, also known as surrogate models or
metamodels. Before treating metamodels, we give a brief presentation of the TMCMC
algorithm.
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Transitional Markov chain Monte Carlo (TMCMC). TMCMC is a sequential
MCMC type algorithm for sampling the posterior distribution. It is based on a
sequence of intermediate distributions controlled by an annealing scheme:

pjðwjD;X;MÞfpðDjw;X;MÞgj pðwjMÞ; (6.27)

for j ¼ 1;.;m and 0 ¼ g1 < . < gm ¼ 1, that leads to the posterior distribution
when gm ¼ 1.

The algorithm first draws N1 samples from the prior distribution and at the jþ 1
stage uses Nj samples from the distribution pj to obtain Njþ1 samples from the distri-

bution pjþ1. Let Qj ¼
(
wj;k

)Nj

k¼1 be the samples obtained at the j-th step from pj. The
following procedure gives samples from pjþ1:

1. Draw Njþ1 samples from the set Qj with probability of wj;k equal to

bwj;k ¼
wj;kPNi
k¼1wj;k

; (6.28)

where wj;k ¼ p
!
D
##wj;k

"gjþ1%gj . Put the new samples in the set eQjþ1 and set

Sj¼
1
Nj

XNj

k¼1

wj;k: (6.29)

2. For each sample in eQjþ1 perform TMCMC with Gaussian proposal distribution and covari-

ance matrix b2SðjÞ
s . Here, b is a scaling parameter and SðjÞ

s is the sample covariance at the j-th
stage given by,

SðjÞ
s ¼

XNj

k¼1

bwj;k

&
wj;k %wj

'&
wj;k % wj

'u
; (6.30)

where wj ¼
PNj

k¼1bwj;kwj;k. Set the chain length equal to a predefined parameter [max.
In Algorithm 6.1, the pseudocode of a reduced bias variant of TMCMC, namely the

BASIS algorithm [52], is presented.
A key advantage of TMCMC is that it can be efficiently parallelized since the likeli-

hood evaluation is independent for each sample. An additional computational benefit
introduced by the BASIS algorithm is that all MCMC chains have equal length and
thus the work load can be balanced among the processors. Moreover, an important
by-product of the algorithm is that the evidence of the data is estimated by Ref. [37]

pðDjMÞz
Ym%1

j¼1

Sj: (6.31)
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Algorithm 6.1. BASIS (TMCMC)

1 Input: Likelihood function pðDjw;X;MÞ, prior distribution pðwjMÞ

Nj;Nmaxdnumber of samples per stage, maximum number of stages
g; bdthreshold parameter, scale parameter

2 Output: Qfinalda set of samples from pðwjD;X;MÞ

Sdestimation for the evidence pðDjMÞ

3 Draw initial sample set Q1 ¼
(
w1;k

)N1

k¼1 from prior
4 Initialize j) 1, g1 ) 0, S) 1
5 repeat
6 Choose gjþ1 such that the coefficient of variation of wj;k < g and gjþ1 & 1
7 Calculate wj;k with the chosen gjþ1

8 S) S, 1
Nj

PNj

j¼1wj;k

9 Obtain eQjþ1 by drawing Njþ1 samples from the set Qj with probabilities f wj;k

10 Set S the weighted covariance given by Eq. (6.30)

11 for each sample in eQjþ1 do

12 Perform MCMC with length equal to [max and proposal distribution
q
!
,jwÞ ¼ N ð ,jw; b2S

"

13 Add resulting samples in Qjþ1

14 end for
15 j) j þ 1
16 until gj ¼ 1 or j > Nmax

17 Qfinal )Qj

6.3.2 Metamodels

Metamodels are essential to reduce the computational cost of Bayesian inference.
When employed as surrogates of the actual computationally expensive models, the
accuracy of the Bayesian inference hinges on the accuracy of the metamodels.
Metamodels are a familiar entity to human decision making and handling of uncer-
tainty. Scarcely, we take a step or swim with complete knowledge of the mechanics
associated with these processes. Humans are well capable of creating effective models
of their environment and at the same time operate under uncertainty implied by these
models. The use of metamodels is inherent to modeling procedures and a key element
in Bayesian inference.

Over the last years, computational frameworks using metamodels have been
devised to overcome the cost of simulations required by Bayesian calibration of force
fields [32,34,76,77].

Metamodels can be built either from the physical laws of the system under study or
as pure mathematical expressions capturing the dependence/behavior of the original
model’s outputs as a function of the input variables (force field parameters and control
variables). Recently, Messerly et al. [80] proposed a third option, configuration
samplingebased surrogate models.
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Van Westen et al. [81] used PC-SAFT equations as physics-based models to fit
simulation results for the calibration of LJ parameters for n-alkanes. A similar
approach has been used recently to parameterize Mie force fields [82,83]. Such
physics-based models are unfortunately confined to a restricted set of applications,
and behavior-based models have been devised for a more general scope.

In the force field calibration literature, GPs, also called kriging [32,34,35,69,77],
and polynomial chaos expansions (PCEs) [84] have been used to build metamodels
replacing molecular simulations.

6.3.2.1 Kriging

We describe here shortly the principle of kriging metamodels. More details will be

found in Refs. [85e87]. Let Y ¼
(
yðiÞ

)N
i¼1 be a set of N values of a QoI at force field

parameters Q ¼
&
wð1Þ;.;wðNÞ

'
, where yðiÞ ¼ F

&
x;wðiÞ

'
' uðiÞF ðxÞ. In the universal

kriging framework, Y is assumed to be of the form

yðwÞ¼
Xp

i¼1

bi fiðwÞ þ ZðwÞ; (6.32)

where the fi are known basis functions and Z is a GP of mean zero with a covariance
kernel kðw;w0Þ ¼ a2rðw;w0;bÞ, based on a correlation function r with parameters b.
This setup is more general than the one considered in Section 6.2.3.1.

The kriging best predictor and covariance at any point in parameter space are given
by

byðwÞ¼ f ðwÞt bb þ kðwÞt k%1
$
Y%Fbb

%
; (6.33)

cyðw;w0Þ ¼ kðw;w0Þ % kðwÞtK%1kðw0Þ

þ
!
f ðwÞt % kðwÞtK%1F

"t!
FtK%1F

"%1
&
f ðw0Þt % kðw0ÞtK%1F

'
;

(6.34)

where kðwÞ ¼
h
k
&
wð1Þ;w

'
;.; k

&
wðNÞ;w

'i
, K is the GP’s varianceecovariance

matrix with elements Kij ¼ k
&
wðiÞ;wðjÞ

'
, f ðwÞ ¼

&
f1ðwÞ;.; fpðwÞ

'
is a vector

of basis functions, F ¼
h
f
&
wð1Þ

't
;.; f

&
wðNÞ

'tit
, and bb ¼

!
FtK%1F

"%1FtK%1Y

is the best linear unbiased estimate of b. The kriging prediction uncertainty is

uyðwÞ ¼ cyðw;wÞ1=2.
K, k, and bb depend implicitly on the parameters fa;bg of the covariance kernel,

which have to be calibrated on Y, by maximum likelihood or Bayesian inference.
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Different covariance structures are possible [85,87]. A common choice is the expo-
nential family

kðw;w0Þ¼a2
YNw

j¼1

exp
&
% bj

###wj%w0
jj
g
'
; (6.35)

with parameters a > 0, bj ( 0 cj, and 0 < g & 2. The g parameter can be optimized
or fixed, for instance, at g ¼ 2 (Gaussian kernel), providing an interpolator with
interesting smoothness properties.

In the Bayesian calibration of force fields, the computationally limiting step is the
estimation of the likelihood, and kriging metamodels have been used to provide effi-
cient interpolation functions, either at the likelihood level or at the property level. To
account for the uncertainty of molecular simulation results, one has to add the simu-
lation variances on the diagonal of the varianceecovariance matrix, which becomes

Kij ¼ k
&
wðiÞ;wð jÞ

'
þ uðiÞ2F dij [87].

6.3.2.2 Adaptive learning of kriging metamodels

The construction of a kriging metamodel requires an ensemble of simulations for a set
of parameter valuesQ, which is to be kept as small as possible to reduce computational
charge. The most economical scheme is to start with a small number of simulations,
and run new ones at strategically chosen values of the parameters, usually in a sequen-
tial manner. This is called adaptive learning or infilling. In force field calibration, two
approaches have been used to build metamodels of the likelihood function, either
directly during the Bayesian inference algorithm (on-the-fly/synchronous learning)
[32,34] or as a preliminary stage (asynchronous learning) [77].

Synchronous learning. In synchronous learning, the surrogate model is built in
parallel with the sampling algorithm. The first samples of the sampling algorithm
are produced by running the original model. After enough samples have been gener-
ated, a surrogate model is constructed. The sampling proceeds by using the surrogate
or the exact model according to some criterion.

In Ref. [34], the synchronous learning approach was combined with the TMCMC
sampling algorithm [37]. The algorithm is named K-TMCMC and the surrogate model
used is kriging. In order to control the size of the error introduced by the approximation
of the likelihood, the following rules have been used:

1. The training set consists only of points that have been accepted using the exact and not the
surrogate model.

2. Given a point wc, the training set for the construction of the surrogate consists on the closest
(in a chosen metric) nneigh points. Moreover, wc must be contained in the convex hull of those
points. The parameter nneigh is user-defined and its minimum value depends on the dimension
of the sample space.
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3. The estimate is checked to verify whether its value is within the lower 95% quantile of all
posterior values of the points accounted so far with full model simulations.

