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The present study examines the quantity of surface wetting in a two-phase oil and water pipe flow.
The study is performed by employing an Eulerian-Eulerian computational fluid dynamics model
using the S-gamma droplet size distribution model within STAR–CCM+. In the North Sea, produc-
tion of oil and gas, water-phase surface processes such as scale and corrosion account for 40–50%
of operating expenses. The objective of the study is to investigate best practices for the prediction of
phase distribution aimed at evaluating the degree of the wall in contact with the water phase (water-
wetting). The model is validated by performing detailed numerical simulations corresponding to the
experimental studies by Kumara, Halvorsen, and Melaaen (Meas. Sci. Technol., vol. 20, p. 114004,
2009). The comparison yields good agreement with the observed measurements with slight devia-
tions in the predicted dispersion rate but accurate prediction of the liquid holdup. Comparison of
droplet sizes to those observed in experiments by Elseth (PhD, Telemark University College, 2001)
indicates that tuning of the S-gamma model is necessary to provide accurate droplet size predictions.
The surface wetting is then evaluated with its interdependence with liquid holdup and dispersion
rate. Increase in the dispersion with a decrease in the Richardson number is observed in agreement
with stability analysis of the Kelvin-Helmholtz instability.

KEY WORDS: multiphase, CFD, Euler-Euler, water-wetting, liquid holdup, STAR–
CCM+, S-gamma, droplet size, oil, surface wetting

1. INTRODUCTION

Flow assurance is a major challenge in the oil and gas industries and amounts to40–50% of
the total operating expenses in many wells due to costly mechanical and chemical intervention.
The presence of hard and soft scales (e.g., CaCO3, BaSO4, FeCO3, FeS) might lead to loss of

0276–1459/20/$35.00 © 2020 by Begell House, Inc. www.begellhouse.com 137



138 Bentzon et al.

production due to scale build up and enhanced corrosion rates due to galvanic effects and fouling
of equipment, which can lower the production rates and ultimately render oil-wells unrecover-
able. Consequently, it is of major importance to understand the mechanisms and the rates of
corrosion and scale deposition under hydrodynamic conditions and realistic flow in the produc-
tion wells.

Understanding the proportion of wall in contact with the water phase, a property known
as water-wetting is crucial for the development and analysis of mitigation measures. The flow
regime varies from stratified to fully dispersed throughout the well; therefore, a fully qualified
model should capture the physics of both flow regimes. The application of the volume-of-fluid
(VOF) approach to model dispersion of the phases requires interface resolution of the droplets
in the flow (Hirt and Nichols, 1981). The average droplet sizes in fully dispersed flows are
estimated to be on the order of 1 mm based on the maximum diameter observed in experiments
by Elseth (2001). This makes the use of the VOF model infeasible for the dispersed flow regime.
In contrast, the Eulerian-Eulerian two-equation approach allows for subgrid, droplet-dispersion
modeling through empirical closure laws and is used throughout this work. This method has been
used successfully for a number of liquid-liquid and liquid-gas flows (Prosperetti and Tryggvason,
2007).

Attempts to simulate the study by Kumara et al. (2008) using the VOF approach shows
good prediction of the velocity profiles and pressures but does not describe the dispersion of the
phases. A Eulerian-Eulerian approach using droplet sizes determined from the correlations by
Brauner (2001) has been studied by Pouraria et al. (2016) to replicate the results from Elseth
(2001) and has achieved fairly good agreement. The accuracy of the Eulerian-Eulerian approach
depends on the models for determining the transfer of momentum between the phases. Typically,
this included drag, lift, surface tension, virtual mass, and surface contact forces. These models
depend on an estimate of the droplet size. Modeling attempts with a constant droplet size have
proven to have limited success in predicting dispersion adequately. Consequently, the present
study employs the S-gamma droplet size distribution model described by Lo and Zhang (2009).

From the aforementioned work, it is clear that the Eulerian-Eulerian model has good poten-
tial as a tool for studies of two-phase flow in oil wells. Thus, a thorough study to validate the
model and its parameters is essential for further research. The objective of the present study is
to validate and optimize the numerical procedure for two-phase oil and water pipe flows against
the experiments from Elseth (2001) and Kumara et al. (2009). The resulting distribution of the
phases is compared to gamma densitometry measurements of cross-sectional phase distributions
by Kumara et al. (2009). Similarly, the droplet sizes obtained by the S-gamma droplet size dis-
tribution model is compared to droplet sizes obtained by visual inspection in the study by Elseth
(2001).

