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ABSTRACT

We present the algorithm CCMA-ES, an extension to CMA-ES, an
evolution strategy that has shown to perform well in a broad range
of black-box optimization problems. The (u, A)-CMA-ES effectively
handles nonlinear nonconvex functions but faces difficulties in
constrained optimization problems. We introduce viability bound-
aries to improve the search for an initial point in the valid domain
and adapt the covariance matrix using normal approximations to
maintain the inequality constraints. Using benchmark problems
from 2006 CEC we compare the performance of CCMA-ES with a
state of the art optimization algorithm (mViE) showing favorable
results. Finally, CCMA-ES is applied to a pharmacodynamics prob-
lem describing tumor growth, and we demonstrate that CCMA-ES
outperforms mViE in terms of the objective function value and total
function evaluations.
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1 INTRODUCTION

Covariance Matrix Adaptation — Evolutionary Strategy (CMA-ES)
[5, 6] has been successfully deployed for a broad range of nonlin-
ear, nonconvex optimization problems represented by black box
functions with no access to derivatives. One frontier for CMA-ES
has been the efficient handling of constraints. In [1] an adaptation
mechanism for the covariance matrix on the constraint boundaries
has been introduced for the (1+1)-CMA-ES. This technique has been
further extended in [10] by the use of viability boundaries. Finally,
in [11] the two previous approaches have been incorporated in a
memetic algorithmic framework. In [2] the authors had amended a
CMA-ES-like framework so that convergence results are possible,
and they handle constraints by more standard optimization means.

In this work, we introduce the covariance adaptation [1] and the
viability principles [10] in the general (u, 1)-CMA-ES in order to
address high dimensional constraint optimization problems. We
assess the efficiency of our algorithm on the benchmark problems
used by Maesani et al. [11]. This includes a subset of the problems
proposed in the 2006 IEEE International Conference on Evolution-
ary Computation (2006 CEC).

We apply CCMA-ES to determine an optimal treatment schedule
for diffuse, low-grade gliomas. We employ a parametric pharma-
codynamics model that has been presented by Ribba [12] for this
kind of tumors. The model is augmented by a set of constraints to
account for treatment’s toxicity to specific patients, thus increasing
its clinical relevance [7]. Tumor growth is described by a linear
system of parametric differential equations accompanied by a set of
inequality constraints. The goal is to identify an optimal treatment
schedule that minimizes tumor size.
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2 BACKGROUND

We are interested in solving the constraint optimization problem,
x* = min f(x),
x€Q
for Q c R”, under the inequality constraints,
hj(x) <0, je{1,...,m}.

We assume that the objective function f and the constraints
hj are given by a black-box simulator. (y, 1)-CMA-ES is an algo-
rithm that is designed to work for black-box optimization problems
with many local minima. Moreover, since the algorithm is based on
independent evaluations of the objective function, it can be paral-
lelized easily and is perfectly suited for computationally demanding
problems that require high performance computing.

In this work, we present an extension of (u, 1)-CMA-ES in order
to effectively handle constraints. In the next section we give a brief
presentation of the main characteristics of (u, 1)-CMA-ES.

2.1 (p,1)-CMA-ES

CMA-ES approximates the minimum of an objective function f
by sampling A points x; from a normal distribution N (m, X) with
an iteratively computed mean m and covariance X. Samples are
evaluated and sorted based on their corresponding function values.
The mean m and covariance matrix X are adapted based on the p
best samples in order to increase the probability of sampling future
individuals in the direction of favorable samples. In the following
we will give a brief overview of the different parts of the algorithm
(see algorithm 1 and fig. 1). For a more detailed discussion we refer
to [4] and [8].

Algorithm 1 CMA-ES overview

1: Initialize problem parameters > fig. 1a
2: while Termination criteria not met do

3: Sampling > fig. 1b
4: Evaluation > Evaluate individual fitness
5: Selection and recombination > fig. 1c
6: Adaptation > fig. 1d
7: end while

8: Return solution

Sampling. Each generation g of the CCMA-ES starts by sam-
pling a new population. The individuals x? ! withi € {1,...,A}
are drawn from an n—-dimensional normal distribution N(m,X)
according to

xig+1 =m9 +09A%z;, with z; ~ N(0,I). 1)

Here o € R is the step size and A= BD is the Cholesky factor of
the covariance matrix,
2 =0’C=0"AAT.