4. The relative error
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cyðwc;wcÞ

+
byðwcÞ

q
should be less than a user-defined tolerance ε, see

Eqs. (6.33) and (6.34).

The algorithm has been applied on a structural dynamics problem.
Asynchronous learning. It is also possible to build a metamodel of the likelihood

before performing Bayesian inference. In this case, one starts with a small design,
typically based on a Latin hypercube sample [88], and add new points while search-
ing for the maximum of the likelihood function, or equivalently, for the minimum
of %log pðDjw;X;MÞ [77].

It has been shown that optimizing directly a metamodel ey is not very efficient [89],
the risk being of getting trapped in minima of by resulting from its approximate nature.
More reliable strategies have been defined for metamodel-based optimization: the
Efficient Global Optimization (EGO) algorithm [89,90] and its variants [91e94].
The advantage of EGO is to provide an optimal infilling scheme, starting from sparse
initial designs. In this context, metamodels such as low-order polynomials are too rigid
to enable the discovery of new minima, and higher-order polynomial would require too
large designs for their calibration. In contrast, kriging metamodels handle easily this
issue and are generally associated with EGO [85,95,96].

EGO is initialized by computing the function y to be minimized for a sample of

inputs Q ¼
&
wð1Þ;.;wðNÞ

'
. A first GP by is built that reproduces the value of Y

for the design points. Outside of the design points, byðwÞ is a prediction of yðwÞ,
with an uncertainty uyðwÞ. As by is only an approximation of y, its optima do not neces-
sarily coincide with those of y. The metamodel is thus improved by performing a new
evaluation of y for a new parameter set wðNþ1Þ that maximizes a utility function GðwÞ.
This utility function measures the improvement of the metamodel expected upon the
inclusion of wðNþ1Þ into the sampling design. The process is iterated until
max½GðwÞ* is below a user-defined threshold. At the end of the EGO, by can be used
as a good estimator of y, especially in the neighborhood of its minima.

In the original version of EGO [90], dedicated to the optimization of deterministic
functions, GðwÞ is the expected improvement (EI) defined as

EIðwÞ¼ E

,
max

$
yðw+Þ%byðwÞ; 0

%-
; (6.36)

where w+ is the point of the sampling design for which y is minimum. When by is a
kriging metamodel, EI can be computed analytically which makes the search for
wðNþ1Þ very efficient. When dealing with the minimization of a noisy function (which
is the case when y is computed from molecular simulation data), the relevance of EI as
defined above is questionable [92]. Many adaptations of EGO have been proposed,
that differ by the definition of the utility function Gð:Þ, which consists of a trade-off
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between minimizing byðwÞ and reducing its prediction uncertainty uyðwÞ. For a recent
review of the EGO variants adapted to noisy functions and their relative merits, the
reader is referred to Ref. [93].

6.3.2.3 Polynomial Chaos expansions

A PCE is a spectral representation of a random variable [97e99]. Any real-valued
random variable Y with finite variance can be expanded in terms of a PCE representa-
tion of the form

Y ¼
X

jIj¼0

N

YIJIðx1; x2;.Þ; (6.37)

where fxigNi¼1 are i.i.d. standard random variables, YI are the coefficients, I ¼
ðI1; I2;.ÞcIj˛ℕ0 is an infinite-dimensional multi-index, jIj ¼ I1 þ I2 þ. is the [1
norm, and JI are multivariate normalized orthogonal polynomials. The PCE in Eq.
(6.37) converges to the true random variable Y in the mean-square sense [99,100].
The basis functions can be written as products of univariate orthonormal poly-
nomials as

JIðx1; x2;.Þ¼
Y

j¼1

N

jIj

!
xj
"
: (6.38)

The univariate functions jIj are Ij-th order polynomials in the independent variable
xj orthonormal with respect to the probability density p

!
xj
"
, i.e., they satisfy

Z
jIjðxÞjIkðxÞdpðxÞ¼ djk: (6.39)

For instance, if the germ xj is a standard Gaussian random variable, then the PCE is
built using Hermite polynomials. Different choices of xj and jm are available via the
generalized Askey family [100]. For computational purposes, the infinite dimensional
expansion (Eq. 6.37) must be truncated

Y ¼
X

I˛I
YIJI

!
x1; x2;.; xns

"
; (6.40)

where I is some index set, and ns is some finite stochastic dimension that typically
corresponds to the number of stochastic degrees of freedom in the system. For
example, one possible choice for I is the total-order expansion of degree p, where
I ¼ fI : jIj & pg.

To understand the applicability of a PCE to predictive modeling and simulation,
assume that we have a target model of interest, FðwÞ, where w is a single parameter.
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The model yields a prediction for the quantity of interest Q ¼ FðwÞ. If we expand the
input w like in (40), the PCE for a generic observable Q can then be written in a similar
form

QðxÞ¼FðwðxÞÞ ¼
X

I˛I
cIJi

!
x1; x2;.; xns

"
: (6.41)

To compute the PC coefficients cI with I˛I , we can identify two classes of
methods, namely intrusive and nonintrusive [99]. The former involves substituting
the expansions into the governing equations and applying orthogonal projection to
the resulting equations, resulting in a larger system for the PCE coefficients. This
approach is applicable when one has access to the full forward model and can thus
modify the governing equations. The nonintrusive approach is more generally appli-
cable, because it involves finding an approximation in the subspace spanned by the ba-
sis functions by evaluating the original model many times. This nonintrusive approach
basically treats the simulator for the forward model as a black-box, and it does not
require any modification of the governing equations or the simulator itself.

One example of nonintrusive methods relies on orthogonal projection of the
solution

cI ¼ E½FðwÞJI * ¼
Z

X
FðwðxÞÞJIðxÞpðxÞdx: (6.42)

and is known as nonintrusive spectral projection (NISP). In general, this integral must
be estimated numerically, using Monte Carlo or quadrature techniques [98,99]. Monte
Carlo methods are insensitive to dimensionality, but it is well known that their
convergence is slow with respect to the number of samples. For a sufficiently smooth
integrand, quadrature methods converge faster, but they are affected by the curse of
dimensionality. The number of dimensions that define the threshold for when the
problem becomes unaffordable cannot be set a priori, and it is obviously problem
dependent. However, one can guess that most physical problems of interest, due to
their high computational cost, become intractable even for a small number of
dimensions. Sparse grids can mitigate the curse of dimensionality, but they can lead to
issues due to negative weights.

An alternative nonintrusive method is regression, which involves solving the linear
system:
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where JIn is the n-th basis function, cIn is the coefficient corresponding to that basis,
and xðmÞ is the m-th regression point. In the regression matrix A, each column corre-
sponds to a basis element and each row corresponds to a regression point from the
training set.

The NISP or a fully tensorized regression approach is suitable when the data being
modeled are not noisy. In the presence of noisy data, a straightforward regression or
NISP would yield a deterministic answer, thus losing any information about the noise.
A suitable approach to tackle these problems is Bayesian inference to infer the coeffi-
cients, which allows one to capture the uncertainty in the data in a consistent fashion
[101]. This approach is convenient also because it allows a certain flexibility in the
sampling method of the stochastic space, since no specific rule is required a priori.
An obvious constraint, however, is that the number of sampling points should be
adequate to the target order of the expansion to infer. The result of the Bayesian
approach is an uncertain PC representation of a target observable, i.e., the vector of
PC coefficients is not a deterministic vector, but it is a random vector defined by a joint
probability density containing the full noise information. The Bayesian method to infer
the PC coefficients consists of three main steps: collecting a set of the observations of
the QoIs, formulating the Bayesian probabilistic model, and, finally, sampling the pos-
terior distribution.

When collecting the observations, one should choose wisely the sampling points
over the space. A possible option would be to use the same sampling points one would
use for the NISP approach, but this would constrain how to choose the points. One
possibility that would help with the curse of dimensionality is to use nested grids,
which would benefit approaches like adaptive refinement. One example of this class
of points is Fejér nodes [102]. Leveraging the nested nature of these grids, one can
explore an adaptive sampling technique to build the target set of observations of the
QoIs. Further details of this approach will be discussed below in Section 6.4.2.1.

Once a set of observations F is obtained, one needs to formulate the likelihood for
the coefficients cI with I˛I . Using a standard Gaussian additive model to capture the
discrepancy between each data point, fi, and the corresponding model prediction yields
the well-known Gaussian likelihood and the following the joint posterior distribution,
of the PC coefficients and noise variance as

pðcI jF;MÞf pðFjcI ;MÞpðcIÞ;

with I˛I , and pðcIÞ denoting the prior on the PC coefficients. Once a proper prior
distribution is chosen, sampling from this high-dimensional posterior can be per-
formed using, e.g., MCMC methods.

6.3.3 Approximation of intractable posterior PDFs

The Laplace method. This is a technique for the approximation of integrals of the
form

Z

Q
eNf ðwÞdw:
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The technique is based on approximating the integrand with a Taylor expansion
around the unique maximum of the function f. The approximation is valid for large
values of N.

The same idea can be applied for the approximation of intractable posterior distri-
butions. We expand the logarithm of the posterior distribution, denoted by LðwÞ,
around the MAP estimate of Eq. (6.8), bw,

LðwÞ z L
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The posterior distribution is then approximated by
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is the normalization constant and
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is the inverse of the Hessian of L at bw. The methodology has been applied in
Ref. [103] for the approximation of the posterior distribution in a hierarchical Bayesian
model (see Section 6.2.3.2).