To analyze surface wetting, the consequence of liquid holdup (i.e., flow properties causing
one fluid to move slower than the other and thereby increasing its share of cross-sectional area
in the pipe) is analyzed. Additionally, the rate of dispersion affects how much of each phase is
in contact with the wall. Using a validated model, these two phenomena can be analyzed for
different flow properties.

2. METHODOLOGY

A numerical computational fluid dynamics (CFD) model is set up in the STAR–CCM+ version
13.04 to investigate the best modeling settings for replicating the experimental study by Elseth
(2001) and Kumara et al. (2009). The test rig illustrated in Fig. 1 consists of a pipe section with
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FIG. 1: Illustration of the experimental model described in Elseth (2001)

diameterD = 0.0563m and length12m (213 diameters), followed by a test section where time-
averaged gamma densitometry measurements were taken across a set of cords in the horizontal
direction. The pipe section is preceded by a Y-junction from which oil and water flows into each
inlet. The flow is controlled by the flow rate of each phasek (k ∈ w, o, whereo denotes oil
andw denotes water) and is reported in terms of mean velocityU = (V̇w + V̇o)/(D2π/4) and
water-cutψ = V̇w/(V̇w + V̇o), whereV̇w andV̇o are the volumetric flow rates of water and oil.
The CFD model assumes symmetry in the plane spanned by the axial direction of the pipe and
the gravitational direction.

2.1 Governing Equations

The numerical simulations are based on the Eulerian-Eulerian two-fluid approach. This treats
both phases as a continuous phase, each with its own velocity fielduk but with a shared pressure
field p (Ishii and Hibiki, 2006). The fluids are considered isothermal, immiscible, and incom-
pressible. Hence, only mass and momentum conservation is considered. Both equations are av-
eraged with a Reynolds decomposition to obtain a solution for the mean flow. This gives a set of
volume-fraction-Averaged Reynolds averaged Navier-Stokes (RANS) equations for each of the
two phases

∂αk

∂t
+∇ · (αkuk) = 0 (1)

∂αkρkuk

∂t
+∇ · (ρkαkukuk) = −αk∇p + αkρkg

+∇ · {αkµk,eff
[∇uk + (∇uk)T

]}
+ Mk (2)

whereρk andαk are the density and volume fraction of thekth phase,g is the gravitational vec-
tor set tog = (−9.82sin β,−9.82cosβ, 0) m/s2, whereβ is the inclination angle of the pipe.
µk,eff = µk + µk,t is the effective dynamic viscosity composed of the dynamic viscosity of the
fluid (µk) and the turbulent viscosity (µk,t) from the RANS decomposition, cf. Ishii and Hibiki
(2006). A realizablek-ε model is used to determine the turbulent viscosity (Shih et al., 1995).
All model parameters are left as per STAR–CCM+ defaults. The termMk corresponds to the
exchange of momentum between the two phases. The interfacial momentum transfer forces are
subdivided into drag (MD,k), lift ( ML,k), turbulent dispersion (MT,k), virtual mass (MV,k), and
surface tension (MS,k):

Mk = MD,k + ML,k + MT,k + MV,k + MS,k (3)

where each of the interfacial forces are modeled using empirical closure laws.

2.2 Interfacial Forces

The interfacial drag, lift, turbulence dispersion, and virtual mass forces (generically denoted
MF,k) are modeled in three different regimes based on the volume fraction of waterαw. The
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two primary regimes are namely, theDw/o (dispersed water-in-oil) forαw < 0.3, the Do/w

(dispersed oil-in-water) forαw > 0.7, cf. Cerne et al. (2001). In the intermediate range, a volume
fraction averaged force is used. Between the two dispersed regions and the intermediate region,
a blending zone of width 0.1 volume fraction is used.