Evaluation. The objective function f is evaluated at the obtained
individuals x; and sorted f(x1.3) < f(x2.2) < -+ £ f(xy.2). To
denote the i-th fittest individual we introduce the notation x;.,.
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Figure 1: CMA-ES steps for the first generation with f(x) =
x% + xg, m® = [5,5],C° = I and ¢ = 0.5. The red square at
the bottom left shows the location of the global minimum.
Figure 1a shows the starting mean denoted by the cross and
the circle of equal probability of the initial normal distribu-
tion. Figure 1b shows a population of 16 individuals sampled
from the initial distribution. Figure 1c displays the selection
step, with the fittest individuals presented as half-filled cir-
cles. Finally, the selected individuals are used to adapt the
mean (new one black, old one red) and covariance matrix to
produce the ellipse of equal probability shown in fig. 1d.

Selection and recombination. We choose the u values with the
smallest function value. The mean m9*! is updated via

u
+1
mI*l = Z WixZ/l . (2)
i=1

There are many ways to choose the weights w; under the constraint
that they are positive and sum up to 1. A reasonable choice is to
assign decreasing weights such that favorable points have a greater
impact on the new mean.

Adaptation. The crucial step of CMA-ES is the adaptation of
the covariance matrix in a way that increases the probability of
sampling individuals that are close to favorable individuals obtained
over the previous generations. There are three adaptation steps.
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In the first step, the covariance matrix is adapted using the p
fittest individuals to perform a rank-y update, which reads [5]

U

+1 _ . g+1 g+1 T

M =(1-cp)C ey Zwl Yia (yi;A ) ’
i=1

g+1
g+t X;
i o9

mg
with vy

)

and ¢, is the learning rate.
In the second step, a rank-1 update is applied based on the evo-
lution path p. [6],

T
Cg+l — (1 _ C1)Cg + C]Pg+1 ( Z+l) ,

g+l _ g

. m
with p?“ =(1- cc)pg +ee(2 = co)pteff ———

o9

s

where c; and c. are the learning rates and the factor p.¢ normalizes
pgﬂ. For c¢ = pler = 1 the evolution path p? reduces to the most
recent change of the mean.

For the final adaptation both rank-y and rank-1 updates are
combined by a weighted sum of the two updates. For the covariance

matrix C the total update is given by

1 1\ T
CI = (1—c1—cy)C9 + cp?d” ( g+ )

7
g9+l ( g+l T
+C“ZW’yi:A (yi:)t) :
i=1

The updates introduced do not explicitly control the overall scale
of the distribution thus affecting the algorithm’s performance. As a
remedy, and the final component of the adaptation, we control the
step-size o via

591 = o9 exp | T [
ds \EIINOQ.DIT )’

®)

where
1 _1mItl —m9
pe = (1= co)pg + Voo (2= colperr ()72 ———.
and

(c9)"z =BD'B”.

Here we introduce further parameters, the learning rate ¢, and
the damping factor ds. By including p.g we normalize pf;ﬂ in the
same sense as before. The factor (CY )_% is used to make the length
|lpo || comparable to a reference length E[||N(0, I)||], which is the
length of ps under a random selection of points as opposed to the
selection of fittest points [4].

The CMA-ES algorithm, though very good at finding minima in
a black box setting, has a few drawbacks. Most notably it cannot
efficiently account for constraints and has difficulties finding optima
close to constraint bounds. In the following we address this issue
by proposing a new variant of the (u, A)~CMA-ES.

2.2 Related Work

A straightforward modification of the CMA-ES algorithm is to ac-
count for constraints by resampling all individuals that violate a
given constraint. This strategy works well when the minima of the
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Figure 2: The region towards the lower right below the con-
straint boundary (highlighted in blue) represents the feasi-
ble region. Given a constraint normal (black arrow) the ideal
modification of the normal distribution is given in fig. 2a.
The variance of the distribution gets compressed in the di-
rection of the given constraint normal as shown in fig. 2b.

function do not lie near the constraint boundary. If not, or if the ob-
jective function dimension is high, resampling individuals that are
not in the feasible region will result in many rejections, respectively
many repeated resamplings, and consequently very long algorithm
runtimes. Other approaches to account for constraints in CMA-ES
include penalty functions [3] or modified ranking methods [13]. An
algorithm recently proposed is mViE [11], an extension of (1 + 1)-
Vie-CMA-ES [10], developed to handle multi-modal constrained
optimization problems. Its performance has been compared in a
comprehensive manner to most of the current methods and there-
fore we refer to this paper for an extended overview on algorithms
for constrained optimization problems.