Variational inference. This is another method for the approximation of intractable
posterior distributions. We define a family D of densities over the space Q of param-
eters, e.g., exponential functions, GPs, neural networks. From this family, we choose
the member that is closest to the posterior distribution based on the KullbackeLeibler
(or relative entropy) divergence,

bq¼ argmax
q˛D

DKLðqð $ Þ k pð $ jD;MÞÞ; (6.48)

DKL where the KL divergence is defined by

DKLðqð $ Þ k pð $
##D;MÞÞ¼

Z

Q
log

qðwÞ
pðwjD;MÞ qðwÞdw; (6.49)
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which can be also written as

DKLðqð$Þ k pð$jD;MÞÞ ¼ %ðEq½logðpðDjw;MÞpðwjMÞÞ % Eq½logðqðwÞÞ*Þ

þlog pðDjMÞ:
(6.50)

The last term, log pðDjMÞ, is intractable but does not depend on q and thus can be
ignored in the optimization process. An usual assumption on the family D is that it
contains product functions,

qðwÞ¼
YNw

i¼1

qiðwiÞ: (6.51)

This special case is called mean-field inference. One way to solve the optimization
problem in this case is by coordinate ascent. At the k-th step of the iteration, we solve
the problems

bqkþ1
j ¼ argmax

qkþ1
j ˛D i

DKL

&
qkþ1
1 ;.; qkj%1; q

kþ1
j ; qkjþ1;.; qkþ1

Nw
k pð $ jD;MÞ

'
;

(6.52)

for j ¼ 1;.;Nw.
In Ref. [104], the variational approach has been applied for the inference of the forc-

ing parameters and the system noise in diffusion processes. In Ref. [105], the authors
applied this approach in the path-space measure of molecular dynamics simulations, in
order to obtain optimized coarse-grained molecular models for both equilibrium and
nonequilibrium simulations.

6.3.4 High-performance computing for Bayesian inference

Bayesian inference can be computationally costly, in particular when MCMC methods
are used to sample the posterior distribution. This cost is further exacerbated when the
model evaluations are expensive, which is often the case with large-scale molecular
simulations. Performing such high throughput simulations in massively parallel
HPC architectures may offer a remedy for the computational cost. However, this
implementation introduces new challenges as MD simulations performed with
different sets of parameters, each distributed on different nodes, may exhibit very
different execution times. In such cases, the sampling of the posterior PDF will result
in load imbalance as nodes who have completed their tasks would be idling, thus
reducing the parallel efficiency of the process. One remedy in this situation is the intro-
duction of task-based parallelism.

A number of frameworks have been proposed to address this situation. PSUADE
[106], developed in Lawrence Livermore National Laboratory, is an HPC software
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written in Cþþ for UQ and sensitivity analysis. VECMA [107] is a multipartner proj-
ect under development that aims at running UQ problems on exascale environments.
Another relevant software is SPUX [108], developed in EAWAG, Switzerland, aimed
for UQ in water research written in Python. The CSE Laboratory at ETHZ has devel-
oped Korali, a framework for nonintrusive Bayesian UQ of complex and computa-
tionally demanding physical models on HPC architectures.1 Korali builds on the
framework P4U [76] where Bayesian tools were expressed as engines upon the layer
of the TORC [109] tasking library. TORC works by defining a set of workers, each
spanning multiple processor cores, distributed throughout a computing cluster and
assigning them a fixed set of model evaluations as guided by the stochastic method.
However, TORC has two drawbacks: (i) its design is very strongly coupled with
each UQ method that requires a problem-specific interface and (ii) its fixed work dis-
tribution strategy can cause load imbalance between the worker teams, causing cores to
idle. In turn, the parallel implementation of Korali follows a producereconsumer
paradigm to distribute the execution of many model evaluations across a computer
cluster.

Upon initialization, the Korali runtime system instantiates multiple workers, each
comprising one or more processor cores. During execution, Korali keeps workers busy
by sending them a new batch of model evaluations to compute. In turn, as soon a
worker finishes an evaluation, it returns its partial results to Korali’s runtime system.
Korali prevents the detrimental effects of load imbalance, where a worker may finish
before others and thus remaining idle, by distributing small work batches at a time.
Communication between Korali and its worker tasks is entirely asynchronous. That
is, each worker will communicate partial results to the runtime system without a recip-
rocal receive request from the latter. Korali’s runtime system employs remote proced-
ure calls (RPCs) to handle worker requests opportunistically, eliminating the need for
barriers or other synchronization mechanisms. Korali uses the UPCþþ communica-
tion library [110] as its back-end for RPC execution.

Finally, Korali allows users to use their own code to simulate the computational
model (e.g., a computational fluid dynamics simulation) to perform model evaluations
by providing a simple C/Cþþ/Python function call interface. The user code can
embrace inter and intranode parallelism expressed with MPI communication, OpenMP
directives, or GPUs (e.g., via CUDA).

6.4 Applications

Applications of Bayesian methods to force fields calibration are still few, and mostly
focused on problems with a small number of parameters (typically less than 10): sim-
ple potentials (LJ, Mie) and coarse-grained potentials [111e113].

In this section, we present several applications at various levels of complexity in
order to display the extent of successes and difficulties arising in this area.

1 https://cselab.github.io/korali/.
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6.4.1 Introductory example: two-parameter Lennard-Jones
fluids

6.4.1.1 The Lennard-Jones potential

LJ fluids are one of the simplest systems studied in molecular simulation. They are
considered a good model (qualitatively and for some applications quantitatively) for
rare gases (Ar, Kr) or small “spherical” molecules (CH4, N2, etc.). In LJ fluids, two
particles, separated by a distance r, interact according to the LJ potential:

VLJðrÞ¼ 4ε
,&s

r

'12
%
&s
r

'6
-
: (6.53)

The LJ potential is the sum of two terms: a r%12 term repulsive at short distance and
a r%6 attractive term. The two parameters, s and ε, that control this interaction have a
physical understanding: s is related to the size of the particle (its “radius”), whereas ε
controls the energetic strength of the interaction. The use of the LJ potential is not
limited to the study of monoparticular systems and is indeed one of the most
commonly encountered term in common force fields to represent non-Coulombic
interactions between two atoms in molecular systems. Note that the LJ potential is
sometimes used in the framework of dimensionless units for the sake of generality.
However, when one needs to study real fluids, one has to manipulate dimensioned
properties in order to compare to experimental data.

The LJ potential has been the major target for force field calibration within the
Bayesian framework [17,30,32,42,52,69,114]. This is due to its simplicity, with
only two parameters to be calibrated, and to the fact that some experimental properties
for LJ fluids (second virial coefficient, diffusion coefficient, etc.) can be obtained using
analytical formulae. This enables (a) to get the likelihood “for free” and thus to
perform a thorough exploration of the parameter space without the need to use
advanced methodologies and (b) to get rid of the effects of simulation parameters,
such as the cut-off radius [32], and of simulation numerical/measurement uncertainty
in the calibration process (uFi ¼ 0 in Eq. 6.4).

6.4.1.2 Bayesian calibration

As an illustration of the theoretical points presented in the previous sections, we
calibrated the LJ potential for Ar over three different phase equilibrium properties
(saturated liquid and vapor densities rliq and rvap, and saturated vapor pressure Psat)
at 12 temperatures ranging from 90 to 145 K. Calibration data were recovered from
the NIST website [40], and property computation is made through the use of Eqs.
(6.9)e(6.11) of Werth et al. [83], with n ¼ 12. The NIST website reports upper limits
on uncertainty for densities of 0.02% and 0.03% for pressures. The exact meaning of
these uncertainties on equations-of-state results has been discussed earlier in this chap-
ter. However, they are much smaller than the modeling errors expected from an LJ
model, so that we do not need to be concerned by possible correlations. In all the
following calibrations, uniform priors have been used for the LJ parameters s and ε.
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Fig. 6.3(a) shows the residuals of the fit at the MAP for calibration over rliq,
with a likelihood based on Eq. (6.7), where SR is a diagonal matrix with elements
SR;ij ¼ u2didij, with reference data uncertainties udi set to the NIST recommended
values. The calibration is clearly unsuccessful. Although the residuals are “small”
(roughly 1% of the QoI values), they fall outside of the 95% prediction probability
intervals and are clearly correlated. These two observations are symptomatic of
model inadequacy: the physics contained in the LJ potential is not sufficient to enable
accurate estimation of Ar-saturated liquid density over this range of temperature.

We will discuss here a simple way to overcome this limitation which is to consider
SR;ij ¼ s2dij, where s is a parameter to be calibrated along with s and ε, in order to
ensure a Birge ratio at the MAP close to 1 (Eq. 6.13). Note that s is given a half-
normal prior PDF with a large standard deviation of 0.5, in order to ensure its positivity
and to disfavor unsuitably large values. The residuals of the calibration are displayed in
Fig. 6.3(b). The values of parametric uncertainties (given in Table 6.1) are now consis-
tent with the magnitude of the residuals.

Note that the residuals are still correlated due to model inadequacy, so that the cali-
bration should not in principle be considered successful. However, for pedagogical
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Figure 6.3 Calibration of LJ parameters for Ar over rliq by the standard Bayesian scheme:
(a) using fixed reference uncertainties or (b) calibrating uncertainty s along with s and ε to deal
with model inadequacy. The points show the residuals at the MAP with the error bars
representing 2s (in (a), the error bars are smaller than the point size). The shaded areas
represent posterior confidence (dark) and prediction (light) 95% probability intervals.

Table 6.1 Results of the calibration of an LJ force field for Argon.