MF,k =





FF,w/o αw < 0.3

FF,o/w αw > 0.7

fwFF,o/w + foFF,w/o αw ∈ [0.3, 0.7]
(4)

where the blending functionfk is given by

fk =





0.4
0.1

(αk − 0.3) αk ∈ [0.3, 0.4]

αk αk ∈ [0.4, 0.6]

0.6 +
0.4
0.1

(αk − 0.6) αk ∈ [0.6, 0.7]

(5)

The drag forceFD,d/c of a dispersed droplet of phased in the continuous phasec is computed
as follows:

FD,d/c =
1
2
ρpCD|ud − uc|(ud − uc)

ACD

4
(6)

whereACD is the mean interfacial area obtained from the droplet size distribution described in
Section 2.3.

The drag coefficient in theDw/o andDo/w regimes are computed using the Schiller-Naumann
model (Schiller and Naumann, 1933):

CD =





24(1 + 0.15Re0.687
D )

ReD
ReD ≤ 1000

0.44 ReD > 1000
(7)

where the Reynolds number of the droplets (ReD) is defined as:

ReD =
ρc|ud − uc|d32

µc
(8)

whered refers to the dispersed phase (water forDw/o and oil forDo/w ) andc the continuous
phase,d32 is the Sauter mean diameter of the droplets described in Schümann et al. (2015) and
Lo and Zhang (2009).

As a dispersed droplet moves relative to a shear flow, it will experience a lift force perpen-
dicular to the relative velocity proportional to the curl of the continuous phase velocity (Auton
et al., 1988).

FL,d/c = −CLρcαd(ud − uc)× (∇× uc) (9)

where the lift force coefficientCL is set to a constant of0.25, cf. Lance and Bataille (1991).
As a dispersed droplet accelerates relative to the continuous phase, the acceleration of a part

of the continuous phase requires modeling of the added mass (Auton et al., 1988)

FV,d/c = CV Mρcαdarel (10)
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whereCV M is the coefficient of virtual mass derived from inviscid flow theory to 0.5 for a sphere
(Lamb, 1932) andarel is the relative acceleration of the phases

arel =
Dud

Dt
− Duc

Dt
(11)

When applying the Reynolds averaging to the drag term, the nonlinear term gives rise to an
extra turbulent dispersion term. This can be modeled as a dispersion drag coefficientCTD on a
turbulent dispersion velocityuTD.

MT = CTDuTD (12)

The turbulent dispersion velocity has its origin in the phase and Reynolds averaging and is
approximated through the Boussinesq closure to

uTD ≈ − µc,t

ρcσα

(∇αc

αc
− ∇αd

αd

)
(13)

whereαc, αd are the Reynolds-averaged volume fractions of the continuous and dispersed phase,
σα is the a coefficient describing the ratio of turbulent dispersion of volume fraction to that of
momentum and is set to unity in this work. The turbulent dynamic viscosity is obtained from the
k-ε model.

The turbulent dispersion drag coefficient,CTD, is defined from a Stokesian drag coefficient
and linearized with the relative velocity of the two averaged phases

CTD =
ACD

8
ρcCD|uc − ud| (14)

The droplet drag coefficientCD is modeled using a Schiller-Naumann drag coefficient described
by Eq. (7). The determination of which phase is continuous and dispersed is handled similarly
to the drag force by Eq. (4).

Surface tension forces arises directly in the interfaces between the fluids. The Eulerian-
Eulerian two-fluid model does not explicitly track the interface between the phases. To account
for surface tension in the physical interface on larger fluid structures, the continuum surface ten-
sion model proposed by Brackbill et al. (1992) and described for a Eulerian-Eulerian two-fluid
by Strubelj et al. (2009) is used. The numerical procedure is to reconstruct the surface normal
based on one (primary, e.g., water) of the phasesnp and curvatureκp

np =
∇αp

|∇αp| (15)

κp = −∇ · np (16)

On the basis of the curvature, the surface tension force at the interface becomes

FS = σκp∇αp (17)

whereσ is the surface tension in units force per length. The force is split between the two phases
by dividing the force in the momentum equations relative to the local volume fraction

FS,k = αkFS (18)
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To simulate the interaction of the interface at the wall, the wall wetting contact angleθw is
implemented by defining the interface normal vector of the first computational cell as a transfor-
mation of the unit normal vector of the wallnw and tangential vectortw

np,wall = nw cosθw + tw sin θw (19)

With limited fluid properties available for the given mixture of water and oil, the wetting
angleθw is set to41 deg based on measurements of deacidified deasphaltened crude oil on
stainless steel surfaces in a pure water solution by dos Santos et al. (2006).