The present method builds on the methodology proposed by
Arnold and Hansen [1]. It uses invalid individuals to reshape the co-
variance matrix, in the spirit of rank-1-update of the unconstrained
CMA-ES algorithm. This approach has shown to be very effective
at solving constrained optimization problems. In this work we aim
to extend this constraining method from (1 + 1)-CMA-ES to apply
to the general (u, 1)-CMA-ES.

3 CCMA-ES

The underlying idea of Arnold and Hansen’s constraining method
is to extend the (1 + 1)-CMA-ES to modify the covariance matrix
such that the variance in the direction of the constraint normal is
reduced (see fig. 2). Before the covariance matrix can be adapted,
the constraint normal or an approximation of it is needed. For this
purpose each of the constraints h; for j € {1, ..., m} will maintain
an exponentially fading record v; that approximates the constraint
normal. The normal @; is initialized to zero and updated whenever
a constraint h; is violated by any sample x;,

vj = (1-cu)vj + co¥yi, (4)

where y; = Az; with z; ~ N(0, 1) is the vector used to sample the
i-th population individual, ¢,, is an adjustable parameter reflecting
how quickly the information in the current normal fades. This type
of update results in a cancellation of the mean components of Az
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that are tangential to the local constraint boundary. If a candidate
violates the constraint we update the covariance matrix accoring to
vj vj-.'—
|

PN B oI
€=C 2 2 T o ©

where ag(x) = Zj”i1 aj(x) and aj(x) is equal to 1 if h;(x) > 0 and
0 otherwise. Here, f§ is an adjustable parameter that determines the
size of the update. After the update, the individuals are resampled
according to the updated covariance matrix. The process is con-
tinued until the whole population is located in the feasible region.
Algorithm 2 summarizes the constraint handling loop which is per-
formed straight after sampling the population in Algorithm 1 and
Figure 3 gives a visual interpretation of the constraining method.

Algorithm 2 Pseudo code for constraint handling in CCMA-ES

Require: Sampled individuals x; = m + oy;
1: while Constraints violated do
2: fori=1,...,Ado

> see eq. (1)

> for all offspring individuals

3 forj=1,...,mdo > for all constraints
4: if aj(x;)then
5 vj — (1 = cp)vj +coy;
vjv!
6: C—C- % W
7: end if
8: end for
9: end for
10: fori=1,...,Ado > for all offspring individuals
11: forj=1,...,mdo > for all constraints
12: if a(x;) then
13: Resample offspring x;
14: end if
15: end for
16: end for

17: end while

The introduced strategy for handling constraints works only
if the initial mean of the generation is located in the feasible re-
gion. However, the search for an initial mean vector can be difficult
especially when the problem dimension is high. An unguided ran-
dom search suffers from the curse of dimensionality leading to
high rejection rates and hence the algorithm stalls. A remedy to
this problem has been proposed by Maesani and Floreano [10] and
referred as viability boundaries. The (1 + 1)-Vie-CMA-ES is an ex-
tension of 1+ 1-Constrained-CMA-ES that benefits from an initially
relaxed constraint boundary instead of the original tight boundary.
As the offspring is guided towards the optimum, the boundary is
contracted until it matches the original constraint boundary. Gener-
alizing the ideas presented to (u, A)-CMA we initialize the relaxed
boundary as

b = [max {0, h1(x1), ..., hi(xp)}....,
max {0, b (x1), . . ., hm(x)}],
As before we denote x; as the location of the offsprings with i €
{1,...,A}. Intuitively it follows that each constraint gets replaced

by a relaxed boundary that follows the sample which violates said
constraint the most. The relaxed boundary is illustrated in fig. 4c. If
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Figure 3: Constrained CMA-ES steps for the first generation
with the same setup as in fig. 1 and an added constraint
function h(y) = y?/6.5 + 1 < x. Figure 3b shows a popu-
lation of 16 individuals sampled from the initial distribu-
tion. The 6 individuals that violate the boundary are marked.
Figure 3c displays the added step for constraining: The con-
straint normal approximation (black arrow), resampled pop-
ulation that is inside the feasible region and the adapted dis-
tribution equiprobability line.