Calibration
data s (Å) ε (K) srliq(mol.LL1) srvap(mol.LL1) sPsat(MPa)

rliq 3.40(1) 115.3(3) 0.17(4)

rvap 3.73(4) 111.8(4) 0.09(2)

Psat 3.45(3) 115.7(6) 0.009(2)

Consensus 3.41(1) 116.5(1) 0.26(6) 0.24(6) 0.010(3)

Hierarchical 3.53(15) 114.2(2.1) 0.12(2) 0.07(2) 0.009(2)

The mean values of the parameters are given, as well as their marginal uncertainties in parenthetic notation.
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purposes, we will ignore this issue for now and postpone discussion about advanced
schemes to deal with model inadequacy to Section 6.4.3.

Results of the calibration over rvap or over Psat are reported in Table 6.1 and
Fig. 6.4. Values obtained for the parameters are quite different, both in terms of
mean values and uncertainties (see Table 6.1). Fig. 6.4 shows posterior PDF samples
for s and ε obtained from the three calibrations. The three PDFs do not overlap, the
consequence being that it is not possible to reproduce quantitatively a property on
which the parameters have not been calibrated, taking into account parameters
uncertainties. This is true also when model errors are taken into account, as is done
here through the calibration of s values. This has already been shown in previous
studies [17,35,59]. The very different values obtained in the calibration using rvap
or rliq certainly originate from the fact that they deal with different states of matter:
the two-body nature of the LJ potential is not appropriate to deal with condensed phase
and its success relies on incorporation of many-body interactions into the LJ
parameters, leading to values much different than those in gas phase. The choice of
the reference data is thus of paramount importance when calibrating force field param-
eters, because their values will integrate, in an effective way, part of the physics not
described in the mathematical expression of the force field.

Fig. 6.4 also displays a sample of the posterior PDF of LJ parameters calibrated
over the three observables together, using three different uncertainty parameters

s ¼
n
srliq; srvap; sPsat

o
. This consensus situation leads to values of the parameters

that are dominated by rliq and Psat, which is certainly due to the very high sensitivity
of rliq to s. This can be acknowledged by the very small uncertainty on s obtained
from the calibration over rliq.

Figure 6.4 Samples of the posterior PDF of LJ parameters for Argon, calibrated on saturated
liquid density (black), saturated vapor density (red), saturated vapor pressure (green), or using
the three observables simultaneously as calibration data (blue).
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It is interesting to note that the parameter uncertainties are greatly reduced in the
“consensus” calibration, as can be seen in Fig. 6.4 and Table 6.1. This is balanced
by an increase of srliq and srvap, ensuring that the calibration remains statistically sound
(when considering only the Birge ratio). As mentioned earlier, adding data to the refer-
ence set decreases the quality of the fit (larger residuals and values of si), but simul-
taneously decreases the uncertainty on the parameters, and by consequence the
uncertainty of model predictions. This unsuitable behavior justifies the development
of more advanced statistical formulations to deal with model inadequacy.

Fig. 6.4 shows a strong correlation between s and ε, whatever calibration data are
used (although the correlation is not identical in all cases). Such information is crucial
when one wants to perform UP. It is thus very important when reporting force field
parameter uncertainties not only to limit to the sole marginal uncertainty on each
parameter but also to include their correlation, or provide the full posterior PDF.

6.4.1.3 Hierarchical model

Calibration. A hierarchical model (see Section 6.2.3.2) was built to calibrate a unique
set of LJ parameters on the three observables used above.

To define the overall PDF with a bivariate normal distribution, one has to calibrate
five parameters (two for the center of the distribution, two for the uncertainties, and one
for correlation) on six values (the coordinates of the three local LJ parameters). To
formulate it differently, the question is “From which bivariate Gaussian distribution
are these three points sampled?”. One has thus to expect a large statistical uncertainty
on the overall distribution. To compensate for the sparse data, one introduces an
exponential prior on the uncertainties to constrain them to be as small as possible.
A few tests have shown that a too strong constraint affects the local LJ parameters,
resulting in a bad fit of rvap. The solution shown in Fig. 6.5(a) is the best compromise
(i.e., the most compact overall distribution preserving reasonable local LJ parameters)
we were able to achieve. The parameters are reported in Table 6.1 for comparison with
the standard calibration. The correlation parameter is poorly identified %0.56(37).

Prediction. The overall distribution was used to predict a new property, the second
virial coefficient, using the analytical formula by Vargas et al. [115]. The 95% confi-
dence interval is represented in Fig. 6.5(b) in comparison to experimental data [116].
The mean prediction is in very good agreement with the reference data up to 350 K.
However, the prediction uncertainty is much larger than the experimental ones. For
instance, at 200 K, the prediction uncertainty is more than 10 times larger than the
experimental one (0.0040 vs. 0.0003 L.mol%1). Although statistically consistent, hier-
archical calibration leads, in this case, to predictions that may not be precise enough to
replace experiments.

6.4.1.4 Uncertainty propagation through molecular simulations

UP is typically done by drawing samples from the parameters posterior PDF and
computing quantities of interest with the model for each parameter set value.
Following this procedure for the LJ parameters for Argon (calibrated over second virial
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coefficient data), Cailliez and Pernot computed uncertainties obtained from MD and
MC simulations [17]. They showed that molecular simulations amplify parametric
uncertainties. Although relative uncertainties on s and ε were around 0.1%, the output
uncertainties were roughly 0.5%e2%, depending on the computed property. More
importantly, when decomposing the uncertainties into their numerical (sum of compu-
tational and measurement uncertainties as defined in the Introduction) and parametric
components, they observed that the latter was the most significant part of the total
uncertainty budget. Similar observations have since been made in the literature in
the case of other force fields [59,77]. This means that parametric uncertainties should
not be overlooked anymore when reporting molecular simulation results.

6.4.1.5 Model improvement and model selection

As described earlier, the LJ potential is unable to reproduce various QoIs with a unique
parameter set or even, in some cases, one quantity over a large range of physical con-
ditions. One way to overcome this limitation is to improve the physical description of
the interactions by modifying the form of the force field (model improvement). A
“simple” improvement of the LJ potential is to add a new parameter to be calibrated.
A straightforward choice is the repulsive exponent p (the value of 12 in the LJ potential
has no physical grounds). The modified LJ potential (hereafter referred to as LJp)
becomes

VLJpðrÞ¼ 4ε
,&s

r

'p
%
&s
r

'6-
: (6.54)

Figure 6.5 Calibration prediction with a hierarchical model: (a) 95% probability contour lines
of the posterior PDF of LJ parameters for Ar: local parameters for saturated liquid density
(Dð1Þ; black), saturated vapor density (Dð2Þ; red), saturated vapor pressure (Dð3Þ; green), and
overall distribution (purple); (b) Comparison of the predicted second virial coefficients (purple)
to experimental data (blue).
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The LJp potential has been calibrated by the standard scheme for each of the three
observables from the previous sections using the metamodel of Werth et al. [83].
Calibration summaries are presented in Table 6.2 and samples of the posterior PDFs
are presented in Fig. 6.6. One sees that the situation is better for the densities, which
are close to having an intersection but they do not overlap in the three parameter
dimensions and there is no reconciliation with PSat . The additional parameter is not
sufficient to offer a complete data reconciliation.

Fit quality. The improvement of fit quality of the new potential can be assessed
by comparing the optimized uncertainty parameters si for each QoI in Tables 6.1 and
6.2. For rliq the value has diminished from 0.17 to 0.10 mol L%1, indicating a reduc-
tion of almost a factor two of the residuals amplitude. For rvap the effect is even
larger, from 0.09 to 0.02 mol L%1, whereas the fit quality of Psat has not been signif-
icantly affected.

Transferability. It also should be noted that the spread of the PDFs is sometimes
much larger for s and ε than for the LJ potential and ε has shifted to much larger
values, which indicates that the LJp potential might be overparameterized for rLiq.
The additional parameter therefore improves the representation of the densities
(through the metamodel used here) and helps to reconcile them. There remains,
however, the impossibility to fit the three QoIs with a single set of these three
parameters.

Fitting of LJp on the radial distribution functions.Kulakova et al. [35] calibrated
LJ and LJp potentials in order to reproduce RDFs of argon in six different conditions:
five liquid states at different temperatures and pressures (labeled L1 to L5) and one
vapor state (labeled V). Some of the results from Ref. [35] are reproduced in Table 6.3.

As seen previously, adding one degree of freedom in the potential enables better
representation of experimental data: the calibration of the LJp potential succeeded
for two experimental conditions (L1 and L2) in which the LJ potential failed. Here
again, the best values of the LJ parameters are modified when p is optimized. This
is due to the fact that the best value for p is in all cases very different from 12 (between
6.15 and 9.84). This is especially true for ε, due to a strong anticorrelation between
parameters ε and p observed in this study as well as in the previous example and in
Ref. [83].

The added value of the force field improvement can be measured using the model
selection criterion described in Section 6.2.1.3. Using equal a priori probabilities for
models LJ and LJp, the preferred model is the one exhibiting the largest evidence.
These are reported in Table 6.3. In all liquid conditions, the LJp model is shown to
be a valuable improvement over the LJ potential. However, in vapor conditions, the
result was opposite. In such conditions the LJp potential is overparameterized.

