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“Every time a scientific paper presents a 
bit of data, it’s accompanied by an error 
bar — a quiet but insistent reminder that 
no knowledge is complete or perfect,” 
wrote astrophysicist Carl Sagan in the 1995 
book The Demon-Haunted World: Science 
as a Candle in the Dark. Sagan’s words 
resonate even more today as physicists are 
increasingly relying on machine-learned 
models. These use complex statistical 
methods and large amounts of training 
data to make predictions without having a 
pre-specified model to do so. The models are 
powerful, but quantifying their uncertainties 
is challenging.

What is uncertainty estimation and why is 
it important in physics?

Petros Koumoutsakos, Costas 
Papadimitriou Physics strives to acquire 
knowledge about the world through 
a quest for quantifiable relationships 
between observations and ideas. These 
relationships are often expressed with 
mathematical and computational models 
describing physical principles such as 
conservation laws. In recent years, models 
learned from data have gained substantial 
attention. Unprecedented computational 
power has made both computation and 
data modelling approaches a necessity 
for prediction and decision making across 
science and technology. However, limited 
or information-poor data and unknown 
physical phenomena that affect a system, 
but are not captured by its models, 

more trustworthy results. This importance 
placed in the robustness and trustworthiness 
of statistical methods has no small role in 
the relative scepticism that modern machine 
learning has been facing in many areas 
of physics. Neural networks are often still 
perceived as uninterpretable black boxes 
with dubious uncertainties, which brings 
reluctance to use them even if they appear 
to outperform more classical analysis 
techniques. In fact, neural networks can be 
interpreted as sound probabilistic models, 
with asymptotic convergence guarantees 
(for example, infinite data, infinite network 
size). In that, they are no different than more 
traditional inference techniques, such as 
Markov chain Monte Carlo (MCMC), which 
are also only asymptotically correct and can 
in practice be plagued by a large number 
of technical issues, but are nonetheless 
considered the gold standard in fields 
such as cosmology.

Building a deep understanding of the 
meaning of neural networks in a probabilistic 
context, as well as experience with using 
these models in the non-asymptotic regime, 
is slowly gathering pace in different areas 
of the physical sciences, in which it is 
more critical than in many other common 
application domains of deep learning. 
One of the most compelling examples 
of using neural networks under a sound 
statistical framework is the recent growth 
of simulation-based inference techniques1 
based on neural density estimation.

What are the tools for uncertainty 
estimation in machine learning and 
deep learning?

P.K., C.P. Bayesian uncertainty 
quantification is distinguished by its high 
computational cost due to the need to 
represent the posterior uncertainty in a 
multidimensional parameters space and 
to evaluate multidimensional integrals 
over the model parameters, to estimate: 
first, the posterior probability of quantities 
of interest that are important for decision 
making; second, the relative plausibility 
of different physical models, by computing 
and comparing their evidence; and 
third, the systematic incorporation of 
heterogeneous data (such as different 
physical properties) through hierarchical 

mean that all predictions are uncertain 
and there is risk associated with every 
decision. The estimation of uncertainty is 
a unifying theme and a fundamental aspect 
of modelling.

A prominent method for linking 
models and observations and estimating 
uncertainties is Bayesian inference. As an 
inductive method for learning from finite 
data, it is intimately linked to the field 
of machine learning. It is distinguished 
by the use of an a priori degree of belief 
that is assigned to the model parameters, 
expressed in terms of prior probability 
distributions. The classical Bayes formula 
updates these probabilities systematically 
in the light of new data, and in that context, 
it is closely related to the intuitive reasoning 
of physicists.