In order to accurately determine the volume fraction gradients at interfaces, an interface
compressing scheme was suggested by Strubelj et al. (2009). The interface sharpening method
technique described by Coste (2013) has been used to produce a sharp interface marker function
from comparison of cell surface volume fractions. This marker function is used to adaptively
shift between the interface compressing high resolution interface capturing (HRIC) scheme de-
scribed by Muzaferija and Peric (1997) and the total variation diminishing (TVD) scheme to
avoid artificially sharpening interfaces in naturally dispersed regions.

2.3 Droplet Size

A key to modeling the interfacial forces is the correct estimation of droplet sizes and area density.
For this purpose, the present study employs the S-gamma statistical droplet size distribution
model developed by Lo and Zhang (2009). The S-gamma model describes the particles through
three momentsSγ, whereγ ∈ 0, 2, 3. Numerically, the model solves for the second moment,
S2, which describes the interfacial area density, and optionally it can additionally solve for the
zeroth moment,S0, describing the particle number density. The third moment,S3, describes
the volume density of the droplets and is thus directly correlated to the volume fraction of the
dispersed phase

S3,k =
6
π

αk (20)

In this study, only the second moment is used and modeled for both phases. This is com-
putationally simpler but limited to model the Sauter mean diameter,d32, but does not yield the
variance of the droplet size distribution. The second moment is formulated as the integral over
the droplet size distribution of the square of the diameter and hence represents the droplet mean
interfacial area (ACD) divided byπ

S2 =
∫

d2
pn(dp)d(dp) =

ACD

π
(21)

By assuming spherical droplets, the Sauter mean diameter can be calculated as follows:

d32,k =
S3,k

S2,k
(22)

TheSγ moments are modeled as convective scalars tracked with a scalar transport equation

∂Sγ,k

∂t
+∇ · (Sγ,kuk) = sbr,k + scl,k (23)

The source termssbr,k andscl,k model breakup and coalescence through empirical models
described in Lo and Zhang (2009). The critical Weber number used in these models is set to0.5
for both phases, cf. Hill (1998).
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To ensure a stable simulation, the droplet size is initially modeled empirically. Here, a model
by Brauner (2001) is employed to estimate the maximum droplet diameter

dmax

D
= 7.61We−0.6

c Re0.08
c

(
αd

αc

)0.6(
1 +

ρd

ρc

αd

αc

)−0.4

(24)

where Wec and Rec are the Weber and Reynolds number of the continuous phase. The Reynolds
number is the ratio of inertial to viscous forces; whereas, the Weber number is the ratio of inertial
forces to surface tension

Re=
ρUD

µ
(25)

We =
ρU2D

σ
(26)

Empirical studies and observations from experiments typically report the maximum diameter
dmax. The ratio between the maximum observed diameter and the Sauter mean diameter has been
reported from experimental studies by Angeli and Hewitt (2000) to

d32 = 0.48dmax (27)

2.4 Flow Conditions

The physics describing the model shows the complex array of parameters affecting the flow.
The parameters of the validation are described in Table 1. To simplify the variation study, flow
parameters are described in terms of nondimensionalized numbers. A variety of different dimen-
sionless quantities can be considered. In this study, the Atwood and Richardson numbers are
studied to account for Rayleigh-Taylor and the Kelvin-Helmholtz instabilities. These two insta-
bilities are considered relevant for the stability of the interface and thus the transition between
flow patterns. Aside from the aforementioned, the more typical fluid dynamics characteristics
are described through the Reynolds and Weber numbers from Eqs. (25) and (26) as well as the
Froude number (Fr), which characterizes the ratio of gravity to inertial forces

Fr =
U√
gyD

(28)

TABLE 1: Parameters from experimental reference study
(Elseth, 2001; Kumara et al., 2009) and wetting contact
angle estimated from dos Santos et al. (2006)

Parameter Value
Pipe diameter,D 0.0563m
Oil density,ρo 790kg/m3

Oil viscosity,µo 0.00164Pa s
Water density,ρw 1000kg/m3

Water viscosity,µw 0.00102Pa s
Surface tension,σ 0.043N/m

Wetting contact angle,θw 41◦
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The Atwood number describes the ratio of the difference in density to the average density
and is often arises as a factor for instabilities in two-phase flows. The Atwood number arises
analytically from analysis of the Rayleigh-Taylor instability (Glimm et al., 2001; Taylor, 1950)