Although both examples considered above reach similar conclusions on the study
of the LJp potential, one can see in the details that the model used (metamodel vs. simu-
lation) and the choice of calibration QoIs have a strong impact on the numerical values
of the parameters. For the metamodel of Werth calibrated on rliq, rvap, and Psat , the
optimal values of p lie between 19 and 27, while for simulations calibrated on RDF
these lie between 6.15 and 9.84. Another study on Ar, with different model and
data, reached the conclusion that the best value for p was close to 12 [117].
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Table 6.2 Results of the calibration of an LJp force field for Argon.

Calibration data s (Å) ε (K) p srliq(mol.LL1) srvap(mol.LL1) sPsat(MPa)

rliq 3.51(3) 162.1(9.1) 26.4(4.5) 0.10(3)

rvap 3.48(2) 145.0(1.3) 19.5(4) 0.02(1)

Psat 4.08(19) 136.6(5.3) 21.7(3.4) 0.007(2)

The mean values of the parameters are given, as well as their marginal uncertainties in parenthetic notation.
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Figure 6.6 Projections of samples of the posterior PDF of the three-parameter LJp model,
calibrated on saturated liquid density (in black), saturated vapor density (in red), and saturated
vapor pressure (in green).

Table 6.3 Results of the calibration of LJ and LJp force field for Argon on radial distribution
function.

Experimental
data

Force field
model qðsÞ(Å) qðεÞ(K) qðpÞ log(evidence)

L2 LJ e e [6.29,
8.31]

e

LJp [3.32,
3.43]

[358.3,
2222.2]

%14.8

L3 LJ [3.25,
3.33]

[142.9,
133.9]

[6.33,
7.07]

%9.72

LJp [3.30,
3.40]

[459.9,
1358.7]

2.81

L4 LJ [3.30,
3.36]

[127.8,
133.9]

[6.90,
9.84]

5.10

LJp [3.33,
3.40]

[162.0,
533.4]

5.18

V LJ [3.03,
3.21]

[ 41.8,
92.6]

[6.15,
6.92]

%3.83

LJp [3.04,
3.12]

[314.5,
1817.1]

%4.94

For each force field parameter, the 5%e95% quantiles are given in brackets.
Values are taken from L. Kulakova, G. Arampatzis, P. Angelikopoulos, P. Hadjidoukas, C. Papadimitriou, P.
Koumoutsakos, Data driven inference for the repulsive exponent of the Lennard-Jones potential in molecular dynamics
simulations, Sci. Rep. 7 (2017) 16576. https://doi.org/10.1038/s41598-017-16314-4.
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6.4.1.6 Summary

Exploration of the calibration of an LJ potential for Argon, one of the simplest prob-
lems in the field, has revealed several difficulties. Mainly the excessive simplicity of
this popular potential function leads to model inadequacy, notably for condensed
phase conditions. The Bayesian approach provides an unambiguous diagnostic for
such problems, that would be difficult to assess with calibration methods ignoring
parametric uncertainty. Bayesian inference also offers advanced methods (e.g., hierar-
chical modeling (HM)) to treat model inadequacy; however, we have seen that the
solutions might be of a limited practical interest due to very large prediction uncer-
tainties. The reduction of model inadequacy by improvement of the interaction poten-
tial is clearly a necessary step if one wishes to establish predictive models for multiple
QoIs. Apparently, the LJp model, although a notable improvement over LJ, is not able
to solve all the inadequacy problems.

6.4.2 Use of surrogate models for force field calibration

For most force fields and properties, no analytical formulae are available, and one has
to resort to molecular simulations in order to compute properties to calibrate the force
field parameters. For extensive exploration of parameter space, metamodels are needed
to overcome the prohibitive cost of simulations. This section presents examples of
PCE- and GP-based metamodels.

6.4.2.1 Polynomial Chaos expansions

An example of using PCE as surrogate models for calibrating force field parameters
can be found in Refs. [84,118]. The work focuses on isothermal, isobaric MD simula-
tions of water at ambient conditions, i.e., T ¼ 298K and P ¼ 1 atm. In the first part,
Rizzi et al. describe the forward problem, i.e., how to build a PC surrogate for target
macroscale quantities of interest comparing a NISP against a Bayesian approach. The
latter, as discussed, is more suited for noisy data because it yields an expansion
capturing both the parametric uncertainty stemming from the force field parameters
as well as the sampling noise inherent to MD computations. In the second part, Rizzi
et al. show how to use these PC expansions as a surrogate model to infer small-scale,
atomistic parameters, based on data from macroscale observables.

MD system and uncertain parameters. In this example, the computational
domain is a cubic box of side length equal to 37:2 "A with periodic boundary condi-
tions along each axis, containing 1728 water molecules. The water molecule is
modeled using the TIP4P representation [119]. The potential is a combination of an
LJ component modeling dispersion forces, and Coulomb’s law to model electrostatic
interactions. The complete force field is defined by seven parameters: three defining
the geometry of the water molecule, two for the charges of the hydrogen (H) and
oxygen (O) atoms, and, finally, the two parameters for the LJ parameters defining
the dispersion forces between molecules. Data for three target observables,
namely density (r), self-diffusivity (f), and enthalpy (H), are collected during the
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steady-state part of each run via time averaging. The goal is to characterize how
intrinsic sampling noise and uncertainty affecting a subset of the input parameters in-
fluence the MD predictions for the selected observables.

The study is based on a stochastic parametrization of the LJ characteristic energy, ε,
and distance, s, as well as the distance, d, from the oxygen to the massless point where
the negative charge is placed in the TIP4P model as

εðx1Þ ¼ 0:147þ 0:043x1; kcal=mol;

sðx2Þ ¼ 3:15061þ 0:021x2; "A;

dðx3Þ ¼ 0:14þ 0:035x3; "A;

(6.55)

where fxig3i¼1 are independent and identically distributed (i.i.d.) standard random
variables (RVs) uniformly distributed in the interval ð%1; 1Þ. This reformulation
reflects an “uncertain” state of knowledge about these parameters and is based on
means and standard deviations extracted from the following sources: [119e123]. All
the remaining parameters are set to their values commonly used for computational
applications of TIP4P water, see, e.g., Refs. [119,120].

Collection of observations. Given N points
(
xi
)
i¼1;.;N in the parameter space

ð%1; 1Þ3, and considering four realizations of the MD system at each sampling point,
the three sets of N , 4 observations (one for each observable r;f;H) can be written as

Dk ¼
n
di; jk

oj¼1;.;4

i¼1;.;N
; k ¼ 1; 2; 3; (6.56)

where
n
di; jk

oj¼1;.;4
represents the four values obtained for the k-th observable at the

i-th sampling point xi ¼
!
xi1; x

i
2; x

i
3
"
. The authors demonstrate how to leverage nested

Fejér grids [102] to sample the stochastic space. In one dimension, each grid level, l0, is
characterized by nl0 ¼ 2l

0 % 1 points in the interval ð%1; 1Þ, corresponding to the
abscissae of the maxima of Chebyshev polynomials of different orders. Extensions to
higher-dimensional spaces can be readily obtained by tensorization. Leveraging the
nested nature of these grids, an adaptive technique is used to build a set of observations
of the quantities of interest for the Bayesian inference. More specifically, at a given
level l00, the density of sampling points is increased only in the regions of the domain
where the “convergence” of the PC expansions inferred at levels l0 < l00 is slower.
Compared to fully tensored grids, this yields a considerable reduction in the compu-
tational cost without penalizing the accuracy.

The likelihood for the PC coefficients of the observables of interest is formulated by
expressing the discrepancy between each data point, di;jk , and the corresponding model
prediction, Fk

!
xi
"
, as

di;jk ¼FkðxiÞ þ g
i;j
k ; k ¼ 1; 2; 3; i ¼ 1;.;N; j ¼ 1;.; 4; (6.57)
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where di;jk represents the j-th data point obtained for the k-th observable at the i-th
sampling point, xi, Fk

!
xi
"
denotes the value of the PC representation of the k-th

observable evaluated at xi, and g
i;j
k is a random variable capturing their discrepancy.

Based on central limit arguments one can argue that, in the present setting, as the
number of atoms in the system and the number of time-averaged samples become
large, the distribution of Dk, k ¼ 1; 2; 3, around the true mean tends to a Gaussian. A
suitable and convenient choice is to assume each gi;jk to be i.i.d. normal RVs with mean

zero and variance es2k , i.e., g
i;j
k wN

!
0; es2k

"
, k ¼ 1; 2; 3, i ¼ 1;.;N, j ¼ 1;.; 4. The

variances
(
es2k
)3
k¼1 are treated as hyperparameters, i.e., they are not fixed but become

part of the unknowns.
These considerations yield the likelihood function:

p
$
Dk

####
n
cðkÞl

oP
l¼0

; es2k ;Fk

%
¼
Y

i¼1

N Y

j¼1

4 1ffiffiffiffiffiffiffiffiffiffiffi
2pes2k

q exp

 

%

h
di;jk % Fk

!
xi
"i2

2es2k

!

;

k ¼ 1; 2; 3;
(6.58)

where di;jk is the j-th observation obtained at the i-th sampling point xi for the k-th
observable, while Fk

!
xi
"
denotes the value of the PC representation of the k-th

observable evaluated at the i-th sampling point xi, and
n
cðkÞl

oP
l¼0

is the set of PC

coefficients for the k-th observable. The set has Pþ 1 terms, based on total order,
where P þ 1 ¼ ð3 þpÞ!=3!=p!, where p is the target order of the expansion. For
instance, p ¼ 1 for a linear expansion, p ¼ 2 for a quadratic, etc.