Francois Lanusse Uncertainty quantification  
underpins most of modern fundamental 
physics, which at its core seeks to compare 
theoretical models to observations. Although 
approaches may vary depending on the fields 
(for example, frequentist statistics in particle 
physics, Bayesian statistics in cosmology), 
statistical uncertainty quantification 
methods always aim to make the comparison 
of models to observations quantitative, in 
order to prefer or reject particular theories. 
In this sense, robust and reliable uncertainty 
quantification is of paramount importance 
to physicists, who will often prefer an 
experiment or methodology with less 
constraining power if it can lead to a better 
control of the associated uncertainties and 
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Bayesian inference. The model parameters 
can be kept small by incorporating physical 
principles and symmetries or by identifying 
low-dimensional manifolds for the evolution 
of the quantities of interest that are evaluated 
by these models.

Over the years, several computational 
methods such as MCMC methodologies, 
well-known to physicists, have been 
developed to sample effectively the 
posterior distributions or estimate 
the corresponding integrals. Alternatively, 
Laplace approximation techniques provide 
estimates based on maximum a posteriori 
estimates and local representations 
of uncertainty. These tools have been 
originally developed for Bayesian 
uncertainty quantification in classical 
statistical models and are now being 
adapted to machine-learned models. 
Examples include adaptations of variational 
inference and dropout MCMC (see refs.2,3 
for comprehensive reviews).

Yarin Gal The field of Bayesian deep 
learning has experienced a boom in research 
in the past few years, with various tools 
developed to estimate different types of 
uncertainty, each with its own properties. 
These tools can be broadly categorized 

category), can be used ‘off the shelf ’ for 
models with dropout layers by simply doing 
several forward passes with dropout turned 
on at test time (third category), follows 
a Bayesian paradigm with a principled 
variational approximation if the dropout 
parameter value is set appropriately (fourth 
and fifth categories), and can be seen as a 
‘cheap and crude’ approximation, which 
may be sufficient for some applications, 
but may be insufficient for others 
(sixth category).

Compare this to the ‘deep ensemble 
uncertainty’ method, which requires 
storing multiple models in memory 
(second category), can be used ‘off the shelf ’ 
if one can train additional models (third 
category), follows ad hoc intuition rather 
than statistical justification (fourth category, 
although some work has attempted to 
ground it under additional assumptions), 
and can be seen as a slightly more 
‘expressive and expensive’ approximation, 
which may improve performance for some 
applications if one has access to additional 
computational resources (sixth category).

Two more representative examples 
along these axes are Hamiltonian Monte 
Carlo for inference in Bayesian neural 
networks5 and deterministic uncertainty 
quantification (DUQ)6: the former is the 
most computationally expensive of the 
methods mentioned above, whereas the latter 
is the cheapest. Hamiltonian Monte Carlo 
requires multiple forward and backward 
passes while storing many model replicas 
in memory (second category), requires 
specialist knowledge in machine learning to 
use effectively (third category), and follows 
a Bayesian paradigm with a rigorous MCMC 
approximation (fourth and fifth categories). 
By contrast, DUQ requires only a single 
forward pass with a single model (second 
category), minimal changes to the training 
procedure (third category), but captures 
only epistemic uncertainty (first category) 
and follows ad hoc justification (more 
recent extensions of DUQ7,8 remedy these 
last points and ground the method as a 
principled approximation to a Gaussian 
process, fourth and fifth categories).

F.L. The tools needed to model aleatoric and  
epistemic uncertainties (see Boxes 1 and 2)  
are different. Aleatoric uncertainties are  
independent of the machine learning 
method. For instance, one can never 
exactly recover the true value of a quantity 
that is only observed through a few noisy 
measurements, no matter what methodology 
is used. Modelling these uncertainties 
essentially means modelling distributions, 

following different axes, and understanding 
these is critical to selecting the right tool 
for an application. Tools can be divided 
in the following categories: first, the type 
of uncertainty they capture (epistemic or 
aleatoric, see Boxes 1 and 2); second, by the 
computational constraints and requirements 
(such as many forward passes versus a single 
one, or memory requirements to store many 
models versus a single model); third, by the 
ease of use (how much ‘specialist knowledge’ 
in machine learning is needed to use the tool 
versus being ‘off the shelf ’); fourth, by the 
justification underlying them (principled 
versus ad hoc, grounded in statistics 
or not); fifth, by the statistical paradigm 
(Bayesian versus frequentist); and sixth, if 
approximating a Bayesian posterior, by the 
type of approximation and where they lie on 
the approximation spectrum (for example, 
variational versus MCMC approximation, 
‘crude and cheap’ versus ‘expressive and 
expensive’ approximation), and others.