A =
ρw − ρo

ρw + ρo
(29)

The Richardson number describes the ratio of buoyancy forces to shear forces. It arises from
stability analysis of the Taylor-Goldstein equation as the criterion for stability of the Kelvin-
Helmholtz instability. This describes the stability of a shear flow with a density gradient (Gold-
stein, 1931; Taylor, 1931). Locally for a pure shear flow in an inviscid incompressible fluid with
a uniform density gradient, it is defined as follows:

Ri =
−gy

ρ

∂ρ/∂y

|∂ux/∂y|2 (30)

For an interface with a nonuniform density or velocity gradient, an average global cross-
sectional Richardson number is approximated as the ratio of the Atwood number to the square
of the Froude number

Ri =
ρw − ρo

ρ

gyD

U2
≈ 2A

Fr2
(31)

For inviscid stratified pure shear flow, stability analysis shows that all wavelengths are stable
for Ri > 0.25(Hazel, 1972). For the viscous flow, viscosity acts as a damping factor when Re is
low but has more complex effects in higher Reynolds numbers, where the surface tension further
dampens the instability of the interface (Drazin and Reid, 2004; Turner, 1973).

The flow conditions of the present study are of a more complex nature with phase distribution
and boundaries giving lead to nonuniform density and velocity gradients. Hence, the criterion
of Ri is not well-defined. However, the expected trend is that the stability of the interface is
stabilized with increased Atwood number or decreased Froude number.

2.5 Numerical Model

The domain boundary is divided into two inlets, a symmetry plane, a wall, and an outlet as
illustrated in Fig. 2. The inlets are given Dirichlet boundary conditions with prescribed phase-
velocitiesuk, volume fractionαk, droplet sizesd32,k, turbulent intensityIk, and viscosity ratio
µk,t/µk. The pressure is extrapolated from the domain through reconstruction gradients. The
turbulent intensity is set to 0.01, and the viscosity ratio to 10 as per STAR–CCM+ defaults.
Variation of inlet turbulence has been tested with little effect on the downstream results. The
inlet droplet Sauter mean diameter is defined with a mean and variance of both0.7D/2.

The outlet is modeled by specifying the pressure to the hydraulic pressure based on the flow-
rate averaged density using a Dirichlet condition. Other flow variables are extrapolated.

Symmetry in the plane spanned by the gravitational vector and axial direction of the pipe is
exploited by a symmetry boundary condition (homogeneous Dirichlet on the normal component
of the flow and homogeneous Neumann condition on the normal derivatives of all other equation
variables).

The walls are modeled as no-slip walls with homogeneous Dirichlet conditions on the ve-
locity field. The turbulence is modeled using a highy+ wall treatment model because the wall
boundary layer is not sought to be resolved (Shih et al., 1995).
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FIG. 2: Illustration of the computational domain. The length ofL = 75D is established by a pipe-length
study described in Section 2.

The procedure of obtaining a numerical solution to the two-fluid model is split into three
steps for the sake of numerical stability and convergence. Initially, a steady-state version of
Eqs. (1) and (2) is solved by setting the time derivatives to zero. This has proven numerically
unstable along with the droplet size distribution model and is instead carried out with a static
constant droplet size determined by Eq. (24). The steady-state analysis is run for 1000 iterations.
Subsequently, the simulation is switched to a transient analysis. Here, the S-gamma droplet size
distribution is solved passively, i.e., without coupling the resulting droplet size to the terms for
the momentum equation. This second step is solved with a Courant number of 5 and 40 inner
iterations for a physical time oftU/L = 0.7. Finally, the droplet sizes used in the momentum
equation is coupled to the S-gamma model and solved for anothertU/L = 0.75of physical time
with a Courant number of 0.1 and a time-step convergence tolerance of10−6 on all equation
residuals.