Using Bayes’ theorem, the joint posterior distribution of the PC coefficients and
noise variance for the k-th observable can be expressed as

p
$n

cðkÞl

oP
l¼0

; es2k jDk;Fk

%
fp

$
Dk

####
n
cðkÞl

oP
l¼0

; es2k ;Fk

%
p
!
es2k
"Y

l¼0

P

bpk
&
cðkÞl

'
;

k ¼ 1; 2; 3;
(6.59)

where p
!
es2k
"
and bpk

&
cðkÞl

'
denote the presumed independent priors of the noise

variance and the l-th PC coefficient, respectively. Uniform priors are assumed on the
coefficients, and a posterior sampling algorithm based on MCMC is employed.

Results. We illustrate a strategy based on adaptive selection of sampling points by
analyzing, for a given observable, the convergence of the associated PC expansions at
successive approximation levels. The idea behind this method can be summarized in
two steps. Firstly, we infer, for each observable, the corresponding PC expansion at
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the resolution levels l0 ¼ 1 and l0 ¼ 2 using the full grids of Fejér points. Secondly,
rather than using the full grid also at level l0 ¼ 3, we select only a subset of nodes
by identifying the regions of the domain where the differences between the expansions
obtained at levels l0 ¼ 1 and 2 exceed a target threshold. This approach can be
extended to higher-order levels l0 > 3.

Specifically, we rely on the difference

Zðl0¼1;2Þ
k ðxÞ¼

###Fðl0¼1;p¼0Þ
k ðxÞ%Fðl0¼2;p¼2Þ

k ðxÞ
###; k ¼ 1; 2; 3; (6.60)

where Fðl0¼1;p¼0Þ
k represents the zeroth-order (p ¼ 0) expansion of the k-th observable

inferred at level 1 (level 1 includes, in fact, a single sampling point, so one can only

build a zero-order PC representation), while Fðl0¼2;p¼2Þ
k represents the second-order

( p ¼ 2) expansion of the k-th observable inferred at level 2 (quadratic is the
maximum order for a well-posed problem at level 2). Also, rather than developing the
analysis using the full joint posterior of the coefficients, we simplify the approach and
rely on the MAP estimates of their marginalized posteriors which, as discussed in
Ref. [118], can be justified here.

Fig. 6.7(a) shows the contours of Zðl0¼1;2Þ
k ðxÞ obtained for density. The minima of

Zðl0¼1;2Þ
k identify the central region of the space as the region where there is close agree-

ment between the representations inferred at levels 1 and 2, while the maxima of

Zðl0¼1;2Þ
k localize near the corners ð%1;%1;%1Þ and ð1; 1; 1Þ. The results for self-

diffusivity and enthalpy are similar and are omitted here for brevity [118].
By analyzing the distribution of Zðl0¼1;2Þ

k , k ¼ 1; 2; 3, we can identify which points

of the full grid at l0 ¼ 3 are characterized by the highest values of Zðl0¼1;2Þ
k . Fig. 6.7(b)
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Figure 6.7 (a) Contours of Zðl0¼1;2Þ
k obtained for density. (b) Distributions of Fejér grid points

fxig316i¼1 at level 3 (omitting the subset shared with levels 1 and 2), obtained for density, with
each point xi represented by a marker whose size is scaled according the corresponding value

of Zðl0¼1;2Þ
k ðxiÞ.

This figure is reproduced from [118] with permission.
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shows the grid of 316 points exclusively belonging to the third approximation level
l0 ¼ 3 (i.e., we omit those shared with levels l0 ¼ 1 and l0 ¼ 2), depicted such that
the size of the marker associated with the i-th node xi is scaled according to the local

value of Zðl0¼1;2Þ
k

!
xi
"
. These plots give a first visual intuition of which subset will be

selected and which will be neglected.
To define a quantitative metric to select subset of points, we first nondimensionalize

the “error” Zðl0¼1;2Þ
k ðxÞ for each observable as

bZkðxÞ¼
Zðl0¼1;2Þ
k ðxÞ

maxU
&
Zðl0¼1;2Þ
k

'; k ¼ 1; 2; 3; (6.61)

where the normalization factor corresponds to the maximum value of Zðl0¼1;2Þ
k in the

parameter domain U ¼ ð%1; 1Þ3. Using a tolerance l (0& l & 1), we define AðlÞ
k to be

the set of new sampling nodes for the k-th observable at level 3 according to

AðlÞ
k ¼

n
x1;.; xN

ðlÞ
k

o
^

/
xi : bZk

!
xi
"
( l; i¼ 1;.; 316

0
; k ¼ 1; 2; 3;

(6.62)

where NðlÞ
k represents the number of points in the resulting reduced grid, which de-

pends on the type of observable and on the value of l, while the index i enumerates the
316 points that belong exclusively to the full grid at l0 ¼ 3. Evidently, for any given l,

we must have NðlÞ
k & 316, and NðlÞ

k ¼ 316 when l ¼ 0.

We explore the following values of the tolerance: l ¼ 0, 0.25, and 0.4. The sets of
observations at level l0 ¼ 3 for different values of l, i.e., l ¼ 0, 0.25, and 0.40, can be
in turn exploited within the Bayesian inference framework as discussed before. We
focus our attention on inferring for each observable a third-order PC expansion and
investigate the dependence of the MAP estimates of the coefficients on l. Fig. 6.8

shows the normalized difference
###cðkÞl %cðkÞl;l

###
.###cðkÞ0

###, l ¼ 0;.; 19, where cðkÞl repre-

sents the MAP estimate of the l-th PC coefficient for the k-th observable inferred at

l0 ¼ 3 using the full grid, i.e., l ¼ 0, whereas cðkÞl;l is the MAP estimate of the corre-
sponding coefficient inferred at l0 ¼ 3 using l ¼ 0:25 or l ¼ 0:40. The figure shows
that for density the differences are minimal, of the order wO

!
10%4

"
. Another inter-

esting observation is that for density the discrepancy does not substantially vary with
the order of the coefficients.

We stop at the third level for this test, but the grid adaptation process described
above can be further extended to higher levels if necessary. A possible measure to
monitor the impact of refinement can be based on the normalized relative error
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###jZðl0;l0þ1Þ
k;l j

###
2###cðkÞ0

###
; k¼ 1; 2; 3; (6.63)

where
###cðkÞ0

### is the leading term of the expansion at level l0, and the numerator is a

global measure of the error defined as

111Zðl0¼1;2Þ
k

111
2
¼
$Z

U

####F
ðl0¼1;p¼0Þ
k ðxÞ % Fðl0¼2;p¼2Þ

k ðxÞj21
8
dx
%1=2

; k ¼ 1; 2; 3:

(6.64)

Exploiting the fact that the integrand is a fourth-order polynomial, the above inte-
grals can be computed exactly using the cubature.

6.4.2.1.1 Calibration using an uncertain PC surrogate model
The inverse problem discussed in Ref. [84] involves the inference of force field param-
eters for TIP4P water model given a set of observations of one or more macroscale
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Figure 6.8 Normalized “discrepancy”
n###cðkÞl % cðkÞl;l

###
.###cðkÞ0

###
o19
l¼0

, for r, where cðkÞl;l is the MAP

estimate of the l-th PC coefficient inferred at l0 ¼ 3 using the set of observations derived for

l ¼ 0:25 or l ¼ 0:40, while
###cðkÞl

### is the absolute value of the MAP estimate of the

corresponding coefficient obtained using l ¼ 0. Subsequent orders are identified by the
following markers: zeroth- (•), first- (A), second- (-), and third-order coefficients (D).
This figure is reproduced from F. Rizzi, H.N. Najm, B.J. Debusschere, K. Sargsyan, M.
Salloum, H. Adalsteinsson, O.M. Knio, Uncertainty quantification in MD simulations. Part
I: forward propagation, Multiscale Model. Sim. 10 (2012) 1428e1459. https.//doi.org/10.
1137/110853169. with permission.
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observables of water. We focus on a synthetic problem where fixed values of the
TIP4P force field parameters are used to run isothermal, isobaric MD simulations at
ambient conditions, T ¼ 298K and P ¼ 1 atm and collect a set of noisy data of
selected macroscale observables. The MD computational setting is the one earlier in
this section. These data are then exploited in a Bayesian setting to recover the
“true” set of driving parameters. Attention is focused on inferring the same three
parameters, ε, s, and d, for which we built the PC surrogate above.

The analysis can be regarded as a three-stage process: first, three values of the
parameters of interest bε ¼ 0:17 (kcal/mol), bs ¼ 3:15 (Å), and bd ¼ 0:14 (Å) are cho-
sen and regarded as the “true” parameters (the “hat” will be used to denote the “true”
values); secondly, these “true” values are used to run N ¼ 10 replica MD simulations
and obtain N realizations of density (r), self-diffusion (f), and enthalpy (H); finally,
these observations are used within a Bayesian inference framework to recover the orig-
inal (or “true”) subset of driving parameters. Our goal is to investigate the performance
of the Bayesian approach in terms of the accuracy with which we recover the “true”
parameters and characterize the main factors affecting the inference.

Formulation for a deterministic surrogate model. When using a deterministic
PC expansion for each observable, the formulation yields the following posterior [118]

p
!
x; es2

##fDlg3l¼1

"
f
Y3

k¼1

YN

i¼1

exp

 

%

h
dik % FkðxÞ

i2

2es2k

!

ffiffiffiffiffiffiffiffiffiffiffi
2pes2k

q ep
!
es2k
"
pðxÞ; (6.65)

where Dl, l ¼ 1; 2; 3, represents that data for the l-th observable, ep
!
es2k
"
is the prior of

the noise variance, es2k , and pðxÞ represents the probability in the x-space corresponding
to the prior on the parameter vector w ¼ fε; s; dg. We have used a tilde to distinguish
between the variance, es2k , associated with the k-th observable, and the force field
parameter, s.