no individual violates the relaxed boundary we update the relaxed
boundary using
bi—h
b = [max {O,min { by, hy(xc.1) + %M } } N
bm — hm(xc,m) }} ]

max {0, min { bm, hm(Xe,m) + P



(4, 1)-CCMA-ES for Constrained Optimization

() (b)

(c) (d)

Figure 4: CCMA-ES steps for the first generation with the
same setup as in previous figures. The sampling step in
fig. 4b includes 2 individuals with mean outside the con-
straint boundary (solid black line). The viability boundary
(dashed blue line) in fig. 4c is set to the point which most vi-
olates the true boundary. Figure 4d shows the updated mean
with respect to the old (red) one.

where x j is the sample closest to the relevant boundary j with
respect to the Euclidean distance. Once the viability boundary
matches the constraints no further updates on the boundary are per-
formed and the algorithm continues to function as the previously
proposed constraint (u, A)-CMA-ES.

The viability extension suffers from a significant drawback; if we
choose a large A we increase the probability of samples far from the
constraint boundary. Since we adapt the relaxed boundary to the
worst sample, it may happen that the mean of the generation moves
away from the feasible region. As a result the constraint boundary
may not be reached by the samples. This premature convergence is
shown in fig. 5.

Premature convergence can be alleviated by:

(1) choosing an initial population mean inside the constraint
boundary (or close to it),
(2) reducing population size A.

The first idea is not applicable since we do not know yet any
points inside the viable domain. The second idea, to reduce 4, is
undesirable as it increases the probability of missing the global
minimum and converging towards a local minimum. A possible
solution is to alternate the population size and choose A to be
small when the population mean is outside the constraint boundary
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Figure 5: Idealized case of premature convergence for
viability-CMA-ES.

and sample a large population A if the mean complies with the
constraints. Our empirical tests showed that best results have been
achieved when A = 2 if the mean violates the constraints and A =
1.5(4 + 31In(n)) if the mean resides within the feasible region. This
approach has been implemented and its performance is evaluated in
the next section. The other parameters used in our implementation
can be found in table 1.

4 EVALUATION
The evaluation of CCMA-ES consists of two parts:

(1) Test problems with known solutions [1, 9].
(2) A pharmacodynamics model [12], where the true solution is
not know.

For both cases the results are compared to a state of the art op-
timization strategy — the memetic viability evolution CMA-ES
(mViE) [11]. We use the Matlab implementation of the algorithm
that accompanies the publication. For the CEC 2006 test problems
we set the stopping criteria such that the algorithm terminates if
f(x) = f(x*) <0.0001, where x* is the known global minimum.

4.1 2006 CEC Test Problems

In our numerical experiment we use a subset of the test problems
from the 2006 IEEE International Conference on Evolutionary Com-
putation (2006 CEC). The 2006 CEC problem set includes equality,
inequality and mixed constraints out of which only the problems
with solely inequality constraints are chosen. We note that for test
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2 4+ 31n(n) or 1.5(4 + 31n(n)) when
constrained
A
H 2
wi i
’ LW
wj In %, i=1,...,p
_1
Heff S W
Co nﬁi;is or Trri v ':fi/ﬁ when constrained
ds 1 + 2max(0, ”;Tll -1 +co
4+ﬂeff/n
Ce 4+n+2peg/n
2
a T T3P
5 _ /‘eﬂ_2+l/ﬂeff
cy min(1 — ¢, 2—(%2)24””cff
0.1
B niz
1
Cv n+2
Table 1: Parameters for the CCMA-ES
Prob. Best Median | Worst Mean Std
g04 3049 4030 13226 5313 2880
g06 909 1402 38480 3061 6237
g07 5375 6258 16418 6729 1902
g08 192 425 2831 735 609
g09 2553 3038 8280 3656 1410
g10 8253 10944 24710 12378 3963
gl6 1451 2938 7303 3086 1320
g19 19430 23506 47838 24459 4641
g24 597 807 9998 1342 1658

Table 2: Best, median, worst, mean and standard deviation of
objective function evaluations for the benchmark functions
for mVie.

functions g01, g02 and g18 CCMA-ES did not achieve a 100% suc-
cess probability of finding the global minimum. The reason for this
remains a subject of ongoing research. Finally, g12 is also excluded
since the viable domain is the union of disjoint sets and CCMA-ES
works only on connected domains.