The domain is presented in a Cartesian coordinate system with its origin at the mixing point
of the incoming flows, thex-axis following the axial direction of the pipe, thez-axis horizontal in
the gravitational field, with they-axis following the pipe, aligned with gravity for the horizontal
pipe. The computational domain is discretized by a rectangular trimmer mesh-grid, with cells in
the axial direction of the pipe twice as long as in the radial. The grid sizing is controlled with
a single nondimensional parameterδ̂. The cells located in the core of the domain is set to size
δ = δ̂D, whereD is the diameter of the pipe. The traverse directions are refined to0.25δ, and
the boundaries are kept as quadratic with a maximum cell-to-cell stretch of 2. This gives a mesh
as shown in Fig. 3.

The computational domain corresponding to the full experimental setup is computationally
expensive to run. Therefore, a study is carried out to evaluate the necessary length of pipe needed
for the phase distribution to have reached a constant state.

The validation is carried out by comparing the densitometry measurements presented by Ku-
mara et al. (2009) to the postprocessed Reynolds-averaged numerical results. The postprocessing
takes the cross-sectional volume fraction average in thez-direction to replicate the density line
measurements of the densitometry. The data presented on a plot with the average volume frac-
tion on the horizontal axis and the radius-normalizedy-position on the vertical axis. From the
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FIG. 3: (left) Illustration of the grid and picture extracted at the outlet of the pipe seen from the symmetry
plane with a section cut out to reveal the interior of the grid domain. (right) Cross-sectional mesh (with
opaque symmetry).

phase distributions, the level of dispersion and liquid holdup can be evaluated from Eq. (32). An
example of such a cross-sectional volume fraction density plot can be seen in Fig. 4.

In a horizontal steady flow, a simple force consideration on the two fluids is employed in the
x direction; each phase has a pressure gradient, viscous forces, and interfacial forces acting on
it. The interfacial forces exerted are Newton’s third law pairs. Given a fixed pressure gradient,
the location of the interface is controlled by a force balance of the viscous and pressure gradient.
For identical viscosities, the solution would tend to equal the inflow ratio such that the area
integral of the volume fraction of water (αw) over a cross section would equal the water-cut.
As the viscosities differ, the interface moves and one phase moves slower relative to the other.
This difference in velocity gives rise to liquid holdup, i.e., the phase volume ratio in the pipe of
each phase is not equal to the water-cut. With the higher viscosity of the oil, a higher holdup of
oil is expected. As the pipe is inclined (with the flow moving upward), gravity acts stronger on

0.0 0.5 1.0
-1.0

-0.5

0.0

0.5

1.0

FIG. 4: (left) Postprocessing illustration of cross-sectional volume fraction density and (right) the corre-
sponding phase distribution
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the denser fluid and higher holdup of water is expected. The holdup of water increases water-
wetting in the pipe and thus increases the risk of exposing the surface to corrosion and scale
formation. On the phase distribution profiles, liquid holdup is indicated by the area under the
curve differing from the water-cut. The rate of dispersion is indicated by the slope of the curve.
The liquid holdup of water,Zw, is postprocessed as the volume integral of the volume fraction
of water divided by the total volumeVT in a five diameter long section of the pipe. A volume
integral is used to average the cross-sectional area based liquid holdup smoothing out small
variations in the axial direction of the pipe

Zw =
1

VT

∫

VT

αwdV (32)

The numerical model implemented solves for averaged flow quantities due to the Reynolds
averaging as well as the Eulerian description of the phase distribution in each computational
cell. Consequently, an assumption is taken to provide a description of the wetting of the walls.
In this study, the water-wetting of the wall,Ww, is assumed equal to the surface integral of the
extrapolated water volume fraction from the adjacent cells,αw,wall divided by the total area of
the wall Awall:

Ww =
1

Awall

∫

Awall

αw,walldA (33)

This assumes the wetting to be independent on the expected underlying flow pattern (e.g., water
droplets dispersed in oil).

3. RESULTS AND DISCUSSION

This section describes the validation of the present CFD model with experimental data from
Kumara et al. (2009), and an analysis based on the validated model with purpose of understand-
ing how water-wetting of the surface is controlled by flow properties. The flow cases used for
validation are listed in Table 2.

3.1 Pipe Length Independence Study

A study of the pipe length for the CFD model required to converge to a constant phase distri-
bution profile is performed to reduce the number of computational cells used in the subsequent
convergence and variation studies. The results from Kumara et al. (2009) are used as a reference.