Formulation for a nondeterministic surrogate model.When using nondetermin-
istic PC expansions for all three observables, the formulation is more complex. In this

case, each PC coefficients vector cðkÞ ¼
n
cðkÞl

oP
l¼0

, k ¼ 1; 2; 3, is a random vector

defined by a ðP þ1Þ-dimensional joint probability density. We can define a suitable
likelihood function for this case as follows.

For a given sample xðjÞ ¼
n
x
ðjÞ
1 ; x

ðjÞ
2 ; x

ðjÞ
3

o
, we can construct the following constant

column vector

a¼
n
J0

&
xðjÞ

'
;.;JP

&
xðjÞ

'oT
; (6.66)
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i.e., by substituting xðjÞ into the truncated PC basis. Hence, we can interpret each
nondeterministic PC representation, FkðxÞ, as a linear combination of the random
vector cðkÞ, according to

Fk ¼ aTcðkÞ; k ¼ 1; 2; 3: (6.67)

For this chapter, as shown in Ref. [118], the probability density describing the
uncertain PC expansion of each observable closely resembles a Gaussian. We thus
approximate the ðP þ1Þ-dimensional distribution describing the random vector

cðkÞ ¼
n
cðkÞ0 ;.; cðkÞP

oT
, k ¼ 1; 2; 3, with a ðP þ1Þ-variate Gaussian with mean mðkÞ

and covariance matrix ZðkÞ, k ¼ 1; 2; 3. Consequently, the linear combination

aTcðkÞ ¼J0

&
xðjÞ

'
cðkÞ0 þ.þJP

&
xðjÞ

'
cðkÞP ; k ¼ 1; 2; 3; (6.68)

is distributed according to a univariate Gaussian with mean
!
aTmðkÞ

"
and variance!

aTZðkÞa
"
, namely as

aTcðkÞ w N
&
aTmðkÞ; aTZðkÞa

'
; k ¼ 1; 2; 3: (6.69)

Note that the uncertainty in the PC coefficients appears only through the mean
vector mðkÞ and the covariance ZðkÞ, because the constant vector a is only x-dependent.
Assuming an independent additive error model, the discrepancy between each obser-
vation, dik, k ¼ 1; 2; 3, i ¼ 1;.;N, and the nondeterministic surrogate model predic-
tion, FkðxÞ ¼ aTcðkÞ, k ¼ 1; 2; 3, can be expressed as

dik ¼ FkðxÞ þ gik

¼ aTcðkÞ þ gi
k;

k ¼ 1; 2; 3; i ¼ 1;.;N;

(6.70)

where each set
(
gik
)N
i¼1, k ¼ 1; 2; 3, comprises i.i.d. random variables with density

pgk
, k ¼ 1; 2; 3. Assuming gik wN

!
0; es2k

"
, i ¼ 1;.;N, k ¼ 1; 2; 3, and considering,

by construction, N-independent realizations for each observable, we obtain the
following likelihood function

p
!
fDlg3l¼1

##x
"
¼
Y3

k¼1

YN

i¼1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p

!
aTZðkÞaþ es2k

"q exp

 

%

h
dik %

!
aTmðkÞ

"i2

2
!
aTZðkÞaþ es2k

"

!

;

(6.71)
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where the index k enumerates the observables, i enumerates the observations, mðkÞ and
ZðkÞ, respectively, denote the mean and covariance matrix of the ðP þ1Þ-variate
Gaussian representing the ðP þ1Þ-dimensional distribution of the nondeterministic PC
coefficients featuring in the expansion of the k-th observable, and the constant vector
a ¼ fJ0ðxÞ;.;JPðxÞgT is computed by evaluating the PC basis for a given x. We

treat the variances es2 ¼
(
es2k
)3
k¼1 as hyperparameters. We remark that this likelihood

function combines both data noise and surrogate uncertainty in a self-consistent
manner.

Results. Fig. 6.9 shows the contour plots corresponding to 30%, 60%, and 90% of
the maximum probability of the joint posteriors pðε; sjDÞ (a), pðε; djDÞ (b), and
pðs; djDÞ (c). The plots reveal that the posteriors obtained from a nondeterministic
surrogate are centered on the true values, whereas those obtained with a deterministic
surrogate do not capture the true values with the same accuracy. The blue and black
contours plotted in the left column reveal, in fact, a similar orientation and a compa-
rable spread. The results allow us to conclude that, for the present problem, the infer-
ence based on nondeterministic surrogates provides a more robust framework to
perform the inverse problem.

6.4.2.2 Gaussian processes and efficient global Optimization
strategies

We consider now an example of adaptive learning by kriging metamodels, as exposed
in Section 6.3.2.2.

Calibration of a TIP4P water force field. EGO has been used in the context of the
Bayesian calibration of a water force field by Cailliez et al. [77]. The TIP4P force field,
as described above, is chosen to model water molecules. In addition to the three param-
eters s, ε, and d optimized by Rizzi et al. [84,118], the partial charge qH borne by each
hydrogen atom was optimized (note that the partial charge of the oxygen atom is
constrained by the neutrality of the molecule: qO þ 2qH ¼ 0). The target of the cali-
bration is the experimental liquid density of water at five temperatures between 253
and 350K under a pressure of 1 bar. On the molecular simulation side, those quantities
are computed with MD simulations, the length of which prevents from a direct explo-
ration of the parameter space. Predictions of MD simulations are assigned a constant
uncertainty at all temperatures and for any parameter set. Due to the very small exper-
imental uncertainties of the calibration data, those are ignored (udi - uFi in Eq. 6.4).

The score function G to be minimized by EGO is %logðpðwjD;X;MÞÞ. The meta-
model for G is built from five GP processes, each aiming at reproducing the liquid den-
sity obtained from an MD simulation with the TIP4P model at a given temperature
over the parameter space. As G is computed from noisy data, a variant of the EI has
been used, adapted from Huang et al. [91]:

EI+ðwÞ¼ E
2
max

!eGðw++Þ% eGðwÞ
"
; 0
3
; (6.72)
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Figure 6.9 Contour plots corresponding to 30%, 60%, and 90% of the maximum probability of the marginalized joint posteriors pðε; sjDÞ (a),
pðε; djDÞ (b), and pðs; djDÞ (c). The black line represents the results obtained using a third-order deterministic surrogate model, whereas the blue line
represents the results computed using a third-order nondeterministic PC surrogate with l ¼ 0. The results are based on considering all three
observables (r;D;H), with a total of 30 data points.
This figure is reproduced from F. Rizzi, H.N. Najm, B.J. Debusschere, K. Sargsyan, M. Salloum, H. Adalsteinsson, O.M. Knio, Uncertainty
quantification in MD simulations. Part II: bayesian inference of force-field parameters, Multiscale Model. Simul. 10 (2012) 1460e1492. https://doi.org/
10.1137/110853170 with permission.
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where eGðw++Þ is the value of the metamodel at the point w++ of the sampling design
that minimizes

!eGðwÞ %ueGðwÞÞ, and ueGðwÞ is an estimate of the standard deviation of

eGðwÞ.
The calibration procedure converged within five steps, which is due to the rather

large initial sampling design (84 points, which corresponds to 21 points per dimension
of the parameter space), leading to best parameter values consistent with the literature
(see green point in Fig. 6.10). The results of the calibration reveal that there exists a
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Figure 6.10 Markov chain over the PDF obtained after calibration of the TIP4P force field.
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unique optimal region in parameter space for the TIP4P model that allows to reproduce
the evolution of the water liquid density as a function of temperature, as shown in
Fig. 6.10.

The advantage of this calibration strategy with respect to “standard”methods is that
one also has access to an estimation of the PDF of the parameters around the MAP.
This allows to perform parametric UP for the force field parameters. As already
observed in the example of LJ fluids, the contribution of parametric uncertainties to
the total uncertainty was found to be greater than that of the numerical uncertainties.

This application illustrates how metamodeling combined with efficient optimiza-
tion strategies can be used in the context of statistical force field calibration. Before
closing this topic, it is worth commenting on possible pitfalls of this kind of procedure:

• Metamodels are built on molecular simulation data, which may not always have reached
convergence, due to sampling time smaller than the relaxation time of the system. This could
be the case for the whole parameter space or in some regions of the parameter space with a
global limited computational budget for molecular simulations. In Ref. [77], such a situation
arose, due to some parameter sets leading to “glassy water” at low temperature. Removing
those “incorrect” data (around a third of the initial design) in the process of metamodel build-
ing led to similar results (see the red point in Fig. 6.10) as when using the full design. This
illustrates the stability of this calibration strategy.

• In order to reduce the computational burden, it is important to minimize the number of
molecular simulations to be run. Cailliez and coworkers [77] estimated that reducing the
size of the initial design to 32 points (8 points per dimension of the parameter space) should
lead to a viable calibration. For smaller initial designs, the EI+ utility function used in
Ref. [77] may not be successful, and the use of other variants of EGO would be required.

6.4.3 Model selection and model inadequacy

A number of recent works have addressed the issue of model inadequacy in capturing
the properties of molecular systems by the classical LJ potentials [17,30,35,42,52,59].