Take the example of ‘dropout as 
variational inference’4 in Bayesian neural 
networks. In terms of the above categories, 
the method can capture both epistemic 
and aleatoric uncertainty (first category), 
requires multiple forward passes and stores 
only a single model in memory (second 
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for instance, the probability distribution 
of this unknown quantity given the 
observed data. This is an area in which 
deep learning has made substantial 
advances in recent years, under the general 
notions of neural density estimators 
and deep generative models (including 
generative adversarial networks, variational 
autoencoders, normalizing flows, diffusion 
models and autoregressive models). 
Whereas modelling high-dimensional 
distributions was once a problem plagued 
by the curse of dimensionality, recent 
state-of-the-art models are able to represent 
high-dimensional distributions over 
complex data, with examples ranging from 
the usual images of human faces found in the 
machine learning literature, to maps of the 
large-scale structure of the Universe, useful 
for cosmology. This ability to efficiently 
model arbitrary distributions with neural 
networks has in particular led to a recent 
development of so-called simulation-based 
inference techniques1, which offer an 
alternative to standard MCMC techniques 
in parameter inference problems in which 
the physical model is only provided in the 
form of a numerical simulator.

Epistemic uncertainties are much more 
subtle to model in a physically meaningful 
way. These would refer, in this context, to 
the uncertainty on the neural network itself, 
and can be summarized by the following 
question: given a finite amount of training 
data, how reliable is the prediction made 
by a specific neural network model? This is 
the question that Bayesian neural network 

F.L. In fundamental physics, and in 
particular in cosmology, uncertainties 
classically fall into two categories, statistical 
and systematic uncertainties, which 
broadly map to the concepts of aleatoric 
and epistemic uncertainties. Systematic 
uncertainties are the most worrisome 
as they can lead to invalid conclusions if 
they are not properly controlled and kept 
substantially smaller than the statistical 
uncertainties. In a physics analysis, the 
control of systematic uncertainties goes far 
beyond what is typically considered in the 
machine learning literature on epistemic 
uncertainties. The uncertainty on the fit 
of a neural network is only one link in a 
very long analysis chain, which covers, in 
particular, any errors or biases in the training 
set used to train the network, or unexpected 
contamination of the observational 
data on which the network is applied. 
These considerations are more distilled 
and apparent in physics, but are equally 
important (albeit sometimes overlooked) 
in any applications of deep learning.

P.K., C.P. Bayesian inference requires 
sampling of distributions with 
dimensionality greater than or equal 
to the number of model parameters. The 
sampling necessitates numerous evaluations, 
making the process computationally 
demanding, particularly when the 
underlying model itself is computationally 
expensive. Special care is necessary to 
develop sampling algorithms that harness 
the capabilities of modern supercomputers9. 
Moreover, the accurate processing of 
information available from heterogeneous 
sources of data, which may reflect both 
randomness in the signal and noise in the 
sensors, is a major challenge that needs 
to be addressed. Today, machine-learned 
models are not readily extended to account 
for data heterogeneity and correlations. 
Finally, for Bayesian uncertainty 
quantification, although priors for models 
derived from first principles may easily 
encode prior knowledge, such priors are 
not easy to develop for machine-learned 
models.