TABLE 2: Input condition for the different case studies in the validation analysis.
U is the mean velocity,ψ is the water cut, Re the Reynolds number, Ri is the
Richardson number, Fr is the Froude number, We is the Weber number, andβ the
inclination angle. The Atwood number is constant (A= 0.12) as no variations in
fluid properties have been tested in the experiments referenced

β (deg) U (m/s) ψ (%) Re Ri Fr We
0 1.0 50 38,000 0.13 1.3 1200
0 1.5 50 57,000 0.06 2.0 2600
0 1.5 75 68,000 0.06 2.0 2800
5 1.0 50 38,000 0.13 1.3 1200

Volume 32, Issue 2, 2020



148 Bentzon et al.

The study is performed on a medium-fine mesh of grid sizeδ̂ = 0.15on a pipe of total length of
265D. An extract of the results at differentx-positions is shown in Fig. 5.

It is observed that while the results, using an intermediate grid sizeδ̂ = 0.15, display some
differences with the experimental, the profiles do converge from∼ 50 diameters downstream
until approximately five diameters before the outlet where the profile evolves leading up to the
boundary. In the remainder of this work, a pipe length of75D is used with sampling atx = 55D.

Another study is performed for the necessary pipe length upstream from the mixing point in
order for the velocity profile to develop (not shown). Here, a length of 15 diameters is concluded
to be sufficient length preceding the mixing point. It is noted that wave in the interface occur
in the earlier section of the pipe with a wavelength of approximately five to six diameters. The
results are time-averaged over a timespan based on wave period assuming the wave travels with
the mean flow velocity.

3.2 Mesh Convergence Study

A study of the spatial resolution is conducted on four cases for horizontal flows with a mean
velocity of U = 1.0 andU = 1.5 m/s using water-cuts ofψ = 50 andψ = 75% as well as
upward inclined flows angled atβ = 0 andβ = 5 deg atU = 1 m/s mean velocity andψ = 50%
water-cut.

For the horizontal flow atU = 1.0 m/s with ψ = 50% water-cut, four mesh sizes are
tested,̂δ ∈ [0.4, 0.2, 0.1, 0.05]. The results are shown in Fig. 6(a). It is seen that they-position
at which the first oil is observed converges toward the experimental observations; whereas, the
gradient of the volume fraction converges toward a result with slightly overpredicted dispersion.
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FIG. 5: Comparison of cross-sectional phase distribution at differentx-positions. Horizontal flow,U = 1.0
m/s,ψ = 50%. Experimental reference by Kumara et al. (2009).
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FIG. 6: Mesh convergence study showing cross-sectional volume fraction averages for four successively
decrementing grid sizes: (a) horizontal flow,U = 1.0 m/s,ψ = 50%; (b) horizontal flow,U = 1.5 m/s,
ψ = 50%; (c) horizontal flow,U = 1.5 m/s,ψ = 75%; and (d)β = 5◦ upward inclined flow,U = 1.0
m/s,ψ = 50%. Experimental reference by Kumara et al. (2009).
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Near the bottom and top of the pipe (2y/D = −1 and2y/D = 1), the experimental results
are not accurate and the deviations ignored (Kumara et al., 2009). Observed deviations in the
experimental data suggest that the deviations lie within the expected uncertainty.

With increasing flow velocity, the phases disperse more. Similarly to the slower flow, the
simulation run atU = 1.5 m/s mean velocity shown in Fig. 6(b) yields convergence toward a
result slightly more dispersed than the experimental. On the contrary, atψ = 75% water-cut,
as shown in Fig. 6(c) the model does not seem to converge within the mesh sizes and seems to
under-predict the level of dispersion.

As the pipe is inclined, transition to a wavy flow is expected where the time average would
yield higher dispersion. For the upward inclined flow at 5 deg [Fig. 6(d)] similar convergence as
for the horizontal flows is observed. Notably, the phase distribution profiles converges at around
δ̂ = 0.1 for all the cases.