All the problems were linearly transformed such that the domain
of f is [0, 1]". This is done because the CMA-ES algorithm is know
to exhibit a subpar performance when the problem is stretched in at
least one of the dimensions. Furthermore, for a given box boundary
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Prob. Best Median | Worst Mean Std
g04 1833 2080 2418 2099 117
g06 525 632 792 634 46
g07 2377 2658 3251 2686 148
g08 63 183 270 181 37
g09 399 556 758 564 66
g10 2703 3510 4956 3532 381
gl6 894 1554 2736 1573 317
g19 18288 30180 69060 31979 10011
g24 255 408 501 395 43

Table 3: Best, median, worst, mean and standard deviation of
objective function evaluations for the benchmark functions
for CCMA-ES.

the suggested initial step-size ¢° is 30% of boundary length [4].
This allowed us to use the same initial step-size for all problems.

The only input parameter needed for the CCMA-ES algorithm
is an initial population mean m® which was uniformly chosen
from the domain. In order to account for the randomness each
test problem was solved a 100 times. All other parameters of the
algorithm remained fixed throughout the verification and validation
process. For comparison of the algorithms the number of objective
and constraint function evaluations were counted and recorded.

In table 2 and table 3 we summarize the performance of mVie and
CCMA-ES on the test problem set whereas in fig. 6a the ratio of the
median of the objective function evaluations of mViE over CCMA-
ES is presented. In all the cases, except g19, CCMA-ES required
less objective function evaluations to reach the minimum. In fig. 6b
the same ratio for constraint function evaluations is presented.
CCMA-ES required more constraint evaluations in most of the test
problems. This feature makes the proposed algorithm best suited
for problems where the evaluation of constraints is computationally
cheap compared to the evaluation of the objective function. In the
next section we discuss an example with this property.

4.2 Pharmacodynamics for Tumor Growth

The proposed algorithm is applied to the the tumor growth inhibi-
tion model by Ribba [12]. The model has been proposed in order
to predict the growth of diffuse low-grade gliomas in adults, under
radiation or chemotherapy. It is described by the system of ordinary
differential equations,

dc
— =-%C
dr !
d—P = 94P(1 - w) + 95Q0p — 3P — 91 %CP
dt K
do (6)
— = HBP -HHC
pm 3 192CQ
d
S _ 519,00 - 950p - 960p.

with initial conditions

C(0)=0, P(0)=97, Q(0)=ds, Qp(0)=0. ™)



(4, 1)-CCMA-ES for Constrained Optimization

w »
N w o~ o ow
T T
|

[y
)]

speed-up in objective function evaluations
\S}
[ ul

o
3

0

g04 906 907 908 g09 gl0 gl6 gl9 g24

(a) Objective function evaluations

speed-up in constraint functions evaluations

g04 g06 g07 g08 g09 gl0 gl6 gl9 g24

(b) Constraint function evaluations

Figure 6: Ratio of the median of function evaluations for
mViE over CCMA-ES.

The volume of the tumor, P* = P + Q + Qp, consists of prolifera-
tive cells (P), quiescent cells (Q) and damaged quiescent cells (Qp).
The drug used for treatment (C) directly eliminates proliferative
cells while damaging the quiescent cells which in turn can repair
themselves and turn into proliferative cells or die. The parameters
&1, ..., 98 correspond to the following parameters: §; = KDE, the
rate of constant decay of the drug concentration (C), 9, = y, linear
rate of damages to both proliferative tissue (P) and quiescent tissue
(Q), 93 = kp. the rate of constant transition from proliferative
tissue (P) to quiescent tissue (Q), d4 = Ap, the rate of constant
growth of the proliferative tissue (P), 95 = kg, p, the rate of con-
stant transfer from damaged quiescent tissue (Qp) to proliferative
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Figure 7: Evolution of the tumor size for the non-optimized
treatment schedule and the optimized schedule given by
mViE and CCMA-ES. In this case both optimization algo-
rithms converge to the same solution.

tissue (P), 9 = 5QP, the rate of constant elimination of the dam-
aged quiescent tissue (Qp), J7 = Po, initial amount of proliferative
tissue (P), 95 = Qy, initial amount of quiescent tissue (Q).

The parameter K denotes the largest tumor size (K = 100 mm)
which also conforms with largest low-grade glioma tumors ob-
served in patients. At time tj, j € {1,...,ng} the drug at a dosage
aj = a(tj) is administered to the patient and the equations get
reinitialized by adding a; to the current drug concentration (C).