Gilles Louppe Before uncertainty 
quantification, the first step for a principled 
Bayesian analysis is to make sure the priors 
and the observational models together 
form a data-generating process that reflects 
domain knowledge adequately. (Note that 
here the observation models should not be 
mistaken with the ‘neural network models’. 
The former refers to the forward physical 
model that we are interested in and want to 

techniques try to address. Note, however, that 
this estimation of epistemic uncertainties in 
neural networks is typically made under ad 
hoc priors on the network architecture and 
on the weights of the model, which are not 
directly interpretable in terms of a physically 
meaningful prior on the functional space 
of the neural network output. The resulting 
uncertainties should therefore be handled 
with care in a physical inference context, but 
they can still be useful to detect whether a 
given model is poorly constrained by data, 
in which case, more data can be acquired, 
as in active sampling schemes.

What do we need to worry about when 
doing uncertainty estimation?

Y.G. After understanding the constraints of 
the application (and thus which uncertainty 
tools are appropriate for the task), choosing 
metrics to quantify how well uncertainty 
is modelled is the next most critical point. 
Aleatoric uncertainty can be quantified using 
frequentist statistical tools such as expected 
calibration error, but epistemic uncertainty 
(an inherently subjective quantity) 
cannot. In fact, a model can be perfectly 
calibrated yet give meaningless epistemic 
uncertainty, and vice versa. Metrics for 
epistemic uncertainty quality include, for 
example, selective classification in which 
the accuracy of the model is evaluated only 
on the predictions with the lowest epistemic 
uncertainty (and predictions with high 
epistemic uncertainty are, for example, 
referred to a human to label).

Box 1 | Types of uncertainties

There are two types of uncertainty important for both physicists and machine learning scientists.

•	Aleatoric uncertainty refers to the intrinsic uncertainty of a particular system and the observed 
data. It arises due to the intrinsic and irreducible stochastic variability in the data-generating 
process. Aleatoric uncertainty — or data uncertainty — cannot be readily reduced as it is 
inherent to the measurement data.

•	Epistemic uncertainty refers to imperfections of the observational models used to describe 
physical phenomena. Epistemic uncertainty — or model uncertainty — arises from our 
ignorance about the underlying physical process itself reflecting our lack of knowledge 
about its structure or its parameters. In machine learning, epistemic uncertainty is associated 
with model structure, cost function and training algorithms, and can be reduced as more 
data become available. Optimal design of experiments can assist the allocation of sensing 
and data acquisition. Note that the ‘model’ in machine learning is not the same as the 
observational model.

Although distinguishing between the two types of uncertainties may help to understand the 
problem, perhaps the more important issue for decision making is the intended use of each type  
of uncertainty11. Such uses and decisions often imply additional factors that go beyond data and 
model relationships that may be formalized by machine learning models.

In the physical sciences, systematic uncertainties also have an important role.

•	Systematic uncertainty corresponds to known unknowns that affect the outcome. Contrary to 
data uncertainty, systematic uncertainties are usually not conceived as random fluctuations, but 
rather as static, yet unobserved, variables. In this sense, systematic uncertainties are a source of 
observational model uncertainty.
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in the wrong direction. For these reasons, 
uncertainty quantification should always 
come with diagnostics designed to probe 
the correct behaviour of the inference 
method, such as R̂ diagnostics for MCMC 
or coverage diagnostics in simulation-based 
inference.

Finally, if a model is a good fit, then one 
should be able to use it to generate data that 
resemble the observed data. If posterior 
predictive checks reveal that the observed 
data are very unlikely, then it is certainly a 
sign of model misspecification — the model 
is wrong and fails to reproduce the pertinent 
structure of the true data-generating process. 
Accordingly, model criticism from inference 
results should be used to inform the next 
revision of the model. For example, this 
can be done by incorporating nuisance 
parameters to account for systematic 
uncertainties.

F.L. Physicists should be very careful 
when assigning a meaning to epistemic 
uncertainties provided by models such 
as Bayesian neural networks. Although 
these models are indeed Bayesian, a 
Bayesian posterior is only meaningful if 
the corresponding prior is itself meaningful, 
which is generally not the case when 
imposing priors on neural network weights. 
A safer approach is to use high epistemic 
uncertainties as a sufficient but not 

necessary condition, to detect a poorly 
constrained model, typically due to lack 
of training data. This condition can be 
used to decide where to sample additional 
training data.