3.3 Droplet Size Comparison

The droplet size distribution resulting from the S-gamma model is visually shown in Fig. 7 and
compared to droplets visually observed during experimental work by Elseth (2001) in Table 3.
The modeled droplet sizes were sampled over a five-diameter test section and maximums taken.
As the modeled droplets were the Sauter mean diameter, they are divided by 0.48 to compare

FIG. 7: Cross-sectional droplet Sauter mean diametersd32 atx = 55D and horizontal flow,U = 1.0 m/s,
and (a)ψ = 50% and (b)ψ = 75%

TABLE 3: Comparison between the experimentally observed droplet sizes from Elseth
(2001) and the CFD results taken atx = 55D as well as the empirical correlations from
Brauner (2001)

β (deg) U (m/s) ψ (%) Exp. (mm) CFD (mm) Emp. (mm)
0 1.0 50 3 12.8 11
0 1.0 75 8 8.1 9
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to maximum observed droplet sizes, as described in Eq. (27). From the results, it is seen that
the S-gamma model predicts a droplet size consistent with the empirical correlation but seems
to overestimate droplet sizes compared to the experimental observations. This could be due to
limitations in the breakup and coalescence models or inaccurate model parameters.

3.4 Water-Wetting, Liquid Holdup and Dispersion

A study is performed on quantification of water-wetting along with an estimation of liquid
holdup and dispersion with variations in the Froude, Richardson, and Atwood numbers. For
this study, a grid size of̂δ = 0.1 is used and the analysis data are extracted from a pipe section
betweenx = 55D andx = 60D. The models are run atβ = 5◦ inclination withU = 1.0 m/s
mean velocity andψ = 50% water-cut.

The effect of the Froude number is simulated using three different gravitational constants,
thereby keeping all other flow parameters constant. The resulting variations of the liquid holdup
and water wetting are listed in Table 4. It is seen that the liquid holdup decreases for increasing
Froude numbers as the effect of difference in densities is reduced. At the same time, the water-
wetting increases slightly. This can be described by a higher dispersion. This is shown in the
density-plot in Fig. 8(a), where it is seen that the rate of dispersion increases with the Froude
number.

The density difference characterized through the Atwood number is analyzed while keeping
the mean density and thus the rest of the flow properties constant. The results are listed in Table 5
and shown as cross-sectional density plots in Fig. 8(b). Here, the increase of the Atwood num-
ber shows a larger liquid holdup with a lower dispersion. The water-wetting remains roughly
constant.

4. CONCLUSIONS

The present study has employed a CFD model to capture the flow patterns and phase distribution
in a two-phase oil and water flow. The model has been refined and validated against experimental
data with mean flow velocity ofU = 1.0 andU = 1.5 m/s and water-cutsψ = 50andψ = 75%.
Here, the model shows good convergence and agreement with the experimental data in terms of
phase distribution. The S-gamma model produces droplet sizes in good agreement with empirical
correlations but overpredicts compared to those observed in experiments. This suggests that more
work is necessary for an accurate prediction of the droplet size distribution. The physics causing
the phase distribution are decomposed into dispersion and liquid holdup. This is used to analyze
surface wetting for a set of Atwood and Froude numbers. The results show how the Atwood
number balances dispersion to liquid holdup having a rather constant water-wetting; whereas,
the water-wetting increases with the Froude number, although the liquid holdup is reduced. Both
the Atwood number and the Froude number affect the Richardson number. It is clear that an

TABLE 4: Variation of the Froude number and the resulting Richardson number; mean
velocityU = 1.0 m/s, inclinationβ = 5 deg, Re= 38,000, A= 0.12, and We= 1200

Fr Ri ψ (%) Liquid holdup (%) Water-wetting (%)
1.0 0.51 50 53.5 54.1
1.3 0.26 50 51.4 54.0
1.9 0.13 50 51.0 55.1
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FIG. 8: Cross-sectional density plots atU = 1.0 m/s,ψ = 50%, β = 5 deg, Re= 38,000, We= 1200:
(a) variation of the Froude number at A= 0.12and (b) variation of the Atwood number at Fr= 1.3

TABLE 5: Variation of the Atwood number and the resulting Richardson number; mean
velocityU = 1.0 m/s, inclinationβ = 5 deg, Re= 38,000, Fr= 1.3, and We= 1200

A Ri ψ (%) Liquid holdup (%) Water-wetting (%)
0.05 0.11 50 50.3 55.2
0.12 0.26 50 51.4 54.0
0.20 0.44 50 54.0 54.7

increased Richardson number stabilizes the flow as expected from the relation to the Kelvin-
Helmholtz instability.
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