Most studies have dealt with simple monoatomic gases, for which the simple LJ
force field is expected to be adequate. The LJ potential (also noted as LJ 6e12) has
been the main focus, with recent developments on an LJ 6-p potential. The shift to
the 6-p model was motivated by the inability of the LJ potential to predict observables
in different phases [35]. However, the introduction of variability on the p exponent of
the repulsive term is not sufficient to compensate for all modeling adequacy issues of
the LJ potential.

HM and SEm methods both aim at designing a PDF of the force field parameters
which enables some form of compatibility between the model predictions and the cali-
bration dataset.

HM attempts to reconcile heterogeneous observables and/or physical conditions: an
overall distribution is designed to contain the different parameter sets best adapted to
each subset [52,59]. As mentioned above, prediction of new data for a new observable
or for new physical conditions should use the overall distribution. This typically leads
to large prediction uncertainties, much larger than prediction uncertainties for new data

Bayesian calibration of force fields for molecular simulations 215



of observables contained in the calibration set (see Fig. 13 in Ref. [59] and the toy
models in Ref. [30]).

As seen in Section 6.4.1.2, model inadequacy with LJ parameters might also be
problematic when one considers a single observable.

Pernot and Cailliez [30] published a critical review of the available methods to
manage this problem for the calibration of LJ parameters on viscosity data for Kr,
among which additive correction by a GP, HM, or SEm was considered. We summa-
rize the main results of that study here.

In the Kr example in Ref. [30] and the Ar case in Ref. [42], both SEm approaches
described above (Sections 6.2.3.3e6.2.3.4) were evaluated, which lead to mitigated
results. In both cases, it was possible to design a PDF for the LJ parameters which
enabled prediction uncertainties to be large enough to compensate for model errors.
Fig. 6.11 presents the residuals and 95% confidence and prediction bands for the LJ
model calibrated on a dataset of five series of measurements of Ar viscosity [42].
The trend in the residuals is clearly visible at lower temperatures. As mentioned earlier,
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the basic calibration procedure using only data uncertainties (labeled WLS in
Fig. 6.11) results in much too small prediction uncertainties, whereas both SEm
approaches (labeled Margin and ABC) enable to successfully design prediction bands
in agreement with the residuals. Note that the residuals are basically unchanged when
compared to WLS: the fit of the data has not been improved.

Beyond this apparent success, the SEm strategies present a set of limitations, which
might prevent its general applicability [30,42]:

• due to the geometry of the problem in data space [42,124], enlarging the uncertainty patch on
the model manifold around the optimal parameters does not improve the statistical validity of
an inadequate model (no improvement of the residuals);

• being constrained by the law of UP, the shape of the prediction uncertainty bands over the
control variable(s) space does not necessarily conform to the shape of the model inadequacy
errors [42];

• the elements of the covariance matrix of the stochastic parameters might have multimodal
posterior distributions. This has been observed for the LJ potential calibration problem for
both implementations of the SEm [30,42]. Samples of the posterior PDF for these methods
reveal three modes, each one corresponding to the minimum value of one parameter of the
covariance matrix. This diagnostic matches the observation that the estimates of covariance
matrices in hierarchical models tend to be degenerate [125], i.e., with zero variance for some
parameters or a perfect correlation among them. A major inconvenient of this degeneracy is
that each mode corresponds to a different prediction uncertainty profile (see Fig. 6.11,
bottom row). The posterior predictive uncertainty profile, being a weighted average of these
modes, might consequently be very sensitive to the calibration dataset through mode
flipping.

Considering these limitations, and notably the nonrobust shape of the prediction
bands, it is still not clear whether the posterior PDFs estimated by SEm represent an
improvement for the prediction of QoIs not in the calibration set. Further research is
necessary to tackle the statistical treatment of model inadequacy.

In a recent work [36], HM was shown to be efficient in distinguishing between
different models of coarse-grained molecular dynamics (CGMD) potentials. Such
CGMD simulations are often calibrated on different experimental conditions, resulting
in a plethora of models with little transferability. HM provides guidance on the model
accuracy as well as on its trade-off with computational accuracy. In Fig. 6.12(a), the
speed-up gained by using a CG model is plotted against its model evidence. Each
model is characterized by the name of the model (1S, 2S, 2SF, 3S*, 3SF*) and the
coarse-graining resolution (1, 3, 4, 5 ,6), see Ref. [36] for a detailed description of
the models. In Fig. 6.12(b), the evidences of three of the models of Fig. 6.12(a) are
estimated at different temperatures. In order to combine all the evidences into one
number, the HM approach is adopted.

6.5 Conclusion and perspectives

The increasing use of MD and MC in academia as well as in industry calls for a
rigorous management of uncertainty in molecular simulations [126]. Among the
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various sources of uncertainties in molecular simulations, this chapter focused on those
originating from the values of the force field parameters. Bayesian approaches provide
an operative and complete framework to deal with the determination of the parameter
uncertainties and their propagation through molecular simulations. The computational
cost of such methods has limited their use in the context of molecular simulations until
the last decade. However, the increase in computational resources as well as the devel-
opment of efficient numerical strategies currently enables the investigation of force
fields parametric uncertainties.

In this chapter, we have reviewed recent approaches to address the issue of force
field parameter calibration and outlined significant lessons that have been learned
over the last 10 years. We have shown that uncertainty estimation for molecular simu-
lation predictions can be more complex than the simulations themselves.

Section 6.4.1 has been designed to give a step-by-step pedagogical example of the
application of Bayesian “standard” strategy to the calibration of an LJ force field for
rare gases. Apart from giving an introduction to Bayesian methods, this application
sheds light on the major issues arising during force field calibration. A large part of
this chapter (Section 6.4.2) has been devoted to computational aspects, especially the
use of metamodeling-based strategies, that are currently the only way to overcome
the bottleneck of performing thousands, or more, of molecular simulations. Howev-
er, the major challenge that emerged from the early studies on Bayesian calibration of
force field parameters is that of model inadequacy. The physics contained in typical
force fields is often too crude to enable a statistically valid calibration without
employing advanced calibration schemes. Most of the time, the use of a more com-
plex force field is computationally prohibitive, so one has to deal with inadequacy of
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Figure 6.12 (a) Model evidences with respect to the speedup of the examined water models
marked with the name and the mapping. The boxed section in the top plot is enlarged in the
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(,), 3S (,$ ), and 3S* (-). The inset shows the model evidences of the hierarchical UQ
approach, where all three temperatures are considered concurrently.
This figure is reproduced from Ref. J. Zavadlav, G. Arampatzis, P. Koumoutsakos, Bayesian
selection for coarse-grained models of liquid water, Sci. Rep. 9 (2019) 99. https://doi.org/10.
1038/s41598-018-37471-0 with permission.
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the current force fields. Section 6.4.3 has been centered on the pros and cons of
various strategies that have been used recently in the context of force field calibration
with inadequate models.

Although significant advances have been made in recent years on the application of
Bayesian methods to force field calibrations, the fully consistent characterization of the
prediction uncertainty in molecular simulations is still an exciting research topic.

The need for reliable, reproducible, and portable molecular simulations is broadly
recognized and has led, among other efforts, to the recent development of OpenKIM
(openkim.org), a community-driven online framework. We suggest that frameworks
such as OpenKIM could greatly benefit from adopting a systematic Bayesian inference
approach to link experimental data with the results of MD simulations. Beyond being a
formidable interdisciplinary scientific discovery framework, we believe that by proper
integration of experimental data and simulations through Bayesian inference molecu-
lar simulation will become an effective virtual measurement tool.

Abbreviations and symbols

ABC Approximate Bayesian computation
CGMD Coarse-grained molecular dynamics
EGO Efficient global optimization
GP Gaussian process
LJ Lennard-Jones
LUP Linear uncertainty propagation
M Full model, comprising the physical model and the statistical model
MAP Maximum a posteriori
MC Monte Carlo
MCMC Markov chain Monte Carlo
MD Molecular dynamics
PCE Polynomial chaos expansion
PDF Probability density function
PES Potential energy surface
QoI Quantity of interest
SEm Stochastic embedding
TMCMC Transitional MCMC
UP Uncertainty propagation
dF Discrepancy function for model F
ε Interaction energy of the Lennard-Jones potential
k Hyperparameters of hierarchical model
mw Mean value of stochastic parameters
JIj Univariate orthogonal polynomial used in PCE
JI Multivariate orthogonal polynomial used in PCE
s Radius parameter of the Lennard-Jones potential
s2i Variance of the errors at point xi
SD Covariance matrix of the reference data D
SF Covariance matrix of the physical model errors
SR Covariance matrix of the residuals RðwÞ
Sw Covariance matrix of stochastic parameters
si Parameter of the uncertainty model
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w Parameter set of the physical model F
wdF Parameters of the discrepancy function dF
εi Noise variable
wi A parameter of the physical model F
xii An auxiliary random variable for PCE
D Set of reference/calibration data
LðwÞ Logarithm of the posterior PDF
RðwÞ Vector of residuals
X Set of physical conditions for the reference data
di A reference datum
DKL KullbackeLeibler divergence
Fðx;wÞ Computational or physical model
FiðwÞ Value of the computational model at point xi with parameters w
Ns Number of parameters for the uncertainty model
Nw Number of parameters of the physical model F
ND Size of the reference dataset D
pðXjYÞ Conditional PDF of X knowing Y
rB Birge ratio
u2di Variance of noise for datum di
u2Fi

Computational variance for model value FiðwÞ
xi Physical condition(s) for a reference datum
x Mean value of parameters x
bx Optimal value of parameter x
ex Value of x out of the calibration dataset
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