However, the most worrisome failure 
modes would come from unknown 
unknowns. A first class of examples would 
be anomaly or out-of-distribution detection, 
which remains a very challenging task for 
machine learning methods when the data are 
high dimensional. Thus machine learning 
models may not always be guaranteed to 
recognize extremely scientifically interesting 
yet rare and unexpected events as being 
new. A second class of examples would 
be covariate or distributional shifts, in 
which for instance, the observational data 
on which the network is applied can be 
contaminated by subtle and unexpected 
effects that are not present in the training 
data, and may not be detectable by standard 
techniques. Because the training data are 
no longer representative, the response of 
the neural network model may be biased. 
In particular, standard cosmological analyses 
have developed procedures and null tests 
to detect such contaminations, but these 
are based on an understanding of how the 
data are classically analysed (in terms of 
two-point correlation functions), which 
does not transfer directly to deep neural 
networks.

Will the integration of physics knowledge 
into the models help improve the level of 
uncertainty?

Y.G. Integrating physics knowledge in a 
model in the form of invariances — be it 
translational or rotational equivariance, 
the conservation of energy or hybrid 
models integrated with simulators — 
affects the predictions of the model, and 
its uncertainty. For example, a model that 
does not respect translational invariance, 
when trained, for example, for object 
detection tasks with objects appearing 
only in the bottom half of an image, would 
have high uncertainty given new examples 
with the same object appearing in the top 
half of the image. However, a model with 
translation invariance, given the same new 
example, would produce the same output 
that it would produce for the training 
examples where the object appeared at 
the bottom half of the image, and do so 
confidently. The invariances we choose 
to build into our models correspond to 
our assumptions about what constitutes 
‘new examples’ that should have high 
uncertainty.

use during inference; the latter is typically 
used to invert the forward-generating 
process.) The observational model should 
capture the pertinent structure of the true 
data-generating process, whereas the prior 
model should be chosen to produce plausible 
outcomes, and can be diagnosed with prior 
predictive checks. Vague and uninformative 
prior models should be avoided if they lead, 
when combined with the observational 
model, to unrealistic outcomes that are 
inconsistent with the expertise of the 
domain.

Once the model is set, inference can 
be carried out in various ways. For most 
models, exact inference is not an option and 
one must rely on approximate (Bayesian) 
inference engines based on MCMC methods 
or on simulation-based inference. For the 
inferences to be reliable and meaningful, 
one must make sure that the results are 
computationally faithful (for example, 
using coverage diagnostics to make sure the 
posteriors are neither too conservative nor 
too overconfident). If not used properly, 
inference engines can indeed produce results 
that are quite far off from the ground truth 
posterior that one aims to estimate, which 
may have detrimental consequences. For 
example, in the physical sciences, in which 
the goal is often to constrain parameters 
of interest, wrongly excluding plausible 
values could drive the scientific enquiry 

Box 2 | An intuitive example

Gilles Louppe To illustrate the uncertainties discussed in Box 1, imagine a pitcher throwing a 
baseball. The observational model in this case is given by Newton’s laws of motion ( mF a= ), which 
describe the trajectory of the ball. The parameters of the model are the initial angle (θ) and the 
initial velocity (v). The final position where the ball lands can only be measured approximately 
(for example, with a precision of 10 cm). For a fixed initial angle and velocity, the model can 
generate multiple observations. It is first deterministic, but then can be made stochastic to 
capture the imprecision of the measurements.

In this setting, the aleatoric uncertainty is the uncertainty due to the imperfect measurements. 
It would not be reduced by having more data, but it could be reduced if one could make better 
measurements. For the (parametric) epistemic uncertainty, if the initial angle and the initial 
velocity are unknown, then in a Bayesian framework one can place a prior on the parameter 
values. This prior should reflect prior knowledge (for instance, the initial velocity cannot be very 
high because the pitcher has a limit and the angle should point forward around 30–45°). Given 
one (or several) observations, Bayesian inference can be used to reduce the epistemic uncertainty 
about the model parameters.