The tumor growth inhibition model is complemented by the fol-
lowing set of constraints introduced by Harrold [7]: The maximum
amount of drug that can be administered per injection

hj=a;-1<0, jE{l,...,nq}, 3)

where ng is the total number of injections and ¢; is the time of a
particular injection. The next two constraints are related to the
drug toxicity: instantaneous and cumulative drug concentration.
Violating those constraints would harm a patient. The maximal
instantaneous drug concentration takes into account the lethal
dose

hmax = max C(t) — vmax < 0. 9)

In accordance, the parameter vnmay is the highest drug concentration
ahuman body can be exposed to. The constraint on cumulative drug
concentration reflects the rate at which the drag can be absorbed
by the body

tend
he = / C(t)dt - veum < 0. (10)
0

The introduced parameter veym corresponds to the overall amount
of drug the body can be exposed to over a certain time frame
t € [0, tenq]- Notice that C(¢) can be explicitly calculated from
eq. (6).

The goal in a treatment is to minimize the tumor size P* at a
given time in the future by finding optimal values for the parameter
vector,

x=(tl,..‘,tnq,al,.‘.,anq). (11)
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The dimension of the parameter space in the optimization problem
is 2ng.

We performed the experiments with ng = 4 and ng = 10. The
tumor size P*(fepnq) is calculated using a black-box simulator inte-
grating the system of differential equations from eq. (6) up to tepq.
Notice that the derivatives of the final tumor size with respect to
t1,...,tn, are not readily available and thus gradient based opti-
mization cannot be applied in the case. The parameters used for
the system of eq. (6) were set to,

& =[0.045,4.52,0.09,0.11, 0.04, 0.00001, 0.09, 1]. (12)

The maximal instantaneous drug concentration has been set to
Umax = 1.1 for both cases, whereas the limit for the cumulative drug
amount in the patient has been chosen as veym = 65 and veym = 196
for each problem, respectively. The final times t,,g = 200 and
tend = 400 were chosen such that v,y remains constant whilst in-
creasing the number of equally spaced injections of a drug amount
aj = 1. Finally, the cumulative drug concentration has been cal-
culated to ensure the satisfaction of the constraint described in
eq. (10). In order to compare the performance of the two algorithms
we conducted 100 runs with each algorithm. The initial point for
both optimization algorithms has been set to equally spaced admin-
istration times ¢; with dosages a; = 0.8 which corresponds to 72.7%
of Umax.

The tumor size after optimization with ng = 4 and nq = 10 in-
jections is presented in fig. 8 and fig. 9. We conclude that CCMA-ES
converges towards an optimum using less objective function evalu-
ations. The number of constraint function evaluations is slightly
greater for CCMA-ES but remains comparable in both experiments.

The shaded areas in fig. 8 and fig. 9 correspond to one standard
deviation. It is evident that for both ng = 4 and ng = 10 CCMA-ES
can find better solutions than mVie.

The mean tumor size evolution resulting from the optimization
with ng = 10 injections is presented in fig. 7 together with an
equally spaced injection treatment plan as a reference. Both algo-
rithms find a minimum that corresponds to a rather similar treat-
ment schedule and results in a much smaller tumor size compared to
the unoptimized case. We note that while both algorithms perform
a similar number of constraint function evaluations, CCMA-ES
outperforms mViE in objective function evaluations.

5 CONCLUSIONS

In this article we present CCMA-ES, an extension of the (y, A)-
CMA-ES algorithm, that is able to effectively handle inequality
constraints. The algorithm combines both the idea of of viabil-
ity boundaries and the adaptation of the covariance matrix to the
boundary given by the constraints. We demonstrate that our al-
gorithm outperforms the state of the art mViE algorithm in terms
of number of objective function evaluations but not on number of
constraint function evaluations. This property makes CCMA-ES
best suited for problems with computationally demanding objec-
tive functions and constraints that are computationally cheap to
evaluate.
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Figure 8: Mean final tumor size versus number of function
evaluations for 4 injections and 100 independent optimiza-
tion runs. Figure 8a shows the number of objective function
evaluations, and fig. 8b shows the number of constraint func-
tion evaluation. The shaded regions correspond to one stan-
dard deviation.
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Figure 9: Mean final tumor size versus number of function
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