Systematic uncertainties could also be accounted for to capture known unknowns through 
nuisance parameters. For example, air resistance or wind can easily be incorporated in the 
model, but their exact parametric values will be left unmeasured. This lack is not an obstacle  
to the analysis, however, as one can either marginalize them out (when we are Bayesians  
and place a prior over their values) or profiled out (when we are frequentist and assume  
the worst-case scenario).

Finally, the model is clearly wrong and therefore misspecified because there are plenty of factors 
not taken into account (the ball is approximated as a point, but it is in fact a deformable, rotating 
body; the air is not homogeneous and so on). Furthermore, if the initial velocity is close to the 
speed of light, the model will produce wrong predictions. Yet, this model remains useful because 
it still shows predictive performance in the regime that one is interested in. In that sense, it at 
least captures the relevant part of the true data-generating process for the analysis that one 
wants to make.
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G.L. Physics knowledge is helpful for 
inference engines. For example, in 
simulation-based inference with deep neural 
networks, inductive biases from physics 
knowledge can be used to substantially 
reduce the number of simulations necessary 
to produce accurate results. Depending 
on the forward process and on the power 
of the inductive bias, the gains in efficiency 
and accuracy can be of several orders of 
magnitude.

P.K., C.P. The exclusive development of 
models derived by physics knowledge 
and by machine learning algorithms is 
not always useful or necessary. In fact, we 
believe that there is plenty of room in the 
middle of these two approaches. Ignoring 
physics knowledge is equivalent to ignoring 
massive amounts of information-rich 
data, whereas avoiding machine learning 
approaches limits our toolbox to develop 
predictive models with quantified 
uncertainties. The two types of models can 
be complementary, in particular when it is 
broadly recognized that even when we know 
the physical model, we may not have enough 
resources to compute it. Hybrid approaches 
complementing, for example, physics 
knowledge with machine learning closures10, 
or constraining machine learning models 
with physics are essential. The application 
of uncertainty quantification techniques 
then becomes even more challenging, 
but presents an exciting scientific frontier.

F.L. Integrating physics knowledge with 
deep learning is key to interpretable and 
robust inference. The goal of the physicist is 
not only to build a model that can explain 
the data but to also do so using only a 
minimal set of interpretable components 
and parameters. Understanding the 
motivation for these model components 
and how they are causally connected is 
where the physics lies.

In many situations, when building a 
model to describe observed data, physicists 
have to incorporate effects that do not have 

a known analytical description or that are 
difficult to describe from first principles. 
To do so, they have traditionally relied on 
simple empirical models that are typically 
ad hoc and, in some cases, may not be 
complex enough to accurately model the 
observed data, leading to systematic errors. 
For example, in cosmology, modelling 
how many galaxies are expected to exist 
in a dark matter halo of a given mass is 
traditionally modelled using empirical 
halo occupation distributions, which 
constitutes one step of the full physical 
forward model tying cosmological 
parameters to the observed galaxy 
distribution on the sky.

Intrinsically, these empirical components 
in physical models are nothing more than 
conditional distributions; and with the rise 
of efficient density estimators and generative 
models, it becomes possible to avoid making 
explicit assumptions on their analytical 
forms. Instead, one can use neural density 
estimators to model these components 
within a larger physical model in an agnostic 
and data-driven way. The parameters of 
these neural networks become part of the 
physical probabilistic model, and may be 
inferred from the data along with the rest 
of the model parameters using modern 
techniques such as variational inference.

The main advantage of such hybrid 
models in physics is the ability to 
retain a forward modelling approach, 
with a meaningful causal structure. Even 
if some components become empirical 
and data-driven, they still have a specific 
meaning in the larger model and remain, 
in that sense, interpretable.
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